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Abstract 
Developing a comprehensive model of the early universe that describes events 
and conditions prior to recombination has proved difficult. Using a new ap-
proach, we express Heisenberg’s uncertainty principle in terms of measures 
and counts of those measures to resolve an expression consisting entirely of 
counts. The description allows us to resolve explicit values for discrete meas-
ures. With these values, we present new expressions describing the earliest 
epoch and the transition event that initiates expansion. We determine the 
quantity, age, density, and temperature of the cosmic microwave background 
(CMB). Moreover, we approach the CMB power spectrum anew, describing 
each mass/energy distribution, its physical significance, its peak temperature, 
and the effects of relativity. We do not engage in fitting or modification of the 
existing laws of physics. The approach is classical and correlates both quan-
tum and cosmological phenomena with descriptive expressions that are 
measurable, verifiable, and falsifiable. 
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1. Introduction 

The cosmic microwave background (CMB) has offered a significant amount of 
data with which to understand the processes, conditions and events that make 
up the earliest epoch of our universe. Among them, measurements of the CMB 
may be presented as a power spectrum revealing five bell-like curves each de-
scribing physical traits of our universe [1]. Nonetheless, after some 30 years, we 
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are uncertain as to what the physical significance is of some of these curves, how 
they are related, and whether they represent matter, energy or a more complex 
combination of phenomena. 

We propose an approach that allows us to answer these questions without 
modification of the known laws of nature or using untested hypotheses. The 
presentation rests upon evidence presented for the physical significance of fun-
damental units of measure [2]. With this, we introduce a more accommodative 
nomenclature. Distance, for example, would be expressed as some count nL of 
fundamental units of length lf. The approach and nomenclature are referred to as 
measurement quantization (MQ). 

MQ is neither a new theory nor conjectured insight. The results presented are 
built by applying MQ to our existing understanding of classical mechanics. 
Recognizing the physical significance of MQ expressions enables us to unravel 
relationships that underlie the laws and constants of our universe. As such, we 
may describe the history of the universe from the earliest epoch to the present. 
We resolve the conditions that lead to the CMB and its present-day proper-
ties—quantity, age, density, and temperature. 

We should emphasize, the presentation is not subject to one set of measure-
ment data or restricted to one field of science (i.e., MQ may be used to resolve 
measurable values in optics, gravity, energy, particle physics, and cosmology). 
The presentation is also not one of generalizations, such as greater energy, lesser 
volume, and invariant correlations of broadly defined physical properties. Ra-
ther, we use MQ to describe measurable values that can be verified or falsified. 
By example, we resolve peak temperatures and corresponding multipole mo-
ments of each abscissa and ordinate of the power spectrum representation of the 
CMB—the peak multipole moments of each distribution, their relationship, and 
their physical significance. We use MQ to describe the rate of universal expan-
sion—Hubble’s constant—its correlation to a physically significant discrete 
measure, the effects of relativity between epochs, and the physical conditions 
and events that end the earliest epoch and initiate expansion. The MQ approach 
also allows for expressions describing the physical properties of spacetime, what 
is curved, and why it is curved. Moreover, it allows us to resolve greater cosmo-
logical questions such as whether the universe is flat, open or closed. 

The approach begins with an analysis of Heisenberg’s uncertainty principle 
written in MQ form. We shall also make use of the Pythagorean Theorem, ob-
servations of the speed of light, and the expression for escape velocity. We need 
no additional observations or laws of nature with which to proceed. 

We remark that the presentation consists of several ancillary properties, 
among them being a lack of conjectures and axioms other than those funda-
mentals of modern theory we attribute to classical mechanics. The expressions 
are largely temporal in approach and geometric in presentation. More impor-
tantly, some properties of the CMB are shown to be correlated to the quantiza-
tion of measure with respect to the frame of the observer. Finally, we adjust the 
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expressions for effects of relativity, which are a consequence of the time dilation 
between the earliest and present epochs. 

From a broader view, this research has little effect on the existing body of lite-
rature discussing recombination or expansion. Rather, the events described 
herein occur following the initial formation of a quantum singularity and the 
time elapsed thereafter up to the trigger event that initiates expansion. We refer 
to this period as the quantum inflationary epoch. The epoch is terminated by a 
trigger event, a physical process to be described, but otherwise summarized as a 
consequence of discrete measure applicable to quantum singularities. After in-
stantiating the expansionary epoch, temperatures cool to approximately 3000 K 
over a period of 2.7 years. Finally, we arrive at more thoroughly studied periods 
of our universal history such as recombination, decoupling, and the dark ages. 

We shall spend most of our time on the first two periods. For instance, we 
demonstrate that a period of faster-than-light expansion is not needed to explain 
the present-day heterogeneous and homogenous properties of our universe. 
That said, MQ does describe a lengthy quantum expansionary period that de-
scribes conditions for which inflation theory is conjectured. MQ also offers a 
physical description of the CMB power spectrum not as a phenomenon consist-
ing of mass and energy, but as mass that has differing physical characteristics 
with respect to elapsed time and relative distance (i.e., what is measured pre-
sently, what will be measured with elapsed time, and what cannot be measured 
because of the expansion of space). We refer to these geometries as temporal 
properties of observation. Both the ΛCDM and MQ approaches make parallel 
predictions, but the MQ approach offers a clearer understanding of the physical 
characteristics of each distribution: dark energy, dark matter, and visible matter 
([3] Eqs. 109, 110, 113, 115). 

Theoretical Landscape 

Over the last two decades, research into the early and present universe has fo-
cused on the measure of the CMB as is commonly presented in a graph of tem-
perature versus the multipole moment. Many features of our universe have been 
redefined as some aspect of this data, such as whether the universe is flat, open 
or closed—a flat universe being consistent with a dark energy multipole moment 
around 220 [4]. The distributions themselves—dark energy, dark and visible 
matter—have been identified and assigned distinct properties, although broadly 
speaking we recognize that they may not be physically distinct or entirely physi-
cal [5]. The approach has been one of hindsight, putting together a historical 
puzzle with insights from the existing and improving data while filling in the 
gaps with theories (i.e., inflation) that at best recognize a transition from one 
known set of environmental conditions to another. Overall, the model is known 
as lambda cold dark matter (ΛCDM). 

To ground the reader as to the accomplishments thus far, we briefly discuss 
some of the highlights and details of the approach, but before we begin, we bring 
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to the reader’s attention that this paper and the efforts of ΛCDM do not share a 
lot of common ground. That is, MQ describes the earliest epoch from singularity 
up to recombination. Whereas there are expressions that describe the ensuing 
expansion following the trigger event that ends the quantum inflationary epoch, 
the physical processes of recombination—what is generally the birth ground of 
ΛCDM research—is not in the same physical regime as MQ. We may compare 
the two as using electromagnetism to describe fluid dynamics. Not only are the 
laws that govern each discipline largely unrelated, but rarely would one attempt 
to correlate them. Although MQ provides a physically significant understanding 
of the power spectrum of the CMB, it is not to say that it is the whole story. The 
power spectrum is only partly a story of the temporal properties of observation; 
it reveals a physical process from which we have yet more to learn. 

To that end, we broadly note that ΛCDM describes the power spectrum as a 
consequence of two physical processes. The first effect concerns the inward pull 
of gravitation with respect to the outward pressure of baryonic/photon plasma. 
There exists physical support that the early universe consisted of baryonic matter 
and photons interacting in a gravitational potential constrained by dark matter. 
The correlation to dark matter exists only with respect to the 26.8% mass/energy 
distribution identified as such. Over time, mass concentrations mutually attract 
via gravity, but as concentrations increased, there was also an increasing pres-
sure which caused repulsion [6]. This gravity/pressure approach is usually mod-
eled using the theory of sound waves such that the baryon density is set to cor-
respond to the CMB temperature. 

The second effect concerns the field of acoustics and correlation of those 
disciplines to measurements of the sound horizon. One may use an expan-
sion of Laplace’s spherical harmonics to decompose the density field and 
then look at one single mode or enkelt mode. Although inflation produces 
compression/decompression oscillations of equal magnitude, models suggest 
that with elapsed time the oscillations separate into the known distributions (for 
example, dark energy, dark matter, visible matter). This latter phase is characte-
rized by falling temperatures because of the expansion of space. As temperatures 
drop to 3000 K a period of neutral hydrogen is allowed (aka., recombination). 
Thereafter, photons travel freely throughout the universe, which in turn freezes 
the CMB oscillations that we measure today. 

As a final piece to this chronological puzzle, there is no measurable mechan-
ism to address the homogenous observations of the CMB temperature. This is 
known as the horizon problem [7]. In opposition to the cited paper, it is conjec-
tured that there may have existed a short period of exponential expansion, which 
increased the size of the universe by a factor of roughly 1023 within 10−34 seconds; 
values vary depending on the model. Short, initially rapid, expansionary periods 
are more broadly viewed as pertaining to the inflation period and are recognized 
as a placeholder between two epochs of better-known physical conditions. 

