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Abstract 

The notion of classical well localized trajectories of a single photon in Min-
kowski spacetime does not make any rigorous sense by the well-known exis-
tence of a proof that single photons cannot be well localized. This leads to 
principal difficultness when photodetection probability on relativistic non 
inertial frame of reference is considered. In order to resolve this tension, we 
extend canonical Minkowski geometry up to relevant point-free Minkowski 
geometry [Ann. Physics 423 (2020) 168329]. The photodetection probability 
density on uniformly rotating frame endrowed with point-free Lorentzian 
geometry is obtained. The result of S. A. Podosenov et al. [Ann. Physics 413 
(2020) 168047] is obtained without any reference to unphysical notion of the 
classical trajectories of photon. The paper again shows the correctness of the 
remarkable result of Prof. C. Corda concerning the Mössbauer rotor experi-
ment as new proof of general relativity, which has been awarded by the Grav-
ity Research Foundation. In addition, the paper also shows various very ele-
mentary mistakes, misunderstandings and flaws by the self-called “YARK 
group”, which is a group of fringe researchers who attempts to promote 
wrong science, in particular, against the relativity theory. 
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1. Introduction 

In paper [1] published recently A. L. Kholmetskii et al. argued that S. A. Podo-
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senov et al. paper [2] wrong and cannot explain novel Mössbauer experiment in 
a rotating system. 

However, paper [1] contains a lot of principal mistakes: (i) First notice that [1] 
based on rejection the Einstein equivalence principle (EEP) (see [3]) and mis-
conception in basic notion of GRT. By using these misconceptions A. L. Khol-
metskii et al. argued that: “the problem of the physical interpretation of the ob-
served energy shift between emission and absorption lines in a rotating system 
under the framework of general relativity open.” 

Of course after rejection the EEP under the framework of general relativity 
one explains nothing. 

(ii) Secondary note that paper [1] based on misleading in quantum optics. 
In quantum optics we dealing with the probability density ( ) 3, ,w t ∈r r   

such that ( ), , dw t tδΩ Ωr  is the probability of the photon registration near 
point r , between instant t and dt t+  by a detector with angular size 1δΩ  
sr. and located at the point 3∈r  . The probability density ( ),w t r  is not 
highly localized in free space except unphysical 1D case known from literature 
(see [4], 5B 1.2). Single photons cannot be localized by using photodetector. 
Nevertheless in order to disprove S. A. Podosenov et al. paper [2], A. L. Khol-
metskii et al. in [1] naively argued that γ-quanta is a point particle and propagate 
along highly localized classical trajectory. But this is a missconcept. 

Remark 1. But more importantly, these authors deliberately mislead readers 
by reporting absolutely false information about the experimental results stated in 
the classical papers [5] [6] [7] [8] [9]. 

A. L.Kholmetskii et al. wrote (see [1] p.5): However, “it becomes obvious that 
Podosenov et al. [2] did not even realize the fact that Equation (11) indicates a 
red shift of the frequency of the resonant radiation (i.e., 0Rv v< ), whereas the 
equality 2 3k =  in Equation (4), obtained in the experiments [9] [10] [11] [12] 
corresponds to the blue shift of the resonant radiation when 0Rv v> . We add 
that the same blue shift of the frequency of the resonant γ-quanta has been ob-
tained in all other Mössbauer rotor experiments [1]-[6] (see corresponding ref. 
[5] [6] [7] [8] [9] in this paper) in the configuration where the source of reso-
nant radiation was located on the rotational axis, and the resonant absorber was 
mounted on the rotor rim”. 

Remark 1. Note that in classical Mössbauer rotor experiments [1]-[6] only a 
red shift in full accordance with GRT prediction without any doubt were ob-
tained. 

Remark 2. (i) Note that nowel Mössbauer experiment in a rotating system is 
not the same as fundamental Kündig experiment but only essentially simplified 
version of Kündig experiment [9]. 

(ii) A. L.Kholmetskii et al. wrote (see [1] p.3): 

“In these experiments, we did not repeat the approach by Kündig, who 
based himself on a linear Doppler modulation of the energy of the emitted 
resonant γ-quanta, because some unaccounted-for systematic errors in the 
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evaluation of the coefficient k in Equation (4) do inevitably emerge (see, e.g. 
[10]). Thus, we did not try to repeat directly the measurement scheme by 
Kündig, but followed the experimental scheme used in [1] [2] [3] [4] [6], 
where the source of resonant radiation is rigidly fixed on the rotor axis”. 

(iii) Note that in this simplified version the sign of the energy shift is not 
measured. 

(iv) In Kündig experiment the energy shift is measured sucussesefully. The 
Equation (3) describes the Kündig’s experimental data. For instance, if a eR R> , 
the energy that a photon must have for being absorbed by the absorber is smaller 
than the energy of the photon emitted by the emitter. In this case, for restoring 
the resonance condition, the absorber must be moved away from the emitter, 
thus compensating by first order Doppler effect the energy mismatch. 

1) A. L. Kholmetskii et al. wrote (see [1] p.1): “As is known, the first series of 
Mössbauer rotor experiments aiming to verify the relativistic time dilation under 
laboratory conditions had been carried out in the early 60 s soon after the dis-
covery of the Mössbauer effect (see, e.g., [1]-[6]). The latter effect leads to the 
following prediction for the relative energy shift between the line of a source of 
resonant radiation (located on the rotational axis) and the line of a resonant ab-
sorber (located at the rotor rim): 

2

2

1 .
2

s a

s

E E u
E c
−

= −                        (1) 

Here, sE  is the energy of the resonant radiation for the source, and aE  is 
the energy of the resonant radiation for the absorber, with u standing for the 
tangential velocity of the absorber, and c for the light velocity in vacuum (see 
Figure 1). We would like to point out that the “ minus” sign on the rhs of Equa-
tion (1) corresponds to the blue shift of the energy of the resonant radiation, 
where a sE E> . 

2) A. L. Kholmetskii et al. wrote (see [1] p.3): “Putting aside the deviation of 
Equation (3) from Equation (2), we emphasize that the estimation (3) anyway 
substantially disagreed with the classical relativistic prediction given by Equa-
tion (1), and due to this reason, it attracted considerable attention from the 
scientific community, indicating the need to carry out new Mössbauer experi-
ments in a rotating system”. 

Remark 3. (i) Note that prediction (1) for the case of the Mössbauer rotor 
experiments wrong and based on complete rejection of the Einstein equivalence 
principle. 

(ii) The characteristic resonance absorption frequency of the moving absorber 
at the rim should decrease due to time dilation, so the transmission of gamma 
rays through the absorber increases, which is subsequently measured by the sta-
tionary counter beyond the absorber. The maximal deviation from time dilation 
was 10−5. Such experiments were performed by Hay et al. [5], Champeney et al. 
[6] [7] and by Kündig [9]. 
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Remark 4. Note that well known that commonly accepted true classical rela-
tivistic prediction is based on general relativity treatment and in contrary with 
wrong Equation (1) reads (see [4] chapt. 12, sect. 10) . 

2

2

1 .
2

s a

s

E E u
E c
−

=                         (2) 

where “plus” sign on the rhs of Equation (2) corresponds to the red shift of the 
energy of the resonant radiation, where a sE E< . 

In Kündig paper [9] the Equation (2) presented in the following form: 
2 2 2

2 2

1 1 .
2 2

a s a

s

E E R u
E c c

ω−
− = −                   (3) 

where “minus” sign on the rhs of Equation (1) corresponds to the red shift of the 
energy of the resonant radiation, where a sE E< , and where Mossbauer source 
is placed in the center of a system rotating with the angular velocity ω , an ab-
sorber is mounted at a radius aR , and a counter is at rest beyond the absorber. 

Kündig wrote (see [9] p.1) “However, when the experiment is analyzed in a 
reference frame K attached to the accelerated absorber, the problem could be 
treated by the principle of equivalence and the general theory of relativity. The 
centrifugal force acting on the absorber is then interpreted as a gravitational 
force with the potential 

2 21 .
2 aR ωΦ = −                          (4) 

Thus, the observer in K will come to the conclusion that his clock is slowed 
down by the gravitational potential. The frequency va measured in his frame of 
reference is given to a first approximation by 

( ) ( )12 2 21 2 1 .a s sc cν ν ν= + Φ +Φ                 (5) 

The fractional energy shift is 

( ) 2 2
2

1 .
2a s s aE E E R
c

ω− −                    (6) 

Remark 5. We would like to point out that the “ minus” sign on the rhs of 
Equation (3) corresponds to the red shift of the energy of the resonant radiation, 
where a sE E<  in accordance with true classical relativistic prediction is based 
on general relativity treatment [10] [11]. 

