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Abstract

An ultralocal form of any classical field theory eliminates all spatial
derivatives in its action functional, e.g., in its Hamiltonian function-
al density. It has been applied to covariant scalar field theories and
even to Einstein’s general relativity, by Pilati, as an initial term
in a perturbation series that aimed to restore all omitted deriva-
tives. Previously, the author has quantized ultralocal scalar fields
by affine quantization to show that these non-renormalizanle theo-
ries can be correctly quantized by affine quantization; the story of
such scalar models is discussed in this paper. The present paper will
also show that ultralocal gravity can be successfully quantized by
affine quantization. The purpose of this study is that a successful
affine quantization of any ultralocal field problem implies that, with
properly restored derivatives, the classical theory can, in principle,
be guaranteed a successful result using either a canonical quanti-
zation or an affine quantization. In particular, Einstein’s gravity
requires an affine quantization, and it will be successful.
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1. Ultralocal Scalar Field Theories

Before considering gravity, it can be useful to review a modest sum-
mary of the results of canonical quantization when it has been used
to study a variety of covariant scalar field models.

A traditional covariant scalar field has a classical (¢) Hamiltonian
given by

H. = [{3r(@)? + (V) (2)? (1)

with p an even positive integer, s, the number of spacial dimensions,
is a positive integer, m3 > 0, and go > 0. With n = s + 1 spacetime
dimensions and using canonical quantization, a satisfactory quantiza-
tion appears for p < 2n/(n—2). If p > 4 = n a Monte Carlo study [1]

+mip(r)’] + go ()P} dw
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and analysis [2,3] only found “free theory results”, while if pertur-
bation series were used when p > 2n/(n — 2), then only, divergent,
non-renormalizable behavior appeared. The ultralocal (u) scalar field
model here has a classical Hamiltonian given by

Hy = [{3[r(2)* + mie(2)?] + gop(x)?} dx (2)

and with canonical quantization, a divergent perturbation series for
p > 2 and any n > 2 leads to undesired results. Let us choose a
different path.

The domain of H, consists of all, continuous momentum functions
m(x) and scalar fields ¢(z) for which 0 < H, < oo. Our interest is
focussed on p > 2, and thus p € {4,6,8, ...}, and clearly, for all such
p > 2 and all s € {1,2,3,...}, the domain D,so(m, @) C Dp=a(T, ¢);
we will raise the issue of domains again at the end of this story. When
quantized by using canonical quantization, along with a perturbation
series in powers of gg, one encounters multiple infinities.

Since all derivatives have been removed, what happens at any point
of z does not affect what happens at any other point 2’ # x. Just like
sums of independent operators in Hamiltonians leads to products of
separate and independent wave functions, this implies, for our prob-
lem, that the ground state is composed of products at different points,
which — thanks to the Central Limit Theorem — leads to the char-
acteristic function of the ground state distribution, i.e., the Fourier
transformation of the absolute square of the normalized ground state,
being given in the form of

c() = [l 1@ 1, [wglp(w) de(o)
— W@ 3)
for a suitable function W (f(x)), with W(f(z)) = 0 whenever f(z) = 0.

1.1. An Affine Ultralocal Scalar Field

Affine classical variables are given by x(z) = m(x)¢(z) and ¢(z),
with the restriction that ¢(x) # 0, and the Poisson bracket is given by
{p(x),k(z")} = §°(x — 2’)p(x). The classical ultralocal Hamiltonian
expressed in affine variables is given by

H, = [{3r@)? p(e)2 + mdo(@)?] + gop(@)?} . (4)

The basic quantum operators are ¢(z) # 0 and &(x), and their
commutator is given by [¢(z), k(z)] = ihd*(z—2")p(x). The quantum
affine Hamiltonian is given by

Hu = [{3[A(2)¢(2)"2k(2) +mE ()] + go p(x)P} d°x ()
and the Schrédinger representation is given by ¢(x) = ¢(x) and
fi(w) = —3ihlp(2)(8/d¢())) + (8/0p(x))p(@)] - (6)

Clearly, this is a formal equation for the Hamiltonian operator, etc.
Such expressions deserve a regularization of these equations.