With regards to gaps in the historical record, there are periods with a very 
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high level of physical correspondence to theory whereas there are other periods 
during which an experimental measure has not yet been devised. For the latter, 
there are placeholders—conjectured evolutionary periods—that fill the gaps be-
tween better known periods. It should be noted that placeholders grounded in 
physically significant endpoints are nevertheless conjectures regarding the phys-
ical conditions between those endpoints. The lack of detail overall is such that 
we fail to achieve the goal of an underlying physical mechanism that explains the 
sequence of events [8]. While we may resolve a nearly correct story of our histo-
ry, this does not actually resolve an understanding of that history. This is where 
MQ offers new details. 

2. Methods 
2.1. Physical Significance of Measure 

Perhaps from the earliest of human endeavor, we have attempted to quantify an 
understanding of measure. What is it? What are its underpinnings? Is it possible 
to define measure by something more fundamental? What does measure have to 
do with our understanding of the power spectrum of the CMB or the history of 
our universe? 

Measure serves a role not dissimilar to equations, a tool of the trade. The three 
measures (length, duration, mass) are used to describe the properties of … well … 
most everything. As such, we cannot understand the power spectrum until we un-
derstand measure. Seemingly, this should be an unnecessary place to begin if it 
were not for the fact that we know so little of measure. We, for instance, cannot 
answer the questions: Does measure exist outside of the observable universe? 
Why are the three measures related? Are there phenomena in the universe that 
have properties with no correspondence to measure? 

A more mathematical approach to these questions may be furthered in con-
sideration of the Pythagorean Theorem, this being the simplest expression with 
which we may describe the measure of length. There are three terms associated 
with measure, a count of a reference phenomenon nLa = 1, a known count of that 
reference nLb and an unknown count of the reference nLr. Whether one is using 
SI units, counts of fundamental units or any other measurement nomenclature is 
unimportant. What is notable is that there are three terms, each representing a 
physically distinct measure with respect to an observer. The theorem brings to 
our attention that, at a minimum, the phenomenon of measure is a composite of 
information with respect to three distinct measurement frameworks. 

Likewise, one may argue that the reference and the known count may be 
known simultaneously with respect to the frame of the observer, but an equiva-
lent argument may be made that a count measure cannot be known without a 
reference, thus complicating the prerequisite of simultaneity (the phenomenon 
of measure is one that exists in the present). Of equal difficulty, using modern 
day EM-echo ranging (LIDAR), it may be argued that the measures of nLa and 
nLb can be simultaneously known by an observer sidestepping the challenges of 

https://doi.org/10.4236/jhepgc.2020.62015


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2020.62015 191 Journal of High Energy Physics, Gravitation and Cosmology 
 

consolidating the distinct measurement frames where and when nLa and nLb are 
resolved. Nonetheless, this introduces time, and whereas this approach offers the 
hope of consolidation with respect to the observer’s frame, it merely introduces 
an alternative dimension—time—with a new uncertainty, the physical correla-
tion of time to length. Finally, the physical process by which information is con-
solidated (i.e. the comparison of a reference to an unknown length) is not de-
fined. When discussing an observer’s frame, we mean to resolve a description of 
the physics applicable at a given space at an instant in time tf with respect to the 
consolidated information. 

Thus, with respect to the evolution of modern theory, we ask, what are the 
three frames? Modern theory recognizes two, that of the target and that of the 
observer. However, as we have demonstrated, the phenomenon of measure is a 
composite of three and it is our inability to quantify this prerequisite and then 
clarify its ramifications with respect to the laws of nature that underpins the 
claim; we lack an understanding of measure. 

To lay the foundation for the birth and evolution of our universe, we must be-
gin with measure. We approach the topic in a way that does not fix or assume 
specific properties but allows for enough variation that we may resolve quantifi-
able properties. This is accomplished with a nomenclature that divides measure 
into two components. Specifically, for every measure … for example, time … we 
shall not write the symbol t. Rather, we express time as a count nT of some fun-
damental measure tp. Naturally, this opens the door to the possibility that time is 
countable or that there exists a physically significant fundamental unit of time, 
but not necessarily. The new nomenclature only introduces the possibility of 
discreteness, yet leaves the door open to non-discreteness. Whether measure va-
ries, is bounded, has physical significance or is entirely meaningless must be re-
solved from the physical record. Indeed, that is where we begin. 

Consider then, that the speed of light may be described as a count nL of length 
units lp divided by a count nT of a fundamental unit of time tp, then L p T pc n l n t=  
such that 

L Tn n= .                             (1) 

For guidance only, we also consider Planck’s unit expressions [9] for length lp 
and mass mp, 

1 2

3p
Gl

c
 =  
 

 ,                          (2) 

1 2

p
cm

G
 =  
 

 ,                          (3) 

both of which serve as reasonably accurate dimensional realizations. Then, for 

p pc l t=  and the above two expressions, we resolve that the product of their 
squares is 

2 2
3 2

2

p p
c Gl m

G c c
= =   ,                        (4) 
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2
p p

p p
p

l m
cl m

t
= = .                         (5) 

Using Heisenberg’s expression to describe the uncertainty associated with the 
position σX and momentum σP of a particle, 

2X Pσ σ ≥
 ,                            (6) 

We may resolve physically significant values for nL, nM, and nT. The uncertainty 
principle asserts a limit to the precision with which certain canonically conjugate 
pairs of particle properties may be known. However, this differs from our goal of 
resolving the certain minimum measurements of a particle at the threshold, ħ/2. 
Therefore, we introduce a special case of the use of variances. 

Whereas the expression for variance is usually written to describe the certain 
properties of many targets, we modify this usage to describe the certain proper-
ties of many measurements whereby the measurement, whether applicable or 
even physically significant, is uncertain. With this understanding, we then con-
sider the solution for only the minimum count values for length, mass, and time 
such that the conjugate pair is equal to the threshold at ħ/2; that is, 

( ) ( )2 2

1 1

1 1 2

N N

i i
i i

X X P P

N N
= =

− −
=

− −

∑ ∑
 .                  (7) 

One might argue that the substitution of the variance of a physical quantity 
for the uncertainty of that quantity is not physically clear. In response, we con-
sider that the canonically conjugate pair that we seek to resolve is a certain value, 
identified by the conjectured set of minimum count values for length, mass, and 
time. That is, we distinguish the uncertain state of a particle from the certain 
state we seek to describe. We accomplish this by considering the minimal case of 
a variance of many certain measures sorting out each dimension separately. 

To the extent that the minimal count N is reducible to a certain measure de-
scribing a single particle, we consider measures when N = 2. The variance terms 
for position and momentum reduce such that there is a certain length 

( )( )1 22
1il X X= −  corresponding to the variance in X and a certain momentum 

( )( )1 22
1imv P P= −  corresponding to the variance in P. We write each term in 

the MQ nomenclature, i.e., Lr pl n l=  and ( )M p L p T pmv ml t n m n l n t= = . Note 

also that the count nL for the change in velocity is distinct from the position count nLr, 
the latter describing the distance between the observer and the particle. We have 

( )
2

2

2
L p

Lr p M p
T p

n l
n l n m

n t
 

=  
 

 .                    (8) 

with these constraints, it follows that the minimum count values at the threshold 
ħ/2 correspond to a minimum distance nLrlp and a momentum consisting of a 
minimum mass nMmp, a minimum length nLlp and a minimum time nTtp. Re-
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placing the value ħ with the result from Equation (5), then 

( )
2

2
L p p p

Lr p M p
T p p

n l l m
n l n m

n t t
 

=  
 

,                     (9) 

2 Lr M L Tn n n n= .                         (10) 

Notably, the reference measures cancel out leaving a description that consists 
of only count terms. In MQ, we recognize such descriptions as geometric rela-
tions. That said, the result does not imply that the fundamental units of measure 
are physically significant or that the counts are integers. To resolve the count 
values requires that we identify additional constraints, starting with a descrip-
tion of G composed exclusively of Planck Units. Dividing Planck’s mass by 
Planck’s length from Equation (2) and Equation (3), we then have 

1 21 2 3 2
p

p

m c c c
l G G G

  = =  
   





,                  (11) 

2 2 3 3

2 2 3
p p p p p p

p p p p p p p

c l l l l l t
G

m t m t m t m
= = = = ,               (12) 

3

3
p p

p p

l t
G

t m
  

=     
  

.                      (13) 

A final constraint, the upper bound relation between length and mass counts, 
may be resolved by considering the expression for the escape velocity. Using the 
expression for G at the bound v = c, such that Lr pr n l=  and M pM n m= , then 

1 22GMv
r

 =  
 

,                      (14) 

3
2

3

2 p p
M p

Lr p pp

l t
c n m

n l mt
 

=   
 

,                 (15) 

2Lr Mn n= .                        (16) 

Given 2 Lr M L Tn n n n=  [Equation (10)] and L Tn n=  [Equation (1)], then 

2 1Lr Mn n = .                        (17) 

Moreover, with 2Lr Mn n= , then 

( )2 2 1M Mn n = ,                     (18) 

2 1
4Mn = ,                         (19) 

1
2Mn = .                         (20) 

This count value describes the lower count bound to the measure of mass with 
respect to an observer. This does not mean that phenomena may not have 
smaller masses, only that a mass less than mf/2 may not be measured with great-
er precision. Returning to 2 Lr M L Tn n n n=  [Equation (10)] such that nM = 1/2 
and reducing with L Tn n=  [Equation (1)], then 
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12
2Lr L Tn n n= ,                          (21) 

1T
Lr

L

nn
n

= = .                           (22) 

Finally, where both nL and nLr describe the phenomenon of length and 

L Tn n=  [Equation (1)], then 

1Lr L Tn n n= = = .                        (23) 

Thus, we may state that each of the counts is physically significant describing 
a lower threshold to measure. 