2. Wrong Theoretical Descriptions of the  
Mössbauer Experiment in a Rotating System 

Note that wrong prediction is given by Equation (1) and named by A. L. Khol-
metskii et al. the “classical” relativistic prediction is a classical mistake based 
on misunderstood what we really measured using rotating absorber of γ-quanta 
located on the rotor rim. 

There exist a lot authors which naively treated Mössbauer experiment in a ro-
tating system mistakenly using formula (4) for Doppler frequency (energy) shift 
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it follows the frequency of absorbed radiation aν  reads as [12] 
2 2

0

2 2

1
,

1
A

a

B

u c

u c

ν
ν

−
=

−
                       (7) 

where 0ν  is the proper frequency of gamma-quanta, Au  is the velocity of 
point A at the emission moment, and Bu  is the velocity of point B at the ab-
sorption moment, see Figure 1. 

From Equation (4) finally one obtains (see [8]) 
2

0
22 2

0

11
21

ab B

B

u
cu c

ν ν
ν
−

= − −
−

                  (8) 

or in the following equivalent form related to Kündig notations 

( )
2

2 2
2 .

2
a s a s

a e
s s

E E
R R

E c
ν ν ω
ν

− −
= = −                 (9) 

There exists apparent contradiction between Equation (9) and Equation (6) 
from Kündig paper [9]. 

Remark 6. (i) Note that a “proof” of the Equation (8) from T. Yarman et al. 
[12] wrong since this “proof” implicitly uses a postulate named in literature 
“Hypothesis of Locality”. 

(ii) Remind that the Hypothesis of Locality [13] [14] [15] is tacitly assumed 
that: any accelerated observer measures the same physical results as a standard 
inertial observer that has the same position and velocity at the time of measure-
ment. For practical purposes, the hypothesis of locality replaces the accelerated 
observer by an infinite sequence of otherwise identical momentarily comoving 
inertial observers. Every inertial observer is endowed with a natural orthonormal 
tetrad frame in Minkowski spacetime. Therefore, the same holds for an accelerated  

 

 
Figure 1. Adopted from [12]. Diagram for calculation of the Doppler effect in a rotating 
system between a point-like emitter (located in the point A at the emittance moment) and 
point-like receiver (located in the point B at the receiving moment). 
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observer by the hypothesis of locality. 
(iii) A restricted hypothesis of locality is the so-called clock hypothesis, which is 

a hypothesis of locality only concerned about the measurement of time. This hy-
pothesis implies that a standard clock in fact measures τ , ( )2d 1 dt tτ β= − , 
along its path; is then the proper time along this accelerated path. 

According to most experiments, the hypothesis of locality seems to be true. 
No experiment has yet shown the hypothesis of locality to be violated (outside of 
radiation effects). 

Remark 7. Note that for the radiation effects in rotating frame the Hypothesis 
of Locality obviously wrong since Hypothesis of Locality contradicts with EEP, it 
follows from consideration below. 

Note that the energy of a particle of mass m at rest in a constant gravitational 
field is given by [10] [11]: 2 21E mc c= +Φ  where Φ  is the newtonian gra-
vitational potential. If the particle is a nucleus in an exited state, one obtains 

( )2 21 ,E mc E c= + ∆ +Φ                    (10) 

where E∆  is the energy difference between the two levels of the nuclear transi-
tion. Then, the energy difference between the two levels of the nuclear transition 
is modified by the gravitational potential by the multiplier 21 c+Φ . Thus the 
angular frequency of the nuclear transition is given by: ( ) 21 cν ν∗Φ = +Φ , 
where ν∗  being the transition frequency without gravitational field [10] [11]. 
According to the weak equivalence principle, an acceleration field is locally in-
distinguishable from a gravitational one. Then, in a reference frame corotating 
with the rotor, the energy of a photon emitted by the source without recoil is 
given by: 

2 2 21 ,s sE E R cω= ∆ −                     (11) 

since 2 21 2 sRωΦ = −  is the pseudo—gravitational potential due to acceleration. 
Analogously, the energy of the photon that can be absorbed by the absorber is 
given by: 

2 2 21 .a aE E R cω= ∆ −                     (12) 

Therefore 

2 2 2

2 2 2

1
.

1
aa

s s

R cE
E R c

ω

ω

−
=

−
                     (13) 

From Equation (13) in the approximation of small welocities aR cω   one 
obtains 

( )
2

2 2
2

1 .
2

a s
s a

s

E E
R R

E c
ω−

= −                    (14) 

Remark 8. The cause of the violetion of the Hypothesis of Locality for the case 
of the radiation effects in rotating frame clear from Equation (12). 
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3. Non Highly Localizability of the Probability Density  
Corresponding to One-Photon State in 2D Space Dimension 

Remind that in quantum optics we dealing with the probability density 
( ) 3, ,w t ∈r r   such that ( ), , dw t tδΩ Ωr  is the probability of the photon 

registration near point r , between instant t and dt t+  by a detector with an-
gular size 1δΩ  sr and located at the point 3∈r  . The probability density 
( ),w t r  is not highly localized in free space except unphysical 1D case known 

from literature (see [4], 5B 1.2). Although below we will use the concept of the 
photon position vector r , we will keep in mind that in fact this is the position 
of the photon detector. We consider 2D space dimension wave packet with 

2∈r  , but without los of generality. Let us consider a one-photon state of the 
form (see [4], complement 5B). 

1 0, , 1,0, 1 ,l l l ll lc n c= = =∑ ∑               (15) 

where 
2 1.ll c =∑                          (16) 

It changes in time and the state is given at time t by 

( ) ( )1 exp 1 .l l llt c i tω= − ×∑                  (17) 

The photodetection signal at time t and fixed point ( ), ,r rϕ= =r r  (see 
Figure 1) is given by [4]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2ˆ, , , 1 , ,w t w t s t s E tϕ + += = =r r E r r        (18) 

where ϕ  is angle ( ),r X  between axis X  and vector r  (see Figure 1), s is 
the sensitivity of detector and where 

( ) ( ) ( ) ( ), exp ,l l l l llE t c i tω+  = ⋅ − × ∑r k k rε            (19) 

and 

( ) ( )cos cos , ,l l l lω ϕ θ⋅ = × × = × ×k r k r r,k r           (20) 

see Figure 1. 
We consider now a set of coefficients ( )l l lc c= k  different from zero for 

values of lk  distributed over some bounded region 
0

Gk  of k-space of extent 
,x yk kδ δ  about a value 0k . 

We thus obtain, at time 0t = , a 2D wave packet localized in a volume of 
x-space with dimensions of the order of ( ) ( ) 11 ,x yk kδ δ

−−
  . When the same set 

of coefficients ( ),l l lc c ϕ= k  is substituted into (17), we thus obtain a photode-
tection signal (18) that differs from zero only within some bounded region Gx  
of x-space of extent ( ) ( ) 11 ,x yk kδ δ

−−
  . 

Remark 9. The volume of this region Gx  generally increases without limit as 
time goes by, and this in each space dimension. Therefore, there is now well lo-
calized classical trajectories of such γ-quanta in physical 2D space dimension. 

The final result for inertial frame reads [16] (see Appendix A): 
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( ) 1 cos cos
, , ~ exp ,IFw t H t t

c c
ψ ψ

θ α−
    

Γ − −Γ −    
     

r r
r      (21) 

where 1 2,ψ ϕ θ α ϕ α= − ≤ ≤  and 1 2α θ α≤ ≤ , (see Appendix C, Figure 2). 
It follows from Equation (21) that under condition cos 1ψ  , with a proba-

bility 1P   the following constraint holds 

0.ct − r                           (22) 

The final result for non inertial frame reads [16] (see Appendix D, Figure 3): 

( )

( ) ( )1

, , ,

cos cos
~ exp ,

RF RF RF

RF r RF r
r RF r RF

w r t t

r t r t
H t t

c c

ϕ ω θ

ψ ω γ ψ ω γ
α γ γ−

−

    − −
    Γ − −Γ −

        r r

 (23) 

where 
21, , 1

6r r
rc c r

c
ωγ γ

  = = = −  
   

r r . 

It follows from Equation (21) that under condition cos 1ψ  , with a proba-
bility 1P   the following constraint holds 

0.RFc t r−r                          (24) 

Remark 10. Note that the constraints (22) and (24) were obtained without 
any references to notion of the classical trajectories of γ-quanta [16]. By using 
proposed approach, the fundamental C. Corda result [17] can be recovered suc-
cessfully by obvious way without any reference to unphysical notion of the clas-
sical trajectories of γ-quanta. 

Remark 11. (i) Note that in canonical literature (see for example [4] [18] [19] 
[20] [21]) only unphysical specific forms of a one-photon state in one space di-
mension are considered. However such specific forms can be considered only as 
an simplification but rigorously, neither of these approximation is ever cor-
rect.This sometimes leads to misleading of the people and A. L. Kholmetskii et 
al. such of them.In contrast to the approach taken in Refs. [4] [18] [19] [20] we 
applayd a more realistic 2D picture [16]. 