1.2. A Regularized Affine Ultralocal Scalar Field

Our regularization is of the underlying space in which x — ka, where
ke{.,—-1,0,1,2,3,...}° and a > 0 denotes the tiny distance between
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lattice rungs. The regularized classical ultralocal Hamiltonian is given
by

Hy, = 3 {5lmi + mb ei] + 90 i} @ - (7)

The classical affine regularization involves kx = 7k ¢k and @y, with
vk # 0, with a Poisson bracket {¢k, £m} = 0k.m ¢k, and the classical
affine regularized ultralocal Hamiltonian is given by

Hu = Yo {35k > + mE il + go o} a® . (8)

The regularized basic quantum Schrodinger operators are given by
Pk = pk and

R = —izhlpr(9/00x) + (0/0px)prla*
= —ih[pk(9/0¢x) +1/2]a™" . (9)

/

An important result is that Ak ¢, /2 = 0. The Schrodinger equation

becomes
iho(p,1)/0t = 3y {5 [Frpic e + md @] + g0 i} a® (e, ) . (10)
The normalized ground state of such an equation is given by
bo(p) = e~V (#x)/2 (ba5)1/2 Lpl:(lf%as)/? ’ (11)

for some real function V(¢x). Finally, we ask what is the characteristic
function for such an equation, and the answer is given by

c(f) = lir%ka eifker o=V (oK) (ba®) |<,0k|7(172ba8) dor
a—
= hn%) Hk[l - (ba’s)f[l _ eifktpk] e—V(ka) |(pk‘_(1_2ba5) d(pk
a—
= exp{=b[dw[[1 = /e N dA/IA]} . (12)

Here ¢ — A, and V' — v to account for changes that may have
arisen in V' as @ — 0. The resultant expression in (12) is a (generalized)
Poisson distribution, which, besides a Gaussian distribution, is the
only other form allowed by the Central Limit Theorem.

As a crude estimate of the large behavior of ¢ for different p values
we can examine (—d?/dz?+xP) e 121"/7 ~ (—a2r =24 gP 4. )em 2T/,
To cancel the largest terms we roughly need to have v = 1+ p/2. If
go — 0, then p — 2 = ~, and thus v(\) — c\?, with ¢ > 0. This
last fact means that sending go — 0 does not lead us to a simple, free
Gaussian because the given result reflects the continuity of a smaller
domain of the interacting model as compared to the strictly larger
domain of the truly free theory.

The Main Lesson from Ultralocal Scalar Fields

The previous subsection found that an ultralocal scalar field model
led to acceptable results when p > 2 and n > 2. For certain covariant
scalar field models, we have already observed that acceptable results
arise by canonical quantization when p < 2n/(n — 2). In view of
acceptable results for ultralocal scalar fields when p > 2 and n > 2,
we predict that an affine quantization for covariant scalar fields leads
to acceptable results when p > 2n/(n —2). Monte Carlo studies, such
as those carried out in [1], could confirm whether this prediction is
true or not.
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2. Ultralocal General Relativity

An effort to quantize Einstein’s theory of gravity has been examined in
several articles published by the author; see [4-7], with [8], perhaps,
being the strongest effort of them all. In light of those articles, we
will present a modest selection of the necessary features for an affine
quantization of Einstein’s gravity.

The phase space variables in the ADM version of classical gener-
al relativity [9] are the metric field gqp(z) and the momentum field
n°d(x), where a, b, c,d, ... = 1,2,3, and which a canonical quantization
promotes to basic quantum operators. The positivity requirement that
Gap(z) dz® dz® > 0 implies that the momentum operator can not be
self adjoint. An affine quantization chooses the classical metric gqp(2),
which has a positive requirement as before, while the momentum field
is replaced by the momentric field 7 (z) [= 7%°(z) gpe(x)]. These basic
affine variables are promoted to quantum operators, both of which can
be self adjoint, while the metric operator is also positive as desired.