O1: There are physically significant fundamental units of measure: length, 
mass, and time. 

The mathematical approach taken makes no assumptions about the relation-
ships between measures, the discreteness of measure or the physical significance 
of measure. Our ability to correlate a physically significant phenomenon with 
discrete counts of reference measures is entirely an outcome of our existing un-
derstanding of light, the uncertainty principle, and the escape velocity. 

2.2. Discreteness of Measure 

Having established the physical significance of a lower threshold to measure, 
consider now a macroscopic measure (i.e., any distance greater than the refer-
ence lp). For instance, consider a stick 10.00lp in length and another 10.25lp in 
length. Can the difference, 

10.25 10.00 0.25p p pl l l− = ,                    (24) 

be measured? No. A difference length is physically the same as any other 
length and with respect to the Heisenberg uncertainty principle, difference 
lengths less than the reference lp (i.e., nL = 1) cannot be measured. Thus, we 
may resolve that all macroscopic length measures may be observed only as pre-
cisely as a whole-unit count of the reference measure. 

Although the above extensible result is definitive for the entire measurement 
domain, let us consider one more approach, a difference greater than lp such that 
one stick is 10.00lp and the other is 15.25lp. 

15.25 10.00 5.25p p pl l l− = .                    (25) 

In this case, the difference measure is physically significant. However, to argue 
that measure is non-discrete is valid only if this measure is also different from a 
whole-unit count, that is, five units of the reference. To test, we again compare 
the two lengths, 

5.25 5.00 0.25p p pl l l− = .                     (26) 

This case is the same as the first. Thus, all measures are physically significant 
only for a whole-unit count of the reference. We may then recognize that: 

O2: The fundamental measures are discrete and countable. 
O3: The fundamental measures each define a reference. 
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2.3. Measurement Frameworks 

Thus far we have demonstrated that measure has a lower threshold and that all 
measures are confined to a whole-unit count of some reference measure. We 
have not identified a means to confirm the number of physically significant 
measurement frameworks necessary for measure. We have only established that 
measure with respect to the observer is discrete. 

To further our observations, we bring to the reader’s attention that measure is 
a property of references. Therefore, given that the leading edge of the universe 
expands at the speed of light, we recognize that the universe can have no exter-
nal reference. Therefore, the property of measure with respect to the universe 
must be non-discrete. 

This may be summarized as follows. Matter exists with non-discrete mea-
surement properties because there exists no external reference to the universe. 
Indeed, for all observers in the universe, matter is and can only be a discrete 
count of physically significant fundamental units of measure. 

O4: Measure with respect to the observer is discrete. 
O5: Measure with respect to the universe is non-discrete. 
To develop its mathematical description, we describe the discrete and 

non-discrete measurement frames of reference as frameworks. To demonstrate a 
physically significant property of matter correlated to these frameworks, we de-
vise an experiment described by three frameworks, one of which has the proper-
ty of non-discrete measure and the remaining two of which are discrete. The ex-
periment also carries two design prerequisites. First, the design must not intro-
duce additional measures such as angles. Second, all information necessary for 
measure must be available to the observer at every instant in time. With these 
prerequisites, the three frameworks are: 
• A discrete framework describing where properties of the reference are ob-

served ( AB : the observational framework). 
• A discrete framework describing where count properties of the reference are 

observed ( BC : the measurement framework). 
• The non-discrete framework describing the observed phenomenon ( AC : the 

target framework). 
For clarification, all three frameworks are described in Figure 1 using the tra-

ditional understanding of a Cartesian coordinate system. With this, we then 
recognize differences in the discreteness of measure with respect to the different 
origins of information (i.e., the frameworks). The observational framework—the 
framework of the observer—differs from the traditional understanding only in 
that measure is a count function of a discrete length reference equal to one. The 
measurement framework, which shares properties of the observational frame-
work, is a count function of the reference. Finally, the target framework is de-
scribed by the non-discrete framework of the universe that identifies (i.e., con-
tains) the phenomenon. Although we present all three frameworks collectively 
from the observer’s point-of-view, we are careful to note the differing measure-
ment properties of each framework. 
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Figure 1. Count of distance measures along segment AC . 
 

With this understanding, we then recognize that the design must resolve how 
information regarding the count value of the measurement framework is ob-
tained by an observer relative to the observational framework. We also reiterate 
that the design must allow for a singular expression that correlates all three 
frameworks. 

We propose, then, a system consisting of a grid of points that are a fixed count 
of a reference measure in separation (along the shortest axis). There must be 
enough points to form at least one square such that each hypotenuse of the 
square is also equal in separation. To ascertain initially the distance between any 
two points, we propose that at each point a laser pulse rangefinder is used along 
with the time-of-flight principle to ascertain whether each of the axes are equal 
in distance as agreed upon in advance of setting up the experiment. It is as such 
that we may ascertain whether the angular measure for each point is either along 
a line or at 90 degrees (except for those points that follow a hypotenuse). The 
design does not require that we introduce angular measure into our under-
standing of the discrete and non-discrete properties of length measure. The ex-
periment also does not initially incorporate time as the experiment is performed 
only after it is set up. 

Note there are the two frameworks, that of A and that of C of which A certi-
fies the length AB  (the observational framework) and C certifies the length 
BC  (the measurement framework). There is a third framework (the target 
framework), of which both A and C and the unknown length AC  are mem-
bers. Thus, we need only the presence of members A and C in the target frame-
work to define all information in the system. 

Using the Pythagorean Theorem, then 1.4 4AC 1 pl≈ . Given that only a dis-
crete reference count of the measure of AC  is permitted in the observational 
framework, we find the difference 1.414 − 1.000 = 0.414 lp to describe a physi-
cally significant property of the universe. What phenomenon this difference de-
scribes between the discrete frameworks of A and C and the non-discrete 
framework AC  of the universe is the subject of the next section. 

3. Results 

To achieve the goal—a measurable, verifiable, and falsifiable description of the 
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CMB power spectrum—we proceed with a brief description of gravity. The sec-
tions to follow will be concise although more in depth discussions may be found 
in References [2] [3] [10] [11]. 

3.1. Gravity 

We no longer need Planck’s Unit definitions as a guide to measure. For one, the 
Planck expressions are approximate in that they do not take into account the 
measurement skewing effects of discrete measures. For this reason, the MQ ap-
proach to measure is identified by subscripting f to variables, specifically, lf for 
length, mf for mass, and tf for time. 

Continuing with our prior observations, note that Figure 2 describes each of 
the three frameworks identified in Section 2. The long side c of a right-angle 
triangle is then resolved using the Pythagorean Theorem where side a is always 
the reference count 1 and side b is some known count of that reference. 

Importantly, a count of 1 on side a is prerequisite to any count along side b to 
resolve side c. If an argument were presented that side a was arbitrary (i.e., a = 
2), we would find a description that “assumes” a reference count of two units of 
the reference not explicitly incorporated into the definition of our reference. 
This presents a factor representation of the framework that conceals the discrete 
count properties we are attempting to describe. Thus, side a = 1 is prerequisite 
for all considerations of side b in any understanding of the unknown distance 
along side c, 

( )1 221 Lbc n= + .                         (27) 

We are now ready to resolve a difference between the discrete and non-discrete 
descriptions for this experiment. To describe the observer’s experience, we con-
jecture that any non-integer count of the reference along the unknown length 
AC  relates to a change in distance and may be described by rounding up (re-
pulsion) or down (attraction). The remainder lost to rounding is denoted by QL. 
For all solutions, QL is less than half and thus attractive, as is evidenced by QL’s  
 

 
Figure 2. Count of distance measures between an observer and target. 
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largest count value of ≈0.414 when sides a and b are both 1. The model provides 
counts of distance measures that are closer by 

( )1 221L Lb LbQ n n= + −                        (28) 

at every instant in time tf. For example, if nLb = 4, then  

( )17 4 4 0.1231 4L LbQ n = − = . Because side c always rounds down, we find 
that nLr always equals nLb. Thus, we always refer to the ‘observed measure count’ 
as nLr. Moreover, note that the reference measure against which all counts are 
measured is defined by nLa = 1. With this, we have composed an expression for 
gravity such that the loss of the remainder relative to the whole-unit count is QL/nLr. 

Together, QL and nLr are conjectured to represent an important dimensionless 
ratio that describes gravity. We proceed with that hypothesis by presenting the 
ratio in meters per second squared (ms−2). We multiply by lf for meters and di-
vide by 2

ft  to describe the distance loss at the maximum sampling rate of one 
sampling every tf seconds per second, 

2
L f

Lr f

Q l
n t

.                             (29) 

Note also that the quantity is scaled and hence requires a scaling constant. As 
we shall learn later, this scaling constant is fundamental to the relation describ-
ing the three measures. To proceed, we multiply by the speed of light c and di-
vide by a scaling constant S. Setting Lr fr n l=  and f fc l t= , the expression 
reduces to 

22 3

2
L f L fL L

Lr f Lr f Lr f f

Q l Q l cc Q c Q c
n t S n t S n l t S rS

= = = ,                  (30) 

3

2
LQ c G
rS r

≈ .                            (31) 

This understanding of gravity arises as a difference between the discrete 
measure with respect to an inertial frame and the non-discrete measure with re-
spect to the universe. Comparing the expression with that of Newton’s G/r2 we 
see a decrease in distance between the two curves that is immeasurable beyond 
the sixth-significant-figure precision for all distances greater than 2.247lf. The 
difference may also be described as a function of QLnLr, a term that approaches 
1/2 with increasing distance. Further described in Appendix A, we identify both 
the expression and the skewing effect arising from the discrete measure as the 
Informativity differential. 