(ii) Note that in paper [1] L. Kholmetskii et al. mistakenly argued that: “ The 
constraint (8a) used in Ref. [2] implies that the resonant γ-quanta will propagate 
along the radial coordinate r of the rotating system, and hence, a laboratory ob-
server would see the propagation of such γ-quanta along a curved path.” 

(iii) This statement from L.Kholmetskii et al. [1] wrong and based on mis-
conception meaning mentioned above, since such γ-quanta is well localized in k 
space and therefore is not well localized in x space except unphysical 1D space 
dimension. Thus a laboratory observer would see nothing since there is no any 
curved classical path mentioned in their paper [1]. 

4. Proper Time along the Interval-Valued  
Path. Corda’s Desynchronization Term 

Let 1,3M


 be point free Minkowskian space-time endrowed with the following 
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interval-valued line element in interval-valued polar coordinates 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2 2 2 2 2 22d d d d d ,s c t r r zψ ϕ= − − −            (25) 

where ψ ϕ θ= − , see Appendix D. Note that the interval-valued line element 
(25) corresponding to photodetection signal which propagate with a probability 

1  in accordance with the interval-valued law is given by Equation (C.9)-Equation 
(C.10), see Appendix C. 

The interval-valued transformation to a non inertial frame of reference 
[ ] [ ] [ ] [ ]( ), , ,t r zϕ′ ′ ′ ′  rotating at the uniform angular rate ω with respect to the 

starting inertial frame (26) is given by 

[ ] [ ] [ ] [ ] [ ] [ ] [ ], , .t t r r tϕ ϕ ω′ ′ ′= = = −                (26) 

Under transformation (26) the Equation (26) becomes the interval-valued 
Langevin metric in the rotating frame [16] (see Appendix D) becomes the fol-
lowing interval-valued line element (interval-valued Langevin metric) in rotating 
frame reads 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 2
2 2 22

2

2 2 2 2

d 1 d 2 d d

d d d .

t
t

r
s c t r t

c

r r z

ψ ω
ψ ω

ω
ω ϕ

ϕ

′−
′−

 ′
  ′ ′ ′ ′= − −
 
 

′ ′ ′− − −

       (27) 

For simplicity but without loss of generality, we consider now the following 
2-dimensional interval-valued Langevin metric, see Appendix D. 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ]

2 2
2 2 22

2

2 2 2

d 1 d 2 d d

d d ,

t
t

r
s c t r t

c

r r

ψ ω
ψ ω

ω
ω ϕ

ϕ

−
′−

 ′
  ′ ′ ′ ′= − −
 
 

′ ′ ′− −

       (28) 

By substituting [ ] 1 2: , , constϕ ϕ ϕ α α∗ ∗
∗ ∗ ∗   = = =     and  

[ ] , 0,ψ ψ ψ α∗
∗ ∗ ∗   = =     (see Remark C.3) into Equation (28) we get 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]
2 2

2 2 22
2d 1 d d 0.t

t

r
s c t r

c ψ ω
ψ ω

ω
∗

∗

′−
′−

 ′
  ′ ′= − − =
 
 

          (29) 

The conservation law 

[ ] 2
00

1
constantlocg =E                     (30) 

valid for any time-independent interval-valued metric with 0 0jg  =   and for 
particles with both zero and non-zero rest mass. It describes how the locally 
measured energy of any particle or photon changes (is “red-shifted” or “blue- 
shifted”) as it climbs out of or falls into a static gravitational field. For a particle 
of zero rest mass as photon, the locally measured energy locE , and wavelength 

locλ , are related by loc loc locλ ν= =E   , where   is Planck’s constant. Con-
sequently, the law of energy shift can be rewritten as 

[ ] 1 2
00 constant.locg λ

−
=                     (31) 

Therefore, from Equation (31), one gets 
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[ ] [ ]

[ ]

2
10 11

22 2 2
1

2 2

1 1 11 1 ,
2

1 1
t

cR
c cψ ω

τ τ υ
τ ω υ

∗ ′−

∆ − ∆
= − − −

− −

         (32) 

where we use the proper time τ  rather than the wavelength λ  and where 
[ ]10τ∆  is the delay of the emitted radiation, [ ]11τ∆  is the delay of the received 
radiation, [ ]

1
1 Rcψτ −
 , R is the radial coordinate of the absorber (see Figure 2 & 

Figure 3) and Rω=v , where ω  is the tangential velocity of the absorber. In a 
gravitational field, the rate [ ]d τ  of the proper time is related to the rate [ ]dt′  
of the coordinate time by 

[ ]
[ ] [ ]

[ ]
2 2

2d 1 d .
t

r t
cψ ω

ωτ
∗ ′−

′
′= −                    (33) 

Using now again Equation (26), we get 

[ ] [ ] [ ] [ ] [ ] [ ]2 2 2 22 2d d d d ,c t c t r rψ ψ′ ′= = =               (34) 

where the equality 

[ ] [ ] [ ]2 22 d dc t rψ =                        (35) 

follows from the issue that in the laboratory frame photodetection signal propa-
gate with a probability 1 , in accordance with the following interval-valued law 

[ ] [ ] [ ] [ ] [ ]2 1, , ,r c tψ ϕ α α=                    (36) 

see Appendix C, Equation (C.9). Hence, Equation (33) becomes 

[ ] [ ]
[ ] [ ]

[ ]
2 2

2
2d 1 d .

t

rc r
cψ
ψ ω

ωτ
∗ ′−

′
′= −                   (37) 

Note that the Equation (15) is well approximated by 

[ ] [ ] [ ]
[ ]

[ ]
2 2

2
2

1d 1 d .
2

r
c r

cψ
ψ

ω
τ

∗

 ′
  ′− +
 
 

                 (38) 

Therefore, the second contribution of order [ ]
2 2cψυ  to the variation of 

proper time reads 

[ ] [ ] [ ]
[ ]

[ ]
[ ]

[ ] [ ]
[ ]

1 2 2 2
2

2 1 12 2
0

1 11 d .
2 6

r r
c r r r

c cψ
ψ ψ

ω υτ
∗

′  ′
  ′ ′ ′∆ − + − = −
 
 
∫        (39) 

Note that [ ] [ ] [ ]1r cψ τ′
  is the radial distance between the source and the de-

tector. Then, one gets the Corda’s desynchronization term 

[ ]
[ ] [ ]

2
2

2 2
1

1 .
6

z
cψ

τ υ
τ
∆

= = −                      (40) 

Under conditions of Kündig experiment [9] (40) is well approximated by 
2

2 2

1 .
6

z
c
υ

−                         (41) 
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5. Conclusions 

By using proposed approach based on point-free Lorentzian geometry [16], the 
fundamental C. Corda result [17] [22] [23] [24] recovered successfully by ob-
vious way without any reference to unphysical notion of the classical trajectories 
of γ-quanta. 

In additional note that YARK group papers [30] [31] [32] wrong and must be 
rejected since in contrast with Kündig [9] YARK group did not measure the sign 
of the energy shift between emission and absorption lines but attributed this sign 
by own ubnormal meaning based on wrong Equation (1). 
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Appendix. A. Two-Dimensional Wave Packet and 
Corresponding Conditional Photodetection 
Probability Density Function 

Consider a one-photon state of the form 

( ) ( )1 0, , 1,0, 1 ,l l l ll lc n cϕ ϕ= = =∑ ∑           (A.1) 

where 

( ) 2 1,ll c ϕ α−=∑                      (A.2) 

1 2 1 2,α ϕ α α α α≤ ≤ = − , see Figure 1. Thus normalizability condition reads 

( )
1

1

2
d 1.ll c

α

α

ϕ ϕ =∑∫                      (A.3) 

A state (A.1) changes in time and the state is given at time t by 

( ) ( ) ( )1 exp 1 .l l llt c i tϕ ω= − ×∑                (A.4) 

The photodetection signal at time t and fixed point ( ), ,r rϕ= =r r  (see 
Figure 2) is given by [2]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2ˆ, , , 1 , ,w t w t s t s E tϕ + += = =r r E r r       (A.5) 

where ϕ  is angle ( ),r X  between axis X  and vector r  (see Figure 1), s is 
the sensitivity of detector and where 

( ) ( ) ( ) ( ), , , expl l l l llE t c i tϕ θ ω+  = ⋅ − × ∑r k k rε          (A.6) 

( ) ( ) ( ), , ,l l l lc cϕ θ ϕ θ= ∆k k  and 

( ) ( )cos , cos , ,l l l lω ϕ θ⋅ = × × = × ×k r k r r k r          (A.7) 

see Figure 2. 
Remark A.1. (i) We consider now a set of coefficients ( ), ,l l lc c ϕ θ= k  dif-

ferent from zero for values of lk  distributed over some bounded region 
0

Gk  
of k-space of extent , ,x y zk k kδ δ δ  about a value 0k  and in addition are differ-
ent from zero for values of ϕ  and values of θ  such that 1 2α ϕ α≤ ≤  and 

1 2α θ α≤ ≤ , see Figure 2. Thus 

( ) [ ]1 2, 1 if , ,ϕ θ ϕ θ α α∆ = ∈                  (A.8) 

and 

( ) [ ] [ ]1 2 1 2, 0 if , or ,ϕ θ ϕ α α θ α α∆ ≡ ∉ ∉             (A.9) 

(ii) We thus obtain, at time 0t = , a 2D wave packet localized in a volume of 
x-space with dimensions of the order of ( ) ( ) 11 ,x yk kδ δ

−−
  . When the same set 

of coefficients ( ),l l lc c ϕ= k  is substituted into (A.1), we thus obtain a photo-
detection signal (A.4) that differs from zero only within some bounded region 
Gx  of x-space of extent ( ) ( ) 11 ,x yk kδ δ

−−
  . 