The ADM classical Hamiltonian, with g(z) = det[gq(z)] > 0, is
given by

He = [{g(2)""?[xf (x)mq () — 5 mi(@)mh(2)] + g(2)'/* R(x) } d% (13)

where R(z) is the 3-dimensional scalar curvature.
The term R(z) contains all of the spatial derivative terms and the
ultralocal version of the classical Hamiltonian is chosen as

Hy = [{g(x)"?[mf (2)m (@) — 3 i (@)mp(@)] + g(2) '/ )} d% . (14)

This expression now has a position-dependent “cosmological con-
stant” in place of the scalar curvature. The term A(z) (imitating R(x))
should be a continuous function that obeys —oo < A(x) < co. When
this Hamitonian is quantizaed the only variables that are promoted
to quantum operators are the metric field, g, (), and the momentric
field, w§(x); the classical function A(z) is fixed and not made into an
operator.*

2.1. An Affine Quantization of Ultralocal Gravity

The quantum operators are Gqp(z) and 75(x), and their Schrodinger
representations are given by §up(z) = gap(x) and

y (2) = —i5hlgee(2)(6/89ac(2)) + (§/8gac(x)) gve(@)] - (15)

The Schrédinger equation for the ultralocal Hamiltonian is given by

ihov({gh.t)/0t = [{#(x) g(z) /2 71 (x)
—37%(x) g(z) V2 R) (2 ) ( )1/2/\(96)}d‘°’a7j Y({g},t), (16)

where the symbol {g} denotes the full metric matrix. In addition,
we find that #{(z)g(z)~'/2 = 0, which is proved in [8], just above
Equation (40). Solutions of (16) are again governed by the Central
Limit Theorem.

As was the scalar case in the previous section, the formal expression
for (16) needs to be regularized.

1 Pilati discussed a similar model [10,11] in an effort to use such a model as the
first term in a perturbation series to restore the proper gravity using canonical
quantization.
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2.2. A Regularized Affine Ultralocal Quantum
Gravity

Much like the regularization of the scalar fields, we introduce a dis-
crete version of the underlying space such as x — ka, where k €
{..,—1,0,1,2,3,...}3 and a > 0 is the spacing between rungs in which,
for the Schrodinger representation, ggp(z) — gapk and 75(x) — 75
that becomes

Tk = —13h[94ex(0/0gcex) + (0/0gcex)gae k] @
= _ih[gde k(a/agce k) + 62/2] a *®. (17)

Take note that 7§, g, 12 _ 0, where gx = det(gabx)-
The regularized Schrédinger equation is then given by

ihdy({g},6)/0t = Lol it — 37a b
o) o ok 1) (1)

A normalized, stationary solution to this equation is given by

Uy ({g}) = WY (g1, i) (ba) /2 g 0072 (19)
The characteristic function for such an expression is given by
Cy (f) = lim i [0 ¥ (gi, M) (b)) dg

= lim {1 = (ba?) [ 1 = o] (gne, ) 2g5 ) di}

— exp{bfd [[L - O [y(u M) Pdu/u} . (20)

where the scalar gy — ¢ > 0 and Y — y to accommodate any change
in Y due to a — 0. The final result is a (generalized) Poisson distri-
bution, which obeys the Central Limit Theorem.

The formulation of characteristic functions for gravity establishes
the suitability of affine quantization as claimed. Although this analysis
was only for an ultralocal model, it nevertheless points to the existence
of proper solutions for Einstein’s general relativity.

The Main Lesson from Ultralocal Gravity

Just like the success of quantizing ultralocal scalar models, we have
also showed that ultralocal gravity can be quantized using affine quan-
tization. The purpose of solving ultralocal scalar models was to ensure
that non-renormalizable covariant scalar fields can also be solved using
affine quantization. Likewise, the purpose of quantizing an ultralocal
version of Einstein’s gravity shows that we should, in principle, and
using affine quantization, be able to quantize the genuine version of
Einstein’s gravity using affine quantization.

The analysis of certain gravity models with significant symmetry
may provide examples that can be completely solved using the tools
of affine quantization. For readers interested in the why and the how
of affine quantization, perhaps [5] could be a good place to start.
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