Discussed also in Appendix B, we replace the term S with θsi, not because the 
measure is radian for all contexts, but to bring to the attention of the reader that 
the value of θsi = 3.26239 radians is constant in all physical contexts. After re-
solving several expressions, we shall return in Sec. H to discuss unit analysis of 
expressions containing this constant. 

3.2. Fundamental Measures 

With a definition for quantum gravity, we may now resolve physically significant 
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values for the fundamental measures. How we resolve these measures is impor-
tant. Specifically, the Informativity differential is a distance-sensitive skewing 
effect in the length measure. For distances of 104lf, this effect is less than can be 
measured. However, the measure of ħ is a quantum property where the effect is 
significant. To the extent that QLnLr = 1/2 is acceptable for the measure of c and 
G, we need to avoid an approach that uses ħ. 

For the purposes of these calculations, we recall that the units for θsi are kilo-
grams meters per second. This is not the case for all described phenomena, an 
aspect that shall be addressed later. Thus, the values for each of the three meas-
ures, Appendix C, are: 

11
35

3 3
2 2 6.67408 10 3.26239 1.61620 10  m

299792458
si

f
Gl
c
θ −

−× × ×
= = = × ,    (32) 

11
44

4 4
2 2 6.67408 10 3.26239 5.39106 10  s

299792458
f si

f

l Gt
c c

θ −
−× × ×

= = = = × ,  (33) 

3
82 2 3.26239 2.17643 10  kg

299792458
si

f f
cm t
G c

θ −×
= = = = × .        (34) 

There are two approaches that may be used to resolve the fundamental ex-
pression—the simplest expression that relates the three measures. One, we may 
use Equation (13) to replace G such that 3

f fG c t m= . Or two, we may solve 
the first and third expression for G, set them equal and reduce. In both instances, 
we find that 

2 siL M Tf f fn l n m n tθ= ,                     (35) 

2 sif f fl m tθ= .                        (36) 

Here, Equation (35) assumes all counts have value one. This differs from their 
minimum values where nM = 1/2. The fundamental expression does not describe 
the lower count bound of each dimension, but the correlation between them. 
Moreover, in MQ nomenclature, we often ignore the Informativity differential, 
presenting expressions as though we were describing a macroscopic phenome-
non. In such cases, we make the substitution of QLnLr with the value 1/2. We re-
fer to this procedure as the unexpanded form of the expression. Conversely, the 
expanded form of the fundamental expression is 

L Lr

si f
f f Q n

t
l m

θ
= .                       (37) 

Likewise, each of the fundamental expressions is also affected by the Informa-
tivity differential and has expanded counterparts. Calculation of the Informativ-
ity differential QLnLr does require several steps, but when describing quantum 
phenomena, especially phenomena less than 2.247lf, the precision is important. 
A more detailed description is offered in Appendix A. 

3.3. Size of the Universe 

The three properties of measure—discreteness, countability, and physical signi-
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ficance with respect to the discrete and non-discrete measurement frame-
works—may now be used to describe the earliest epoch of our universe and the 
transition that leads to the expansionary epoch we observe today. We no longer 
need additional concepts or experimental results to describe the constants or 
laws of nature other than the descriptions introduced so far. However, before we 
launch into an analysis of the CMB power spectrum, we need to characterize the 
expansion itself. We begin with expressions that correlate the expansion with the 
fundamental measures starting with the unexpanded form of the fundamental 
expression, which describes the expansion of the universe as a function of 
elapsed time, 

2 2 2si f si T f si T

f L f
f

L

t n t n
l n l c n

m
θ θ θ

= = = .                 (38) 

The physical correlation can more easily be explained once the expressions are 
resolved. To begin, we approach this as a unity expression ([10], Eqs. 24, 102), 
that is, a self-defining definition of the three measures that has no external ref-
erence to the universe. Thus, given the fundamental expression, we may describe 
the universe as a count of length units nLu and a count of time units nTu such that 
the percentage of the universe representing all the mass is Ωtot = 1, 

2 1si Tu
tot

Lu

n
c n
θ

Ω = = ,                        (39) 

2 si Lu

Tu

n
c n
θ

= ,                          (40) 

This expression describes a specific case, that of the universe with its leading 
edge expanding at the speed-of-light. Now, taking 2 si fc mθ = —the funda-
mental expression—and substituting out the left set of terms in the expression 
above with mf, then the following is also true of our description of the universe, 

Lu
f

Tu

nm
n

= .                           (41) 

Finally, with the leading edge of the universe expanding at the speed-of-light c, 
then the rate of expansion of the universe HU is constant with respect to the un-
iverse, 

1 1m s universeLu
U

Tu

nH c
n

− −= ⋅ ⋅ ,                   (42) 

2Lu
U si

Tu

nH c
n

θ= = .                       (43) 

The values for fundamental mass mf, the diameter DU and age AU of the un-
iverse are each correlated with 

2 2 3.26239 13.799 90.035 blyU si UD Aθ= = × × = ,          (44) 

890.035 2.1764 10  kg
13.799 299792458

U
f

U

Dm
A c

−= = = ×
×

.         (45) 
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while there are multiple paths by which to approach a description of these phe-
nomena, it might be argued that the expansion of the universe is in part assumed 
based on a correlation between the fundamental expression and the rate of ex-
pansion. Building on this approach as a conjecture, then it may equally be ar-
gued that the value of mf is a prediction of that conjecture. To that end, we find 
the conjecture physically significant to five digits, constrained by the precision of 
our measure of the age of the universe and the comparison mass  

82.1765 10 kgpm −= ×  as published in the 2014 CODATA. 
If follows that with HU a universal constant of rate 2θsi m·s−1 per universe, the 

critical density of the universe 
2

8
f

crit

H
G

ρ =
π

 [8],                     (46) 

is an accurate description of the universe, correlated to its age and diameter. The 
constant rate of expansion also tells us that the universe is flat, neither accelerat-
ing nor decelerating. 

3.4. What Are the Multipole Moment Oscillations? 

We begin with a few commonly used terms in MQ. For one, we refer to the ratio 
lf/tf as the length frequency. The ratio describes the one-to-one count bound 
with respect to the fundamental units of length and time 1L Tn n= = . As the 
nomenclature of MQ is based on counts of fundamental units, describing fre-
quencies as bounds of maximum and minimum counts is physically significant. 
Likewise, we identify the one-to-one ratio of a unit of fundamental mass per unit 
of fundamental time mf/tf as the mass frequency. There is no specific term used 
to identify the ratio mf/lf, but the ratio is also an important physical bound. 

Another way to describe measurement frequencies is to express each bound as 
a rate. Doing so filters out the target dimension such that all measures are fixed 
and equal to the inverse of the fundamental time, 

8 43 12.99792458 10 1.85492 10  units sL fn l −= × = × ⋅ ,         (47) 

35 43 14.0371111 10 1.85492 10 units sM fn m −= × = × ⋅ ,        (48) 

43 11 1.85492 10 units sT fn t −= = × ⋅ .              (49) 

In the same way that length frequency describes an upper bound to measure, 
we may also resolve macroscopic properties of our universe using the same no-
menclature. For instance, length and mass frequency expressions that describe 
the universe may be resolved by taking the product of the age of the universe AU, 
the radial system constant θsi and the corresponding dimensional frequency. To 
the extent that the elapsed time with respect to the present is approximately 

174.3546 10UA = ×  seconds [12], then the count nT, and the radius RU are 

17 60
44

1 14.3546 10 8.0775 10 units
5.39106 10T U f

f

n A t
t −= = × = ×

×
,     (50) 
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35
17 26

44
1.61620 104.3546 10 3.26239 4.2590 10 m
5.39106 10

f
U U si

f

l
R A

t
θ

−

−

×
= = × × × = ×

×
. (51) 

Note that the use of θsi reflects the rate of universal expansion as learned from 
the fundamental expression [Equation (37)]. Note also that, in this instance, θsi 
caries no units. The dimensionless nature of θsi when describing the universe is 
because the universe has no external reference. That is, θsi serves in the capacity 
of a self-defining value (i.e., 2si f f fl m tθ = ). 

Applying the same operation, the fundamental mass—the upper count bound 
of the fundamental unit of mass mf that may be observed per unit of tf—is re-
lated to the fundamental mass of the universe Mf (not to be confused with the 
fundamental unit of mass mf) by 

8
17 53

44
2.17643 104.3546 10 3.26239 5.7353 10 kg
5.39106 10

f
f U

f
si

m
M A

t
θ

−

−

×
= = × × × = ×

×
.(52) 

The measure represents an upper bound to the measure of mass—the mass 
frequency—and is not directly correlated to what we might think of as visible or 
observable. When describing mass as a count of mf, the fundamental mass is that 
mass that can be discerned at any moment in time. Mass in excess of the funda-
mental mass cannot be distinguished, placing an upper bound to the mass count 
permitted per tf. Note that this does not place an upper bound on the mass we 
can observe over an interval of elapsed time. 