(iii) The volume of this region generally increases without limit as time goes 
by, and this in each space dimension, there are specific form of a one-photon 
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state in 1D space dimension for which the spreading effect does not occur [3]. 
This kind of wave packet is not physically realistic, in the sense that it extends 
infinitely in the plane perpendicular to n. 

(iv) However, there are specific forms for which the spreading effect does not 
occur dramatically in 2D and 3D space dimension. An nontrivial example is the 
2D wave packet we are about to discuss. Consider now the case in which the 
wavevectors lk  associated with the non-zero coefficients lc  are all parallel to 
the same unit vector n (see Figure 2), i.e. 

2 .l
l

l
c L
ω

= =
πk n n                     (A.10) 

where L is an arbitrary quantization length. The function ( ) ( ),E t+ r  given by 
Equation (A.6) then takes the form 

( ) ( ) ( ) ( ) ( )1, , exp .l l l l llE t c E i t
c

ϕ θ ω ω+  ⋅  = ∆ −    
∑ r nr ε       (A.11) 

Thus the photodetection probability (A.4) depends on space and time only 
through the quantity 

( )cos , cos
,t c t t

c cψ

ψ
τ = − ⋅ = − = −

r r n r
r n          (A.12) 

where ψ ϕ θ= − , (see Figure 2). Let us consider the case where all the modes 
have the same polarization ε . The coefficients c then depend only on the fre-
quency ω , and a wave packet can be formed by considering a distribution 
peaking at some 0ω , described by 

( ) ( )0 ,l l lc gω ω ω= −                    (A.13) 

where ( ) 0, lg ξ ξ ω ω= −  is a function centered on 0 and having a typical 
half-width δω  that is small compared with 0ω . The function (A.11) will then 
be proportional to the Fourier transform ( )ĝ ψτ  of ( )g ξ , yielding a wave 
packet with width of the order of 1 δω . To carry out the calculation explicitly, 
the sum in (A.11) is replaced by an integral, introducing the one-dimensional 
mode density deduced from (A.10): 

d .
d 2l

l L
cω

=
π

                       (A.14) 

The final result reads 

( ) ( ) ( ) ( ) ( )

( )

0

0

0
0

0

,
, ~ d exp

2 2

cos,
exp ,

2 2

l l l

L
E t c i

L c

L
i t

c c

ψ

ϕ θω
ω ω ωτ

ε

ψϕ θ ω
ω

ε

+∞
+

−∞

∆
−

  ∆
= − −  

  

π

π  

∫r

r





ε

ε
     (A.15) 

where 

( ) ( ) ( )1ˆ d exp .
2

g g iψ ψτ ξ ξ ξτ
+∞

−∞

−
π

= ∫              (A.16) 

The photodetection probability density (A.5) reads 
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( ) ( ) ( )
2

1 cos ,
ˆ, ~ , .w t g t

c
α ϕ θ−  

∆ − 
 

r r n
r           (A.17) 

Spontaneous emission by a single atom in an excited state gives a one-photon 
wave packet. For this case one obtains the coefficients 

( )
0

.
2l l

l

Kc
i

ω
ω ω

=
− + Γ

                  (A.18) 

Note that the emitted light spectrum is described by a Lorentzian line centred 
at 0ω , with width Γ  at half-maximum: 

( )
( )

2

2 2
0

.
4

l l
l

Kc ω
ω ω

=
− + Γ

                (A.19) 

We now write ( ) ( ),E t+ r  in the form (A.15). The Fourier transform of 

( ) .
2

Kg
i

ξ
ξ

=
+ Γ

                     (A.20) 

one obtains 

( ) ( )ˆ 2 exp ,
2

g K Hψ ψ ψτ τ τΓ = − 
 

π              (A.21) 

where ( )H ψτ  is the Heaviside step function, equal to 0 for 0τ <  and 1 for 
0τ ≥ . 

The final result reads 

( ) 1 cos cos
, , ~ exp ,w t H t t

c c
ψ ψ

θ α−
    

Γ − −Γ −    
     

r r
r      (A.22) 

where ψ ϕ θ= − , (see Figure 2). 
Remark A.2. (i) Note that the probability density ( ),w t r  cannot be consi-

dered as the wave function of the photon, whose squared modulus, suitably 
normalized, gives the probability density for the presence of the photon, meas-
ured by a photodetector (see [3], 5.6.). 

(ii) It should not be thought that there is a position operator r̂  for the pho-
ton corresponding to measurements by a photodetector. Therefore the probabil-
ity density ( ),w t r  cannot be considered as the probability density of finding a 
photon exactly at point 2∈r  , but rather as an average probability density over 
some small area which cannot be smaller than 2

minλ , where minλ  is the wave-
length associated with the maximum frequency to which the detector is sensi-
tive. 

(iii) Thus the quantity ( ), dw t tδθr  is the probability of detecting a click near 
point ( ),r θ=r , between t and dt t+ , i.e. by a detector with angular size 

1δθ  , where min rλ δθ≤  and located at the point 2∈r  . 
Remark A.3. Note that normalizing factor in Equation (A.22) contains a mul-

tiplier 1α−  with 1 2α α α= −  2ψ π  rad and thus cos 1ψ  . Therefore the 
conditions is given by Equation (B.5) and by Equation (B.6) [see Apendix B] are 
satisfied, since 
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( )[ ] [ ]2 10,2 \ ,
, , , d d 0,

t

t
w r t t

α α
ϕ θ ϕ

π
=∫ ∫               (A.23) 

and 

[ ] [ ] [ ] [ ]( ) ( )1

2
, , , , , , d 2d 1 ,

t

t
P t r w r t t

α

α
ϕ θ ϕ θ ϕ

′

′
′ <∫ ∫        (A.24) 

where [ ] [ ],t t t= , [ ] [ ] [ ]2 1 2 1, 0.5 ,θ α α α α′ ′ ′=  . 

Appendix. B. Quantum Measurement on Inertial Relativistic 
Frame of Reference. Point-Free Minkowski 
Geometry 

In this appendix we introduce point-free Minkowski geometry [16] [25] [26], 
related to relativistic quantum measurement on inertial relativistic frame of ref-
erence. 

If we are to suppose that a quantum particle at a definite position 
( ) 3

1 2 3, ,x x x x= ∈  at instant [ ]0,t T∈  is to be assigned a state vector ,t x , 
and if further we are to suppose that the possible positions , 1, 2,3ix i =  are con-
tinuous over the range ( ),−∞ +∞  and that the associated states are complete, 
then we are lead to requiring that any state tψ  of the particle at instant 

[ ]0,t T∈  must be expressible as 
3d , ,t tx t x x tψ ψ

∞

−∞
= ∫                   (B.1) 

with the states ,t x  by δ-function normalised, i.e. ( ) ( )3, ,x t t x x x t tδ δ′ ′ ′ ′= − − . 
However well known that the notion of preparing a particle in a state ,t x  
does not even make any physical sense. The resolution of this impasse involves 
recognizing that the measurement of the position of a particle is, in practice, on-
ly ever done to within the accuracy, ( )1 2 3, ,x x x xδ δ δ δ=  say, of the measuring 
apparatus. In other words, rather than measuring the precise position of a par-
ticle, what is measured is its position as lying somewhere in a range  

1 1, , 1, 2,3
2 2i i i ix x x x iδ δ − + = 

 
 Therefore if the particle is in some state tψ , 

we can recognize that the probability ( ), , ,
t

P t x t xψ δ δ  of getting a result x with 

an accuracy of xδ  between instants t tδ−  and t tδ+ . will be given by 

( )
1 1 2 2 3 3

1 1 2 2 3 3

1 1 1
2 2 2 23

1 1 1
2 2 2

, , , d d , .
t

x x x x x xt t

t t x x x x x x

P t x t x t x x t
δ δ δ

δ

ψ
δ δ δ δ

δ δ ψ
+ + +

+

− − − −

′ ′ ′ ′= ∫ ∫ ∫ ∫      (B.2) 

1. We assume now that at point 3x∈  the following estimate is satisfied 

( ) ( ) ( )1 2 3 4, , , 1 exp exp 1,
t

P t x t x c c x c c tψ δ δ δ δ= − − − −        (B.3) 

where 1 3 2 4, 1, , 1c c c c≤   are positive constants suth that 2 41, 1c x c tδ δ   
and ( ) ( ) ( )22 2

1 2 31, 1,x t x x x xδ δ δ δ δ δ= + +  . 
Remark B.1. Note that only under condition (B.3) the notion of position of a 

quantum particle at instant t holds in well approximation relevant to classical 
sense, i.e. as a definite point 3x∈ . 
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2. We assume now that there exists continuous vector-function [ ] 3: 0,tx T →   
such that for all [ ]0,t T∈  the following estimate is satisfied 

( ) ( ) ( )1 2 3 4, , , 1 exp exp 1,
t

P t x t x c c x c c tψ δ δ δ δ= − − − −        (B.4) 

where 1 3 2 4, 1, , 1c c c c≤   are positive constants suth that 2 41, 1c x c tδ δ   
and 1, 1x tδ δ  . 