An example would include the upper bound on the gravitational pull that is in 
part a description of galactic orbital dynamics ([11], Eq. 67). To the extent that 
the effective and observed velocities are equal e ov v= , then the rotational veloc-
ity of stars about a galactic core are described by 

1 2

2 2
2

o
e si si

f

vv c
m

θ θ
 
 = −
 
 

.                     (53) 

Naturally, it seems confusing that gravity is constrained to some subset of the 
mass that can be measured within a galaxy, but when we understand the differ-
ence between an instant in time (which corresponds to the visible mass) and 
what can be observed in an interval of elapsed time (the observable mass), we see 
how mass frequency describes an upper bound constraint ongravity that differs 
from the total mass of stars that make up a galaxy. 

O6: The laws of nature follow from what can be measured in the present, not 
from what may be measured in an interval of elapsed time. 

To resolve a precise understanding of the fundamental mass and its relation-
ship to the visible, observable, and total mass, we shall need a few more expres-
sions. Rearranging the expressions for nT and RU such that U T fA n t= ,  

U U f si fA R t lθ= , and 3
f fm t c G=  [Equation (34)], then the fundamental 

mass of the universe Mf may also be expressed as 

f U f f f
f U si si U

f si f f f

m R t m m
M A R

t l t l
θ θ

θ
= = = ,               (54) 
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f f
f U si Tu f si Tu f si

f f

m m
M A n t n m

t t
θ θ θ= = = ,              (55) 

3
U

f
siA cM

G
θ

= .                         (56) 

Moreover, we may resolve the volume of the universe VU using its radius RU 
yielding 

( )33 3 26 80 34 4 4 4.2590 10 3.2360 10 m
3 3 3U UV r R= = =π π π × = × .     (57) 

We shall also need the expression for critical density, a formal definition of 
the relationship between critical density and critical mass, and the MQ form of 
the gravitational constant from Equation (13). 

To assist in the dimensional analysis, we use a capital M for a mass in kilo-
grams but retain the same subscript as for the term written as a percentage of the 
total mass of the universe. For example, Mobs describes the observable mass in 
kilograms. Conversely, Ωobs describes the observable mass as a percentage (i.e., 
31.6%) of the total mass of the universe Ωtot. 

Note also that the temporal approach offered by MQ provides a different 
naming structure for mass distributions from that of modern theory. There is 
what maybe measured presently Ωvis, what may be measured given an infinite 
amount of elapsed time Ωobs, the difference between these two values Ωuobs, the 
unobserved, and finally that which can never be measured as that mass exists at 
a point for which light will not reach the observer because of the expansion of 
space, i.e., dark mass Ωdkm. It follows that  

tot obs dkm= +Ω Ω Ω ,                        (58) 

uobs obs vis= −Ω Ω Ω .                        (59) 

Note also that the dark mass distribution Ωdkm is identified in modern theory 
as dark energy ΩΛ. We do not use this term in MQ because we identify the dis-
tribution as mass that will never be observed due to the expansion of space. 
Likewise, Ωc is identified in modern theory as dark matter. We do not use this 
term but instead identify the distribution as Ωuobs. The unobserved mass is that 
mass that is presently not visible but is given an infinite interval of elapsed time. 

There are two important values at work in the expressions that follow such 
that each is a percentage of the total mass distribution Ωtot representing all the 
mass in the universe: 
• Fundamental mass Ωf is that percentage of mass that corresponds to the up-

per count bound of mf that can be observed per tf relative to the total mass 
distribution Ωtot (i.e., f f tot=Ω Ω Ω  or f U si f fM A m tθ= ). 

• Observable mass Ωobs is that percentage of mass that corresponds to the mass 
that may be observed given an infinite elapsed time, inclusive of the visible 
Ωvis. 

Moving forward, we conjecture that the ratio of twice what may be observed 
at a moment in time 2Ωf over what may be observed in an infinite elapsed time 
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Ωobs is equal to the sum of what is observed in the moment Ωf and the total in 
the universe Ωtot = 1, 

2
1f

f
obs

= Ω
Ω

+
Ω

.                         (60) 

The relation was resolved with respect to the data, but we argue this presently 
as a conjecture by considering cases such as a static universe (i.e., 1f obsΩ Ω= = , 
thus ( ) ( )2 1 1 1 1× = + ). Likewise, for a contracting universe, f obsΩ > Ω  whe-
reas for an expanding universe f obsΩ < Ω . In each instance, there exists a single 
solution for a given rate of expansion. We may solve for the rate, direction, and 
distribution values for our universe as follows: 

f f obs f obsΩ Ω Ω Ω Ω+ = + ,                    (61) 

f obs f obs fΩ Ω− Ω= −Ω Ω ,                    (62) 

1 obs f
obs

f

Ω Ω
Ω

−
−

Ω
= .                      (63) 

Recall that the observable mass Ωobs plus dark mass Ωdkm represent all the mass 
in the universe and thus the dark mass is 1 − Ωobs, assuming Ωtot = 1. The 
right-hand side of the equality reduces to the form, 

1obs
dkm

f

Ω =
Ω

−
Ω .                        (64) 

We may now focus on the right-hand side of the equality. Given the critical 
density of the universe ( )2 8crit fH Gρ = π  and where we know the observable 
mass distribution Ωobs, we multiply the critical density by the volume of the un-
iverse VU to give the total mass of the universe Mtot. We then multiply this result 
by the observable distribution Ωobs to resolve the observable mass Mobs. Com-
bined with the expression above, we take advantage of the relation replacing the 
distributions with the associated SI descriptions. 

obs U m obs U critM V V=ρ ρ= Ω .                       (65) 

Thus, 

1 1obs obs
dkm

f f

M
M

= − =Ω
Ω

−
Ω ,                      (66) 

( )
11 1 1U m f U m fU m

dkm
f U si f UU si f f

V t V tV c
m A m RA m t θ

ρ
θ

ρρ
= − = =Ω − − ,        (67) 

23 441 1 1
3 3

f f f U obs fU
dkm U m obs crit crit

f U f U f f

t t l R lc RV
m R m R t m

ρ ρ ρ
Ω

Ω Ω
ππ

= − = − = − ,(68) 

2 2 2 2
2

2

3 4 11 1 1
8 3 2 2

f U obs f U obs f U obs f
dkm f

f f U f

H R l R l R l
H

G m Gm A Gm
π

= − = −
Ω

=
π

Ω
Ω −

Ω
,    (69) 

2
2 2 2 2

2 3
11 1 1

2 2 2
obs f obs f obs f fU

dkm si si
U f f f f

l l l mR c c
A Gm m G m c t

θ θ
Ω Ω Ω

Ω = − = − = − ,      (70) 
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2

1
2
si

dkm obs
θ

Ω Ω= − .                         (71) 

Comparing Equation (71) and Equation (66), we see that 

2
2 18.7914%f
siθ

= =Ω .                       (72) 

Because the sum of the observable Ωobs and dark mass distributions Ωdkm must 
equal one—the two measures account for all mass in the universe—we then 
combine 

22 2dkm obs siθΩ Ω+ = ,                        (73) 

1dkm obsΩ Ω+ = ,                         (74) 

to resolve 
2

2
2 68.3624%
2

si
dkm

si

θ
θ

=
+

Ω
−

= ,                    (75) 

2
4 31.6376%

2obs
siθ

= =
+

Ω .                    (76) 

Note that the dark mass distribution Ωdkm matches what in current theory we 
identify as dark energy ΩΛ. The match is not coincidental, just as it is not coin-
cidental that the total mass in the universe is the sum of the observable and dark 
mass, or that the unobserved mass is the difference between the observable and 
visible (this being the value we associate with dark matter Ωc). The distributions 
are as we have described from the outset, what is presently visible Ωvis, the sum 
of what is and will be visible Ωobs, and the difference Ωuobs [11] and what will 
never be visible because of the expansion of space Ωdkm. The distributions are a 
consequence of their temporal geometry each correlated to one another. 

Proceeding, the locally defined speed of the expansion at the outer edge of the 
universe is the speed-of-light Uv c= , 2U si UD cAθ=  in SI units Equation (44) 
and Ωtot = 1. Similarly, the velocity equal to twice the radial expansion vU is the 
ratio of the observable to visible distributions Ωobs/Ωvis with respect to the total. 
Thus, the visible distribution may be resolved as well, 

( )0 1 10 1

0 1 0 1

22 2 2 m ssi U Usi U si U
U si

U U U U

c A AcA cAv c
A A A A

θθ θ θ −−−
= = = ⋅

− −
,        (77) 

2obs
U si

vis tot

v c cθΩ
Ω Ω

= = ,                      (78) 

1 4.84884%
2 2

obs obs
vis

si tot siθ θ
= = =

Ω Ω
Ω

Ω
.                (79) 

Finally, the unobserved mass Ωuobs is that mass which will be observable given 
enough elapsed time, 

31.6376 4.84884 26.78876%uobs obs vis= − = − =Ω Ω Ω .       (80) 

Note that we have approached a temporal understanding of mass in the un-
iverse but arrived at the same values we measure with respect to ΛCDM and 
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what are more commonly understood as dark energy, dark and visible matter; 
see Figure 3. The relationship is not coincidental. However, the concepts are in-
tertwined. That is, the CMB power spectrum is a time dependent function. 
When we measure the CMB across the universe, we aggregate time periods, that 
which is local and near to the present and that which is distant, near to the past. 
The aggregation gives us a temporal view of the CMB across the history of the 
universe. 

In addition, in that each of these distributions is a function of θsi—a constant 
value—this tells us that the distributions are invariant with respect to time. One 
may also notice the absence of the Informativity differential QLnLr from each of 
the distribution expressions. This absence reminds us that the distributions are 
geometric. If they were physically distinct mass phenomena constrained to a va-
riable distance relation to the observer, then the Informativity differential would 
apply. Likewise, relativistic differences between mass moving at high velocities 
(i.e., distant in the past) and low velocities (i.e., close to the present) would ap-
ply. Such modifications would then skew these distributions away from the 
measured values we recognize today. None apply because the distributions are a 
consequence of the geometry. 

3.5. Peak Oscillation Coordinates and the Effects of Expansion? 

A power spectrum plot of the CMB yields five curves that are from left to right 
recognized as dark energy, observable matter, dark matter, matter without iden-
tification, and finally visible matter. Every second curve is also recognized with 
respect to optical properties as a compression curve. Finally, we recognize that 
the curve is a plot of the temperature of the CMB with respect to multipole mo-
ments. Whereas the visible distribution is readily recognized as representing all 
the visible mass in the universe, dark energy and dark matter have remained elu-
sive. 

MQ, in contrast, can resolve a clearer understanding of this graph as a tem-
poral distribution of the spectrum with respect to an observer. MQ differs in ap-
proach in that all the mass/energy in the universe is recognized at the outset of 
the problem and then classifies the respective distributions according to that  
 

 
Figure 3. Relative measure of mass. 
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which can measure in the present Ωvis, that which can be measured given enough 
time Ωobs, the difference between these two Ωuobs, and that which will never be 
measured due to the expansion of space Ωdkm. The descriptions match those of 
the standard model to the same precision as our best measurement data. 

In the expressions that follow, a new distribution term, Ωv is present. This 
distribution describes the fifth bell-like curve in the CMB power spectrum. Its 
physical description is in part known as an instance of decompression but is 
otherwise not discussed or associated with a specific phenomenon. In contrast, 
in Section 3.7, the physical meaning of Macr is discussed, but for now it serves pri-
marily as a convenient term that reduces the nomenclature. Using 3 2acr siM θ= , 
we take the distributions resolved above, reduce them such that they each share 
a common denominator (Macr + θsi) and then resolve the value of each oscillation 
as the ordinate, thereby identifying the peak of each distribution. For example, 

2

2
2
2

si acr si
dkm

si acr si

M
M

θ θ=
θ θ

− −
=

+
Ω

+
.                      (81) 

with the abscissa representing the multipole moment l, we then exhibit each l as 
a function of θsi. As noted, the distributions are a temporal geometry, and as 
such the scaling is a function of π with an increasing exponent  
( 1 3 5, ,dkm uobs visv Ω Ω Ω= π π π ). There are also two intermediary points Ωobs and Ωv 
that demonstrate a specific, but not well understood, pattern; 

: , acr si
dkm

acr si

My
M

θ
θ

 −
π + 

Ω ,                        (82) 

5 2: ,
2 9

si
obs

acr si

y
M

θ
θ

 π
 × + 

Ω ,                      (83) 

3 2 1: , si
uobs

acr si

y
M
θ

θ
 −
π + 

Ω ,                       (84) 

2 0.5: 9 , si
v

acr si

y
M
θ

θ
 −
π + 

Ω ,                       (85) 

5 1: ,vis
acr si

y
M θ


π

+
Ω


 
 

.                       (86) 

Then, for consistency, the temperature value of the y-coordinate may be re-
solved using the factor 

( )1
2

ll l C+
π

.                            (87) 

However, there is one final step. The presentation must be adjusted for the 
expansion of space, 2U siH θ= , [Equation (43)]. To proceed, we use the unity 
expression ([10], Eq. 102) obtaining 

21 3 2

1f Lm

f f Lc

t n
l m n

      + =         
,                    (88) 
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21 3 2
1 1

2
Lm

si Lc

n
nθ

    
  + =        

.                    (89) 

The expression is further clarified by substitution using the fundamental ex-
pression 2f f si fl m tθ= . More importantly, the expression describes the radial 
expansion θsi with respect to the proper distance. The power spectrum is also a 
function of the multipole moment—a repeating function of 2π. Therefore, com-
bining the radial expansion of space along with the optical properties of the 
power spectrum, we find 

2 3

siθ
 π
 
 

                           (90) 

describes the skewing effects of measurement distortion in the left term of the 
unity expression. We must divide each x-value except Ωdkm and Ωtot to resolve 
the x-coordinate value. The MQ description matches to three significant figures 
corresponding to the most precise values available in the measurement data. 

The effect is not applied to Ωdkm. As a temporal description of mass/energy, 
the Ωdkm distribution has not and will never be measurable. Thus, it cannot be 
subject to the effects of measurement distortion. The total Ωtot must be adjusted 
accordingly. Notably, ( )2 3 0.975160siθπ =  is a sizable value. Only with respect 
to a temporal description of the power spectrum can it be known to which dis-
tributions we must apply this effect. As such, we find many correlations to phys-
ical measurements are finely constrained by a MQ interpretation. 

We bring to the reader’s attention the point that because MQ describes a pe-
riod of quantum inflation over a period of 363,309 years followed by an expan-
sion, this does not change the order of events in the calculation of the power 
spectrum during and at recombination. However, it does affect the initial condi-
tions. First, the horizon problem is resolved without a faster-than-light infla-
tionary period. Second, because the universal mass is accreting with elapsed time, 
we find that nearly all the mass accumulated up to the time of recombination 
constitutes the CMB we see today, and this is verified with a match to observa-
tional data to four significant figures [14]. Third, it addresses a more fundamen-
tal question—Why is there a specific amount of CMB; why not more or even less 
plasma CMB? 

Finally, we note some common correlations between the distributions: 

2obs si visθΩ Ω= ,                         (91) 

2obs uobsΩ Ω= + ,                        (92) 

2uobs v=Ω Ω ,                         (93) 

2 2uobs si visθΩ Ω= − .                      (94) 

Starting with Equation (60) and then using the substitutions above along with 
Equation (58), Equation (59), the temporal nature of each distribution provides 
a convenient means to resolve the relationship between any two distribution 
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values or to correlate them all, 

( )f si vis dkm obs fθ= +Ω Ω Ω +Ω Ω .                (95) 

3.6. Spacetime Curvature 

With respect to spatial curvature, there exist two notable applications, that con-
cerning the universe and that concerning gravitation. Having completed a dis-
cussion of gravitation, we now discuss the phenomena of curvature that are 
cosmological in scale. Specifically, we discuss a flat universe as described with 
respect to a constant rate of expansion as presented in Equations (42)-(45). 
Along with the fundamental expression, then 

2 f fLu U
U si

Tu U f

l mn DH c
n A t

θ= = = = .                   (96) 

The expression is collaborated with respect to multiple measurements, for in-
stance, by gravitational curvature, by the predicted value of the fundamental 
mass mf, by each of the CMB distribution values, Ωdkm, Ωobs, Ωuobs, and Ωvis and 
by the multipole moment of Ωdkm as presented in Equation (81), 

100 214.767acr si

acr si

M
M

θ
θ

−
π =

+
.                     (97) 

WMAP measurements of the CMB suggest that a value of around 220 is in-
dicative of a flat universe, but a precise measure is difficult as the value is a func-
tion of several phenomena with an additional uncertainty in the initial condi-
tions. Conversely, the MQ expressions are a function of one measure, θsi, pro-
viding for a precise and straight-forward physical interpretation. Moreover, θsi is 
a predicted value Equation (C9) matching the six-significant-figure measure-
ments described by Shwartz and Harris in their 2011 paper regarding the quan-
tum entanglement of X-rays at the degenerate frequency of a maximally entan-
gled Bell state [15]. 

We also bring to the reader’s attention the fundamental expression that de-
scribes the one-to-one correlation between measure and expansion. The argu-
ments for an expanding or contracting universe would impact our understand-
ing of the relative values of the fundamental measures. Notably, this is not ob-
served and there is a limited number of counterarguments along these lines of 
thought. For instance, one might argue for a variation in the rate of expansion 
such that the speed of light remains fixed while the value of the fundamental 
mass mf varies. Alternatively, one might propose a variation in both lf and tf such 
that the speed of light and mf both remain fixed. One may also argue that a third 
unknown compensates the undesired variation as the rate of expansion varies. 
However, in considering any of these conjectures, we would also have to address 
changes in the orbital positions of the electron orbits as described by this MQ 
form of the fine structure constant, 

0

3

0

7.29735 01 1f f si f

e e L Lr

l m t
a m a m Q n

α
θ −= = ×= ,              (98) 
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0
1 si f

e L Lr

t
a

m Q nα
θ

= .                        (99) 

Therefore, if the fundamental mass is constant, the speed of light is constant; 
if stable atoms are also a necessary part of our stellar history, then there is phys-
ical support for a constant rate of universal expansion in a flat universe. 