Remark B.2. Note that only under condition (B.4) the notion of trajectory of 
a quantum particle holds in well approximation relevant to classical sense, i.e. as 
continuous vector-function [ ] 3: 0,tx T →  . 

3. We assume now that at point 3x∈  the following estimates are satisfied 

( ) ( )1 2, , , 1 exp 1

1

,

, , 2, ,
2 2

t

t

P t x t x c c x

t xP t x

ψ

ψ

δ δ δ

δ δ

= − −

  < 
 



            (B.5) 

where 1 1,c c  are positive constants and 1, 1x tδ δ> >  and 

( ) ( )3
3 4\ | , , , exp 0,

t
P t x t x c c xψ δ δ δ∆ = − ≈           (B.6) 

where 4 2c c , and 

( )
3

23 3

\

\ | , , , d d .
t

t t

t t

P t x t x x x
δ

τψ
δ

δ δ τ ψ
+

− ∆

′ ′∆ = ∫ ∫


          (B.7) 

where 1 2 3
1 1, 0.5 , , 1, 2,3
2 2i i i i ix x x x iδ δ ∆ = ∆ ×∆ ×∆ ∆ = − + =  

. 

Remark B.3. Note that under conditions (B.5)-(B.7) the notion of position of 
a quantum particle at instant t no longer holds in well approximation relevant to 
classical sense and well defined only by using notion of the interval numbers 
[16]. 

4. We assume now that there exists continuous vector-function [ ] 3: 0,tx T →   
such that for all [ ]0,t T∈  the following estimates are satisfied 

( ) ( )1 2, , , 1 exp 1,

, , , ,
2

1 2
2

t

t

t t t

t
t

P t x t x c c x

xtP t x

ψ

ψ

δ δ δ

δδ

= − −

  < 
 



           (B.8) 

where 1 1,c c  are positive constants and for all [ ]0, , 1, 1tt T x tδ δ∈ > > , and 

( ) ( )3
3 4\ | , , , exp 0,

t t t tP t x t x c c xψ δ δ δ∆ = − ≈          (B.9) 

where 4 2c c . and 

( )
3

' 23 3

\

\ | , , , d d , .
t

t t

t t t
t t

P t x t x t x x t
δ

ψ
δ

δ δ ψ
+

′
− ∆

′ ′ ′ ′∆ = ∫ ∫



      (B.10) 

where 1, 2, 3, , , , , ,
1 1, , , 1, 2,3
2 2t t t i t i t i t i t i tx x x x iδ δ ∆ = ∆ ×∆ ×∆ ∆ = − + =  

. 

Remark B.4. Note that under conditions (B.8)-(B.10) the notion of trajectory 
of a quantum particle no longer holds in well approximation relevant to classical 
sense and well defined only by using notion of the interval-valued function [27] 
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[28]. 
We rewrite now the Equation (B.5) using notion of the interval number in the 

following form 

[ ] [ ]( ) 1 2 3

1 2 3

23, d d , 1,
t

t x x x

t x x x
P t x t x x tψ ψ′ ′ ′ ′= ∫ ∫ ∫ ∫          (B.11) 

where [ ] [ ] [ ] [ ] [ ] [ ]( ) ( )3
1 2 3, , , ,t t t x x x x= = ∈ I  is interval number: 

[ ] [ ] 1 1, , , ,
2 2i i i i i i ix x x x x x x x xδ δ= = − = +            (B.12) 

1,2,3i = , where [ ] [ ],t t t=  
Remark B.5. Thus the result of quantum measurement of the position of a 

particle that is alwais interval number: [ ]x  is given by Equation (B.4) of getting 

a result [ ]x  with the probability [ ] [ ]( ), 1
t

P t xψ  . 

Remark B.6. Let [ ] [ ] [ ], ; ,a a a b b b = =    be real compact intervals. The fol-
lowing rules hold: (i) [ ] [ ] ,a b a b a b + = + +  ; (ii) [ ] [ ] ,a b a b a b − = − −  ; 

(iii) [ ] [ ] { } { }min , , , ,max , , ,a b ab ab ab ab ab ab ab ab ⋅ =   ; 

(iv) [ ] [ ]{ }1 1 |b b b b− −= ∈  if [ ]0 b∉ , thus [ ] [ ] [ ] [ ] 1a b a b −⋅ . 
If a a a= = , i.e., if [ ]a  consists only of the element a, then we identify the 

real number a∈  with the degenerate interval [ ],a a  keeping the canonical 
notation, i.e., [ ],a a a≡ . 

It is easy to prove that the set ( )I  of real compact intervals is closed with 
respect to these operations. 

Remark B.1. Unfortunately, ( )( ), ,+ ⋅I  is neither a field nor a ring. The 
structures ( )( ),+I  and ( ) { }( )/ 0 , ⋅I  are commutative semigroups with the 
neutral elements 0 and 1, respectively, but they are not groups. A nondegenerate 
interval [ ]a  has no inverse with respect to addition or multiplication. Even the 
distributive law has to be replaced by the so-called subdistributivity:  
[ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]a b c a b a c⋅ + ⋅ + ⋅ . 

Remark B.2. (i) In order to avoid difficultness mentioned above we replace any 
interval number [ ] [ ],x x x=  by an continuous function [ ] [ ]: 0,1 ,x x xζ  →   
such that the following conditions are satisfied [16]: 

[ ] [ ]0,1 0,1inf ,sup ,x x x xζ ζς ς∈ ∈   = =     
where x x xζ ≤ ≤  . 

(ii) We usually keeping for short the canonical notation [ ]x , i.e.,  
[ ] [ ], 0,1x xζ ζ  ∈  . 

(iii) Note that the notation [ ] [ ],x x x=  mean x x xζ ≤ ≤  , but not real 
compact interval: { }|x x x x≤ ≤ . 

(iv) We also keeping the notation xζ  which mean a value of the function 
xζ    in a given point [ ]0,1ζ ∈ . 
Let [ ] [ ] [ ], ; ,a a a b b b = =   . The following rules hold: 
(i) [ ] [ ] [ ], 0,1a b a b a bζ ζ ζ ζ ζ     + + = + ∈      , thus [ ] [ ] [ ] [ ]a b b a+ = + ; 

(ii) [ ] [ ] [ ], 0,1a b a b a bζ ζ ζ ζ ζ     − − = − ∈      , thus [ ] [ ] [ ]0a a− = ; 
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(iii) [ ] [ ] [ ], 0,1a b a b a bζ ζ ζ ζ ζ     ⋅ ⋅ = ⋅ ∈      ; 

(iv) [ ] [ ] [ ]( ) [ ] [ ] [ ] [ ]a b c a b a c⋅ + = ⋅ + ⋅ ; 

(v) [ ] [ ]11 1 , 0,1b b bζ ζ ζ
−− −   = ∈     if [ ]0 b∉ , thus [ ] [ ] [ ] [ ] 1a b a b −⋅ . 

(vi) [ ] [ ]a b<  if for any [ ]0,1 : a bζ ζζ ∈ < . 
It is easy to prove that the set ( )F  of all continuous function xζ    is 

closed with respect to operations (i)-(v). 
Definition B.1. (i) Let ( ) :x f x →    by any continuous function. 

Then we define the interval-valued function [ ]( ) ( ) ( ):f x → F F , which 
extend ( )f x  from   up to ( )F  by the following formula 

[ ]( ) ( ) ( ) [ ], 0,1 .f x f xζ ζ = ∈ ∈  F              (B.13) 

It is also denoted by ( ) [ ], 0,1f xζ ζ  ∈  . Standard interval-valued functions 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]sin ;cos ; tan ;arctan ;exp ;ln ; ; , etc.nx x x x x x x x    (B.14) 

are well defined by Equation (B.13) in obvious way. 
Let ( ) : n nx f x →    by any continuous function of n real variables 

( )1 2, , , .nx x x x=   
Then we define the interval-valued function [ ]( ) ( ) ( ): nf x → F F , 

where [ ] [ ] [ ] [ ]( )1 2, , , nx x x x=  , which extend ( )f x  from   up to ( )n F  
by the following formula 

[ ]( ) [ ] [ ] [ ]( ) ( ) ( ) [ ]1 2 1, 2, ,, , , , , , , 0,1 .n nf x f x x x f x x xζ ζ ζ ζ = = ∈ ∈   F  (B.15) 

It is also denoted by ( ) ( ) [ ]1, 2, ,, , , , 0,1nf x f x x xζ ς ζ ζ ζ       = ∈        . 
(ii) Let ( ) :f x →   by any continuous function and the n-th derivative 
( ) ( ) ( ), ,nf x x∈ −∞ +∞  exists. Then we define the n-th derivative ( ) [ ]( )nf x  of 

the interval-valued function [ ]( )f x  by the following formula 
( ) [ ]( ) ( ) ( ) ( ) [ ], 0,1 .n nf x f xζ ζ = ∈ ∈  F            (B.16) 

Definition B.2. (i) Let ( ) :x f x →    by any continuous function. Then 
we define the integration of interval-valued function [ ]( ) ( ) ( ):f x → F F  by 
the following formula 

[ ]( ) [ ]
[ ]

[ ]

( ) [ ]d d , 0,1 .
bb

a a

f x x f x x
ζ

ζ

ζ ζ ζ
 
  ∈
  

∫ ∫            (B.17) 

(ii) Let ( )1 2, , , : n
nx f x x x →     by any continuous function. Multiple 

integration of the interval-valued function [ ]( ) ( ) ( ):f x →F F   function 
in n variables 

[ ]

[ ]

[ ]

[ ]

[ ]

[ ]

[ ] [ ] [ ]( ) [ ]

( ) [ ]

1 2

1 2

1, 2, ,

1, 1, ,

1 2 1

1, 2, , 1, 2, ,

, , , d

, , , d d d , 0,1 .

n

n

n

n

bb b

n
a a a

b b b

n n
a a a

f x x x x

f x x x x x x
ζ ζ ζ

ζ ζ ζ

ζ ζ ζ ζ ζ ζ ζ
 
  ∈
  

∫ ∫ ∫

∫ ∫ ∫

 

   

    (B.18) 

(iii) Let ( ) :fλ λ →    by any continuous function. Then we define the 
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integration of the interval-valued function ( ) ( ):fζ λ  →  F   by the fol-
lowing formula 

( ) ( ) [ ]d d , 0,1 .f f
β β

ζ ζ
α α

λ λ λ λ ζ
 

  ∈  
 

∫ ∫             (B.18) 

Remark B.3. Remind that from the second postulate of special relativity, to-
gether with homogeneity of spacetime and isotropy of space, it follows that the 
spacetime interval 1,2s  between two arbitrary events called ( )1 1 1 1 1, 1, ,t x y z=e e  
and ( )2 2 2 2 2, 2, ,t x y z=e e  is 

( ) ( ) ( ) ( )2 2 2 22
1,2 1 2 1 2 1 2 1 2 .s c t t x x y y z z= − − − − − − −       (B.19) 

Thus the square of the interval (B.19) or Minkowski’s metric reads 

( ) ( ) ( ) ( )2 2 2 22
1,2 1 2 1 2 1 2 1 2 .s c t t x x y y z z= − − − − − − −       (B.20) 

or in differential form 
2 2 2 2 2 2d d d d d .s c t x y z= − − −                 (B.21) 

Semi Riemannian manifold endroved with Minkowski’s metric (B.21) is called 
Minkowski’s spacetime and denoted by 1,3M . 
Remark B.4.Note that Minkowski’s spacetime relevant only for classical 

events ( ), , ,t x y ze , i.e. the events with exactly measured coordinates: , , ,t x y z . 
From consideration above it is clear that for physical events corresponding to 
quantum measurement the classical model based on Minkowski’s geometry no 
longer holds.In order to avoid this difficultness we apply the pont free Min-
kowski’s geometry [16] related to quantum measurement on inertial relativistic 
frame of reference. 

The coordinate-independent definition of the square of the interval-valued 
line element [ ]d s  in an n-dimensional Riemannian or Pseudo Riemannian 
manifold (in physics usually a Lorentzian manifold) is the “square of the length” 
of an interval-valued infinitesimal displacement [ ]d q  (in pseudo Riemannian 
manifolds possibly negative) whose square root should be used for computing 
the generalized, i.e. interval-valued curve length: 

[ ] [ ] [ ] [ ] [ ]( )2d d d d ,d ,s g= =q q q q              (B.22) 

where g is the interval-valued metric tensor,   denotes inner product, and 
[ ]d q  an interval-valued infinitesimal displacement on the (pseudo) Rieman-

nian manifold. By parameterising interval-valued curve [ ]( ) ( )nq λ ∈F   pa-
rametrised by a parameter λ ∈ , we can define the arc length of the curve 
length of the curve between [ ]( ) ( )1

nq λ ∈F  , and [ ]( ) ( )2
nq λ ∈F   is the 

interval-valued integral 

[ ] [ ] [ ]( ) [ ]( )

( ) ( )

2 2

1 1

2

1

2 d d
d d d ,

d d

d d
d , .

d d

i j

ij

q q
s s g

q q
g

λ λ

λ λ

λ

λ

λ λ
λ λ

λ λ

λ λ
λ

λ λ

 
= =  

 

        =
 
 

∫ ∫

∫
        (B.23) 
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The square of arc length [ ]2d s  with the metric is even more easy to see in 
n-dimensional general interval-valued curvilinear coordinates  
[ ] [ ] [ ] [ ] [ ]( )1 2 3, , , , nq q q q q=  , where it is written as a symmetric rank 2 tensor 
coinciding with the metric tensor: 

[ ] [ ]2d d d .i j
ijs g q q g    = =                     (B.24) 

Here the indices i and j take values 1,2,3, ,n  and Einstein summation 
convention is used. Common examples of (pseudo) Riemannian point-free 
spaces include three-dimensional point free space (no inclusion of time coordi-
nates), and indeed four-dimensional point-free spacetime. 

Following are importent examples of how the interval-valued line elements 
are found from the interval-valued metric. 

1. Interval-valued Cartesian coordinates. 
The simplest interval-valued line element is in interval-valued Cartesian coor-

dinates—in which case the metric is just the usual Kronecker delta 

.ij ij ijg δ δ   = ≡                         (B.25) 

The general interval-valued curvilinear coordinates reduce to interval-valued 
Cartesian coordinates: ( ) [ ] [ ] [ ]( )1 2 3, , , ,q q q x y z      =       so 

[ ] [ ] [ ] [ ]2 2 2 2d d d d d d .i j
ijs g q q x y z    = = + +              (B.26) 

2. Interval-valued cylindrical coordinates. 
For the conversion between interval-valued cylindrical and interval-valued 

Cartesian coordinates, it is convenient to assume that the reference plane of the 
former is the Cartesian [ ][ ]x y -plane (with equation [ ] 0z = ), and the cylin-
drical axis is the interval—valued Cartesian [ ]z -axis. Then the interval-valued 
[ ]z -coordinate is the same in both systems, and the correspondence between 
interval-valued cylindrical [ ] [ ] [ ]( ), , zρ ϕ  and interval-valued Cartesian 
[ ] [ ] [ ]( ), ,x y z  are the same as for interval-valued polar coordinates, namely 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

2 2cos , sin , ,

,

x y x y

z z

ρ ϕ ρ ϕ ρ= ⋅ = ⋅ = +

=
      (B.27) 

where 

[ ]

[ ] [ ] [ ]
[ ]
[ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ] [ ]

0 if 0 and 0

arcsin if 0

arctan if 0

arcsin if 0

x y

y
x

y
x

x

y
x

ρ

ϕ

ρ

 = =


  ≥   
 

=  
>   

 
  − + <    

π


        (B.28) 

The line element is: 

[ ] [ ] [ ] [ ] [ ]2 2 2 2 2d d d d .s r r zϕ= + +               (B.29) 
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3. Point free Minkowskian spacetime. 
The interval-valued Minkowski metric is: 

( )
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ijg

 
 −   =   −
  − 

              (B.30) 

where one sign or the other is chosen, both conventions are used. This applies 
only for flat point free spacetime. The interval-valued coordinates are given by 
the interval-valued 4-position: 

[ ] [ ] [ ] [ ] [ ]( ), , , ,t x y z=x                    (B.31) 

so the interval-valued line element is:. 