We take this moment to point out that because the fine structure constant is 
typically measured with respect to quantum phenomena, it is important to de-
scribe the value in the MQ expanded form (i.e., QLnLr) or there will be a signifi-
cant error in the predicted value ( 3

0 7.29722 10p p el m a m −= × ) when compared 
to the measurement data (7.29735 × 10–3 from the 2018 CODATA). In expanded 
form as presented above, the value matches the measured value precisely. 

From a broader view, a new understanding of spacetime curvature may seem 
unnecessary in light of the long-supported notion of a spacetime as described by 
GR. Hence, how does MQ accommodate curvature when the fundamental units 
of measure are themselves references and thus by definition flat, incapable of 
having additional properties such as curvature? The question has already been 
answered. Many expressions may be used to demonstrate that measure is not the 
key feature in describing phenomena. Like the Heisenberg uncertainty principle, 
a reduction of the expression cancels the measure terms leaving only the counts. 
Therefore, we find that curvature is never a feature of the spacetime itself, but 
rather a consequence of discreteness, such that the loss of fractional counts QL of 
the reference length lf leads to the appearance of a curved spacetime. In MQ, we 
recognize this effect as the Informativity differential (Appendix A), 

2 1
2 2

L
L Lr

Q Q n+ = .                        (100) 

The expression is usually taken at its macroscopic limit of QLnLr = 1/2 such 
that the value of QL is so small as to be physically insignificant. For additional 
expressions describing spatial curvature and the MQ approach to measurement 
distortion presently described by SR and GR, the reader may refer to “Measure-
ment Quantization Unifies Relativistic Effects …” [10]. 

3.7. Mass Accretion 

As discussed in Section 3.4, each mass distribution is a function of the radial 
system constant θsi. As such, the distributions are fixed. Consider now Equation 
(66). Then, 

1obs
dkm

f

Ω =
Ω

−
Ω ,                       (101) 

( )1obs f dkmΩ Ω Ω= + .                     (102) 

However, we also know from Equation (55) that the fundamental mass Mf in-
creases with time, 

f Tu f siM n m θ= .                       (103) 
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Unavoidably, the mass of the universe must be increasing across all distribu-
tions such that each of the distributions remains fixed relative to the other. Us-
ing Equation (95) to solve for total mass, such that tot dkm obs= +Ω Ω Ω , Equation 
(58), and 2obs si visθΩ Ω=  [Equation (91)], then 

( )tot f si vis dkm obs fθΩ Ω Ω Ω Ω+ +Ω= ,              (104) 

( )2 tot f obs tot fΩ Ω Ω Ω +Ω= ,                 (105) 

( )2tot f obs f obs− =Ω Ω Ω Ω Ω ,                 (106) 

( )
( )

( )1 1
2 2 1 1

f obs f f dkm f dkm
tot

f obs f f dkm dkm

+Ω Ω Ω +
= = =

− − +

Ω Ω Ω Ω
Ω

Ω Ω −Ω Ω Ω Ω
,    (107) 

( )1 2 2 1
1
f dkm obs

tot f f
dkm obs obs

Ω Ω Ω+  −
= = = − −Ω Ω Ω

Ω Ω


Ω ,       (108) 

Finally, to the extent that ( )tot f obsM M f= Ω , f Tu f siM n m θ=  [Equation 
(55)], and ( )24 2obs siθΩ = +  [Equation (76)], then 

( )
2 3

2

2 21 1
2 24 2

si si
tot Tu f si Tu f si Tu f

si

M n m n m n mθ θθ θ
θ

   + = − = − =  +   
. (109) 

Given that the total mass of the universe may be expressed as tot Mu fM n m= , 
then a definition for mass accretion Macr may be expressed as a count nMu of mf 
in the universe per count nTu of tf; specifically, 

3

17.3611 units units
2

Mu si
acr f f

Tu

nM m t
n

θ
= = = ,           (110) 

36 17.00888 10 kg sfMu
acr

Tu f

mnM
n t

−= = × ⋅ .              (111) 

There is a significant literature describing the appearance and disappearance 
of virtual particles in a vacuum. There are also experimental results discussing 
the decay of virtual particles in a vacuum [13]. However, there is no experiment 
that specifically accounts for a decay of virtual particles in equal magnitude to 
the appearance of particles. In light of the above expressions and experiments to 
date, we conjecture that this is one mechanism by which mass accretion may 
occur. 

3.8. Dimensional Analysis of θsi 

We have not discussed the dimensional analysis of θsi thus far; hence, we take 
this moment to note that the measure of θsi can take on different units depend-
ing on the context of the described phenomenon. For instance, when the expres-
sion for mass accretion is written such that 3 2acr si f fM m tθ=  Equation (110), 
Equation (111) then θsi is dimensionless, having no units at all. Likewise, as ex-
pressed in the fundamental expression 2f f si fl m tθ= , Equation (37), θsi has 
units kgms−1. As demonstrated in Equation (C7), θsi has the units of radians. 
Each measure of θsi is physically significant. Therefore, why does this constant 
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differ from the other constants that we are so familiar with? In part because the 
other constants are each a composite of this constant, and in part because this 
constant is a composite of all three dimensions 2si f f fl m tθ = . Depending on 
which dimension is absent in some physical description, θsi carries those units. 

Not all constants are derived from θsi. Consider the gravitational constant G = 
(lf/tf)(lf/tf)(lf/tf)(tf/mf) [Equation (13)],which is entirely composed of fundamental 
measures. That is, there are two flavors of constants—those that are a mix of di-
mensions and θsi (i.e., Planck’s constant 2 si flθ=  ([3], Eq. 36)) and those that 
are entirely composed of fundamental measures (i.e., f fc l t= ). Depending on 
the composition of an expression, θsi has specific identifiable dimensions. That 
said, composition is somewhat an arbitrary human activity. For instance, given 
2 si f f fl m tθ = , then 2

f f fl m t= , and as such, all constants may be written 
entirely as a function of fundamental measures. 

We take this moment to discuss frames of reference and their importance in 
the description of phenomena. Noting that our understanding of length meas-
ure may always be reduced to a description that requires the Pythagorean 
Theorem, we find ourselves asking, how many physically significant frames of 
reference are needed to describe the phenomenon of distance? The Pythago-
rean Theorem, at a minimum, has three terms. Therefore, should not measure 
require three physically significant frames of reference and if this is readily 
agreed to, then what are they? In MQ terminology, the third frame is referred to 
as the self-defining framework. 

We often refer to descriptions of the universe as self-defining because there is 
no reference external to the universe with which to anchor our understanding of 
such descriptions. Conversely, phenomena are called self-referencing if they are 
expressed in terms that have definitions based on other terms that are then given 
meaning with respect to the terms first mentioned. Collectively, the division 
helps orient the reader as to two distinct classes of phenomena with respect to a 
framework. This completes the formal definition of the three frameworks, 
namely, the observational framework, the measurement framework, and the 
self-defining framework of the universe containing the observed target. 

3.9. Trigger Ending Quantum Inflation, Initiating Expansion 

During the earliest epoch, the universe cannot expand because the internal 
spacetime provides no opportunity to reference points outside of the quantum 
bubble. To understand quantum referencing, we begin with a review of the three 
frameworks: the reference, measurement, and target frameworks. Measure has 
physical significance only when a composite of the information from each of 
these frameworks. Therein, the quantum referencing we observe today is miti-
gated during the earliest epoch. 

Presently, a physically significant measure exists such that side a describes the 
reference count na = 1, side b describes some count of the reference (both sides a 
and b are discrete), and side c describes a non-discrete reference count between 
the observer and the target. However, what if the size of the universe is such that 
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side b describes a count less than two? 
In this instance, there exists no means by which to distinguish the count nb 

from the reference count. In other words, side b may be any non-discrete value, 
but with respect to the observer indistinguishable from the reference count na = 
1. This, in fact, describes the presently defined properties of side c. We therefore 
modify our understanding of side b when describing measure in the quantum 
inflationary epoch with the non-discrete count term nbn. The description applies 
during the entire epoch. 

We next consider a universe that has expanded sufficiently such that 

( )1 22 2
bn a bn n n= +  and also 1a bn n= = , for then 

( )2
2 2 2 2 2
a bn a a bn n n n n+ = + + = ,              (112) 

2 2 2 2 2 21 1 1 3a a bn n n+ + = + + = .               (113) 

More specifically, a radial length count of 2  rounds down (i.e., 2 1.414≈ ), 
back inside the quantum bubble. However, a radial length count of 3  rounds 
up (i.e., 3 1.732≈ ), outside of the quantum bubble. Until the universe reaches 
a radial length count equal to 3 ; the rate of expansion is constrained. We shall 
resolve the expressions describing this quantum inflationary period in the fol-
lowing section but take this moment to point out one final detail. One might ask, 
why does the expansion not stall when it reaches a radial length count of 5 ? 