[ ] [ ] [ ] [ ] [ ]2 2 2 2 22d d d d d .s c t x y z= − − −             (B.32) 

in Thus in interval-valued polar coordinates interval-valued line element (B.32) 
reads 

[ ] [ ] [ ] [ ] [ ] [ ]2 2 2 2 2 22d d d d d .s c t r r zϕ= − − −            (B.33) 

The transformation to a non inertial frame of reference [ ] [ ] [ ] [ ]( ), , ,t r zϕ′ ′ ′ ′  
rotating at the uniform angular rate ω  with respect to the starting inertial 
frame (B.33) is given by 

[ ] [ ] [ ] [ ] [ ] [ ] [ ], , .t t r r tϕ ϕ ω′ ′ ′= = = −               (B.34) 

Thus, interval-valued line element given by the Equation (B.33) by the trans-
formation (B.34) becomes the following interval-valued line element (inter-
val-valued Langevin metric) in rotating frame reads 

[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 2
2 2 22

2

2 2 2 2

d 1 d 2 d d

d d d .

r
s c t r t

c

r r z

ω
ω ϕ

ϕ

 
  ′= − −
 
 

′− − −

         (B.35) 

Appendix C. The Interval-Valued Trajectories Corresponding 
to 2-Dimensional Wave Packet 

I. The interval-valued trajectories corresponding to 2-dimensional wave packet 
which propagates in inertial frame of references. 

Assuming that 2 1 2 1,α ϕ α α θ α≤ ≤ ≤ ≤  (see Figure 1),  
[ ] [ ], ,t t t t t tζ′= ≤ ≤ , [ ] [ ] [ ] [ ] [ ] [ ]2 1 2 1, , , , , ,r r r r r rζ ϕ α α θ α α′= ≤ ≤ = = , see 
Remark B.2, from Equation (A.22) and Equation (B.11)-Equation (B.12) we ob-
tain 

[ ] [ ] [ ] [ ]( ) ( )1

2
, , , , , , d d

t
IF IFt

P t r w r t tζ α
ζ ζ ζ ζ ζ ζα

ϕ θ ϕ θ ϕ
′ =   ∫ ∫        (C.1) 

Thus [ ] [ ] [ ] [ ]( ), , ,IFP t r ϕ θ  is the interval-valued probability of detecting a 
“click” in inertial frame of references at interval-valued instant [ ] [ ],t t t=  at an 
“point” 
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[ ] [ ]( ) ( ) [ ]( )2 1, ,r ϕ α α∈ ×F F                 (C.2) 

with interval-valued coordinates [ ] [ ],r r r=  and [ ] [ ]2 1,ϕ α α= . Here the 
probability density ( ), , ,IFw r tϕ θ  is given in accordance with Equation (A.19) 
reads 

( ) 1 cos cos, , , ~ exp ,IF
r rw r t H t t

c c
ψ ψϕ θ α −     Γ − −Γ −        

     (C.3) 

where 1 2,ψ ϕ θ α α α= − = −  is angular size of the detector (see Figure 2). 
Remark C.1. Note that normalizing factor in Equation (C.3) necessarily con-

tains a multiplier 1α− , since 2ψ π  rad and thus cos 1ψ  . Therefore the 
conditions is given by Equation (B.5) and (B.6) are satisfied, since 

[ ] [ ] [ ] [ ]( ) ( )1

2
, , , , , d ,1 2, d

t
IF IFt

P t r w r t tζ α
ζ ζ ζ ζ ζ ζα

ϕ θ ϕ θ ϕ
′ ′

′
 ′ <  ∫ ∫    (C.4) 

where [ ] [ ]2 1 2 1, 0.5 ,α α α α′ ′   and 

( )[ ] [ ]2 10,2 \ ,
, , , d d 0.

t
IFt

w r t tζ
ζ ζ ζ ζ ζ ζα α
ϕ θ ϕ

′

π
  =  ∫ ∫            (C.5) 

Substituting Equation (C.3) into Equation (C.1) we get 

[ ] [ ] [ ] [ ]( )
( )

( )

1

2

1

, , ,

cos
~

cos
exp d d ,

IF

t

t

P t r

r
H t

c

r
t t

c

ζ α ζ ζ ζ
ζα

ζ ζ ζ
ζ ζ ζ

ϕ θ

ϕ θ
α

ϕ θ
ϕ

′ −

  
  −
  Γ −

   
  −
  × −Γ −

      

∫ ∫            (C.6) 

where [ ]0,1ζ ∈ . Note that the condition is given by Equation (B.11) now reads 

[ ] [ ] [ ] [ ]( ), , , 1.IFP t r ϕ θ                      (C.7) 

From Equation (C.6) and Equation (C.7) and by the definition of the Heavi-

side step function ( )H ζτ , where 
( )cosr

t
c

ζ ζ ζ
ζ ζ

ϕ θ
τ

−
= − , we get 

 

 
Figure 2. Quantum measurements on inertial frame of reference. 1 2α ϕ α≤ ≤  α is an-

gular size of detector: 1 2α α α= −  [ ] [ ], 0, 2 radψ ψ ψ α∗ ∗ ∗ = =  π . 
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[ ] [ ] [ ] [ ]( ) [ ] [ ] [ ]( )cos cos
0,

r r
t t

c c
ϕ θ ψ−

− = − ≥           (C.8) 

where ψ ϕ θ= − , (see Figure 2). Thus on inertial relativistic frame of reference 
endroved with interval-valued polar coordinates (B.27) photodetection signal prop-
agate with a probability 1 , in accordance with the following interval-valued law 

[ ] [ ] [ ] [ ] [ ]2 1, ,r c tψ ϕ α α=                   (C.9) 

where 

[ ] [ ]( )
,

cos
ccψ ψ

                      (C.10) 

and where [ ] [ ]1 20,ψ α α= − , (see Figure 2). 
II. The interval-valued trajectories corresponding to 2-dimensional wave 

packet which propagates in rotating non inertial frame of references. 
Remark C.2. Note that the probability density ( ), , ,IFw r tϕ θ  in inertial 

frame given by Equation (C.3) that is scalar quantity and therefore correspond-
ing probability density ( ), , ,RFw r tϕ θ  in rotating non inertial frame endrowed 
with canonical Langevin metric reads 

( ) ( ) ( )1 cos cos
, , , ~ exp ,RF

r t r t
w r t H t t

c c
ψ ω ψ ω

ϕ θ α −  − −   
Γ − −Γ −    

     
 (C.11) 

where ψ ϕ θ= − , (see Figure 3). 
Remark C.3. Note that in the rotating frame the angular size of the detector is not 

exactly the same as in the frame at rest and equal [29]: 
2 2

21 r
c

ωα α α∗ = −  . 

Assuming that 2 1 2 1,α ϕ α α θ α≤ ≤ ≤ ≤  (see Figure 3), [ ] [ ], ,t t t t t tζ′= ≤ ≤ , 
[ ] [ ] [ ] [ ] [ ] [ ]2 1 2 1, , , , , ,r r r r r rζ ϕ α α θ α α′= ≤ ≤ = = , see Remark B.2, from Equa-
tion (A.6) and Equation (B.11)-Equation (B.12) we obtain 

[ ] [ ] [ ] [ ]( ) ( )1

2
, , , , , , d d

t
RF RFt

P t r t w r t t tζ α
ζ ζ ζ ζ ζ ζα

ϕ θ ω ϕ θ ω ϕ
∗

∗

′ − = −  ∫ ∫    (C.12) 

where 
2 2 2 2

1 1 2 22 21 , 1r r
c c

ω ωα α α α α α∗ ∗= − = −  . 

Thus [ ] [ ] [ ] [ ]( ), , ,RFP t r ϕ θ  is the interval-valued probability of detecting a 
“click” in non inertial frame of references at interval-valued instant [ ] [ ],t t t=  
at an “point” 

[ ] [ ]( ) ( ) ( )2 1, ,r ϕ α α∗ ∗ ∈ ×  F F                (C.13) 

Substituting Equation (C.11) into Equation (C.12) we get 

[ ] [ ] [ ] [ ]( )
( )

( )

1

2

1

, , ,

cos
~

cos
exp d d ,

RF

t

t

P t r t

r t
H t

c

r t
t t

c

ζ α ζ ζ ζ
ζα

ζ ζ ζ
ζ ζ ζ

ϕ θ ω

ϕ θ ω
α

ϕ θ ω
ϕ

∗

∗

′ −

 − 
  − −
  Γ −

   
  − −
  × −Γ −

      

∫ ∫         (C.14) 
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where [ ]0,1ζ ∈ . Note that the condition is given by Equation (B.11) now reads 

[ ] [ ] [ ] [ ]( ), , , 1.RFP t r tϕ θ ω −                  (C.15) 

From Equation (C.14) and Equation (C.15) and by the definition of the Hea-

viside step function ( )H ζτ , where 
( )cosr

t
c

ζ ζ ζ
ζ ζ

ϕ θ
τ

−
= − , we get 

[ ]
[ ] ( )

[ ]
[ ] ( )cos cos

0,
r t r t

t t
c c

ϕ θ ω ψ ω∗ ∗ ∗     − − −     − = − ≥     (C.16) 

where 
2 2 2 2

2 21 , 1r r
c c

ω ωϕ ϕ ϕ θ θ θ∗ ∗= − = −   and ψ ϕ θ∗ ∗ ∗= − , (see  

Figure 3).Thus on non inertial relativistic frame of reference endroved with in-
terval-valued polar coordinates (B.27) photodetection signal propagate with a 
probability 1 , in accordance with the following interval-valued law 

[ ] [ ]
t

r c t
ψ ω∗ − 

                      (C.17) 

and 

[ ]
2 2

2 1 2 12, 1 , ,r
c

ωϕ α α α α∗ ∗ ∗   = − =                (C.18) 

where 

( )cos
cc

tψ ψ ω
∗  ∗   − 
                    (C.19) 

and 

[ ] ( )

[ ] [ ]

2 2

1 2 2

1 2

, 0, 0, 1

0, 0, 2 rad.

r
c

ωψ ψ ψ α α α

α α α

∗
∗ ∗ ∗

 
  = = = − −       

= − π 

      (C.20) 

Appendix D. Quantum Measurement on Non Inertial 
Relativistic Frame of Reference. Point Free 
Lorentzian Geometry Corresponding to 
Mössbauer Rotor Experiment 

Let 1,3M


 be point free Minkowskian space-time endroved with the following 
interval-valued line element in interval-valued polar coordinates 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]2 2 2 2 2 22d d d d d ,s c t r r zψ ϕ= − − −           (D.1) 

where ψ ϕ θ= − , (see Figure 1). 
Remark D.1. Note that the interval-valued line element (D.1) corresponding 

to photodetection signal which propagate with a probability 1  in accordance 
with the interval-valued law is given by Equation (C.9)-Equation (C.10). 

The transformation to a non inertial frame of reference [ ] [ ] [ ] [ ]( ), , ,t r zϕ′ ′ ′ ′  
rotating at the uniform angular rate ω  with respect to the starting inertial 
frame (D.1) is given by 
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[ ] [ ] [ ] [ ] [ ] [ ] [ ], , .t t r r tϕ ϕ ω′ ′ ′= = = −               (D.2) 

Remark D.2. Note that below we abbraviate ϕ  instead ϕ′  but this should 
not introduce the misleading. 

Thus, interval-valued line element given by the Equation (D.1) by the trans-
formation (D.2) becomes the following interval-valued line element (inter-
val-valued Langevin metric) in rotating frame reads 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

2 2
2 2 22

2

2 2 2 2

d 1 d 2 d d

d d d .

t
t

r
s c t r t

c

r r z

ψ ω
ψ ω

ω
ω ϕ

ϕ

−
−

 
 = − −
 
 

− − −

       (D.3) 

For simplicity but without loss of generality, we consider now 2-dimensional 
interval-valued Langevin metric (D.5) (see Figure 3): 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ] [ ] [ ] [ ] [ ] [ ]
2 2

2 2 2 2 2 22
2d 1 d 2 d d d d ,t

t

r
s c t r t r r

c ψ ω
ψ ω

ω
ω ϕ ϕ−

−

 
 = − − − −
 
 

 (D.4) 

By substituting [ ] 1 2: , , constϕ ϕ ϕ α α∗ ∗
∗ ∗ ∗   = = =     and  

[ ] , 0,ψ ψ ψ α∗
∗ ∗ ∗   = =     (see Remark C.3) into Equation (D.4) we get 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]
2 2

2 2 22
2d 1 d d 0.t

t

r
s c t r

c ψ ω
ψ ω

ω
∗

∗

−
−

 
 = − − =
 
 

          (D.5) 

From Equation (D.5) we obtain 
[ ]
[ ]
[ ]

[ ]( ) [ ]
2 2

2

d
d .

1
t

t

r
c t

r
c

ψ ω

ψ ω

ω
∗

∗

−

−

=

−

                 (D.6) 

Note that 2tω π  rad and therefore from Equation (D.6) and Equation 
(C.10) we obtain 

 

 
Figure 3. Mössbauer rotor experiment. Quantum measurements on non inertial frame of 
reference. 1 2;tϕ ϕ ω α ϕ α′ = − ≤ ≤  [ ] [ ]1 2 1 2, 0,α α α α α α′ ′− −  . 

https://doi.org/10.4236/jhepgc.2021.72024


J. Foukzon 
 

 

DOI: 10.4236/jhepgc.2021.72024 443 Journal of High Energy Physics, Gravitation and Cosmology 
 

[ ]
[ ]

[ ]

[ ]( ) [ ]
2 2

2

d
d .

1

r
c t

r
c

ψ

ψ

ω

∗

=

−

                  (D.7) 

We rewrite now Equation (D.7) in the following equivalent form 

[ ]

[ ]( )2 2

2

d
d .

1

r
c t

r
c

ζ
ζψ

ζ

ψ

ω ∗

∗

 
 
 

 =    
− 

  

                 (D.8) 

By integrating from Equation (D.7) we get 

[ ]

[ ]( )2 2

2

d
d .

1

r t

r t

r
c t

r
c

ζ
ζψ

ζ

ψ

ω

 
 
   

′=   
    

− 
  

∫ ∫                 (D.9) 

From Equation (D.9) we get 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]( )2 1arcsin .
c r

c t t
c

ψ
ψ

ψ

ω
ω ∗

∗

 
  = −
 
 

            (D.10) 

From Equation (D.10) we obtain 

[ ] [ ]
[ ]

[ ]
[ ]

[ ]( ) [ ] [ ]( )
3

2 1
1 .
6

c r r
c t t

c c
ψ

ψ
ψ ψ

ω ω
ω

∗

∗

∗ ∗

  
  + −
  

  

           (D.11) 

From Equation (D.11) and Equation (C.10) we get 

[ ] [ ]
[ ]

[ ] [ ]( )
[ ]( )

3

2 111 .
6 cos

c t tr
r

cψ

ω
ψ

∗

   −  +
  

  

               (D.12) 

From Equation (D.11) we get 

[ ] [ ]
[ ]

[ ]( ) [ ] [ ]
3

2 1
11 cos .
6

r r
t t

c cψ

ω
ψ

∗

∗

  
  + −
  

  

            (D.13) 

From Equation (D.13) finally we get in appropriate approximation 

( )
2

2 1
11 .
6

r r t t
c c

ω  + −  
   

                  (D.14) 

since [ ]( )cos 1ψ∗  . 
Remark D.3. Note that Equation (D.14) is obtained without any references to 

notion of the classical trajectories. 
Remark D.4. Note that Equation (D.14) coincides with Equation (16) from 

[2]. We rewrite now Equation (D.14) in the following form 
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12 21 11 1 ,
6 6IF RF RF

r rt t t
c c
ω ω

−
      + −      

         
            (D.15) 

where: (i) IFt  is propagation time of the photodetection signal measured by 
observer on inertial frame of reference and (ii) RFt  is propagation time of the 
photodetection signal measured by observer on non inertial (rotating) frame of 
reference. 

From Equation (A.19) using the transformation is given by Equation (D.2) we 
obtain 

( )
( ) ( )1

, , ,

cos cos
~ exp ,

RF IF IF

IF IF
IF IF

w r t t

r t r t
H t t

c c

ϕ ω θ

ψ ω ψ ω
α−

−

 − −   
Γ − −Γ −    

     

   (D.16) 

since the quantity ( ), , ,w r tϕ θ  is a scalar. 
By substituting Equation (D.15) into Equation (D.16) we obtain 

( )
( )

( )

1

, , ,

cos
~

cos
exp ,

RF RF RF

RF r
r RF r

RF r
RF r

w r t t

r t
H t

c

r t
t

c

ϕ ω θ

ψ ω γ
α γ γ

ψ ω γ
γ

−

−

− 
Γ − 

 
 − 

× −Γ −  
   

           (D.17) 

where 
211 .

6r
r

c
ωγ

  = −  
   

                    (D.18) 

From Equation (D.17) finally we obtain 

( )
( ) ( )

( ) ( )

1

1

, , ,

cos cos
~ exp

cos cos
exp ,

RF RF RF

RF r RF r
r RF r RF

r r

RF r RF r
r RF r RF

w r t t

r t r t
H t t

c c

r t r t
H t t

c c

ϕ ω θ

ψ ω γ ψ ω γ
α γ γ

γ γ

ψ ω γ ψ ω γ
α γ γ

−

−

−

 − −   
Γ − −Γ −    

     
    − −
    = Γ − −Γ −

        r r

 (D.19) 

where ,rc c rγ= =r r .  
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