At 5U fR l=  there are new points of reference inside the quantum bubble 
that are a distance 3 fl  from the outer edge. As before, this count of the ref-
erence measure lf rounds up and allows the expansion to continue uninter-
rupted. 

Finally, there remains a well-known argument surrounding the coincidence 
between mathematics as a tool describing nature and nature which appears to 
abide by the laws of mathematics. We do not broach this subject here but remark 
that the tradition of providing examples of physical measurement that corres-
ponds with mathematical expression is an important tool of science. It is our 
ability to correlate this approach with the measurement data that the presenta-
tion is made. 

3.10. Quantum Inflation 

We begin with the fundamental expression broken out in terms of counts of the 
fundamental measures as described in Equation (35). Note, we have added a 
prefix u to denote that the expression is a self-defining representation of the un-
iverse, 

2Lu f si

Tu f Mu f

n l
n t n m

θ
= .                         (114) 

As such, the expression describes a universe that expands at the speed of light. 
To modify the expression appropriately, we must recognize a differing count nLu 
of lf other than that afforded by the relation f fc l t= . To avoid confusion, we 
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use the notation ~nLu to represent the count of length units during the quantum 
inflationary epoch, 

~ 2Lu f si

Tu f Mu f

n l
n t n m

θ
= .                       (115) 

Given 3 2f siG l c θ=  [Equation (32)], U U siR A cθ=  [Equation (51)], 
1U UH A= , which follows from Equation (43) when written in SI units, 

23 8c fH Gρ = π  [Equation (46)], and where we have elected to resolve the ve-
locity of quantum inflation vi at AU = 1 second, then 

( ) 3 3 34 3
~ 2 2 2 2Lu f si si si si

Tu f Mu f U U c s U c
i

i

n l
n t n m M

v
V c A

θ θ θ θ
θρ ρ

= = = =
π

= ,      (116) 

3

3 2 3 3 2 3 2 3 2 3 2
3

2 2
1 3 8 4

3 2
f

i
si U c si U f si U f si

l cGv
c A c A H c A Hρθ θ θ θ

π
= = =

π π
,      (117) 

2 37 1
2 3 3 3 3 3

2 2 21 9.30931 10 m sf f f
i U

f si U si U si U

l l l
v A

H A A Aθ θ θ
− −= = = = × ⋅ .    (118) 

One might ask, what is the role of critical density ρc considering that the rate 
of mass accretion 3 2siθ  is constant? Indeed, mass density is increasing with 
elapsed time so what we find is a rate of expansion that is decreasing as reflected 
in the expansion velocity vi with respect to the leading edge. The steady rate of 
mass accretion, in turn, depends on the system constant (i.e., in our case 2θsi) 
associated with a quantum fluctuation such that there could be many such fluc-
tuations in a multiverse. Nonetheless, without a system constant that falls in an 
acceptable range, the fluctuation never reaches sufficient size to transition to an 
expansionary epoch. Moreover, the system constant also determines the radius 
of electrons about the atomic core. Thus, an expansion that is too small or too 
great will result in a universe that cannot form baryonic matter. 

However, as we shall demonstrate, this incredibly slow and decreasing velocity 
is not what brings quantum inflation to an end. For that, we must return to the 
definition of fundamental length. Taking the integral of the velocity expression 
with respect to time (the constant of integration is 0), we obtain an expression 
for the radius of the universe 

( )3 3

2 21 d lnf f
U U

si U si

l l
R t A

Aθ θ
 

= = 
 
∫                 (119) 

expanding until 3UR =  (the count value of lf resolved in Equation (113)) 
such that 

33 2 13e 1.1465 363302 910 yssi
UA θ == = ×             (120) 

at which point external referencing is permitted and the leading edge of the un-
iverse then expands at the speed of light relative to that edge. 

3.11. Time Dilation between the Quantum and Expansionary  
Epochs 

The quantum and expansionary epochs describe periods of our evolutionary 
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history with differing frames of reference. The difference is subject to a relativis-
tic offset, one which must be accounted for to align calculations of the CMB age 
properly with respect to elapsed time in our present epoch. Taking the integral 
of RU at the conclusion of quantum inflation resolves the age of the CMB with 
respect to an observer during the quantum inflationary epoch. That tells us, for 
instance, the age of the CMB prior to recombination but not the elapsed time as 
viewed with respect to an observer during the current epoch. 

Using the expression for the radius of the universe U U siR A cθ= , then the dif-
ference between the self-referencing age As-ref of an observer in our frame and 
the self-defining age AU with respect to the frame of the CMB, is a function of 
the volume ( ) 34 3UV R= π  as a ratio with respect to each epoch, 

( ) ( )
( ) ( )

3
-

3

4 3
2

4 3
s ref si

si
U si

A c

A c

θ
θ

θ

π
=

π
,                     (121) 

( )1 3 13
- 2 2.14241 10 s 678889 ys ref si UA Aθ= = × = .          (122) 

In this way, we solve for the elapsed time with respect to an observer today. 
We may also present the expression in relativistic form by arranging the rela-

tion in the form of a unity expression. Given the self-referencing age  

-s ref Tl fA n t=  and the self-defining age U To fA n t= , then 

( )1 3
- 2s ref U siA A θ= ,                        (123) 

( )1 32Tl To sin n θ= ,                         (124) 

( )1 3
1

2
To

Tl si

n
n θ

= .                          (125) 

Now holding this result and considering the root of the following expression 
taken from [10], [Equation (30)], a MQ version of Einstein’s length contraction 
expression, we then have 

1 22

21To Lm

Tl Lc

n n
n n

 
= − 
 

.                        (126) 

Equating these two expressions yields 

( )

1 22

1 3 2
1 1

2
Lm

Lcsi

n
nθ

 
= − 
 

,                    (127) 

( )

2
2 2

2 32
Lc

Lm Lc
si

nn n
θ

= − ,                     (128) 

( )2 3
11

2
Lm Lc

si

n n
θ

= − .                   (129) 

As expected, we find that Einstein’s speed parameter ( )( )21 321 2 siθ  corres-
ponds to the rate of expansion in the current epoch. On multiplying the nume-
rator and denominator by nTtf, we resolve a contraction effect that corresponds 
to a velocity 
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( )2 3
11 84.4755%

2
Lm f T fLm

Lc T f Lc f si

n l n tn v
n n t n l c θ

= = = − =         (130) 

of the speed of light. Note that 1T fn t=  is fixed by our definition of nLc in SI 
units. The terms cancel multiplicatively but are retained for consistency in 
structure. 

3.12. Recombination 

When the radius of the universe reaches 3 fl , for which 
33 2 13e 1.14652 10 363309 ysi

UA θ= = × = ,           (131) 

expansion is then possible. The accumulated mass drops in density and temper-
ature. We may resolve the elapsed time until recombination such that MT0 from 
Equation (110), Equation (111) is the accumulated mass at the end of the quan-
tum inflationary epoch. Let AT1-T0 denote the elapsed time from the end of the 
quantum inflationary epoch to that time when the temperature drops to T = 
3000K, with ρU the mass/energy density of the universe and ( )3 4 2 32 15k c hσ = π  
follows from the Stefan–Boltzmann law. Note that we do not know the elapsed 
time AT1-T0 describing expansionary cooling. This is what we shall solve for next. 
With definitions, 

3
49

0 8.03579 10 kg
2

f
U

f

si
T

m
M A

t
θ

= ×= ,               132) 

3

0 1- 0 0 1- 0 2
f

T T
si

U T T T
f

T

m
M M M A

t
M θ

+ += = ,            (133) 

( ) 3
1 1

4 3
U U U

U U

M MT
V R

ρ
σ σ σ

   = = =      π     
,              (134) 

we may now solve for the elapsed time corresponding to T = 3000K, 

( )
1

3

3
0

0
- 1
2 4 3

T T f

f

si
T

U

T
R

A m
M

t
θ

σ

  
=     π  

+ ,             (135) 

031-
3

0

2 4
3 U

f
T T

sif
TR T

t
A M

m
σ

θ
=  π − 

 
,                (136) 

0
7

1- 8.55063 10 s 2.70953 yT TA × == .               (137) 

The expressions are somewhat idealistic in that they assume all the accumu-
lated mass is in the form of photons. We do not know the physical processes that 
lead to mass accretion; at best, we can only conjecture that most, but not all, of 
the accretion is in the form of photons matching the result to the mass/energy 
equivalent of what we see today. The values match to four significant figures 
with the experimental results from a study of 2009 by Fixsen [14]. 

Adding the 2.7 years elapsed during expansionary cooling to the 363,309 years 
elapsed during the quantum inflationary epoch then reflects the elapsed time 
that we must attribute to accreted mass. The majority of this mass is then what 

https://doi.org/10.4236/jhepgc.2020.62015


J. A. Geiger 
 

 

DOI: 10.4236/jhepgc.2020.62015 217 Journal of High Energy Physics, Gravitation and Cosmology 
 

forms the CMB we see today. 

3.13. Formation of the CMB 

The age, quantity, density, and temperature of the CMB, which represent all the 
accumulated mass that exists at the end of the quantum inflation epoch are then 

3
501.50159 10 kg

2
si

tot Tu fM n m θ
= = × ,                (138) 

2
14 34.17041 10 J mtot

U

M c
V

ρ − −= = × ⋅ ,               (139) 

3 4
16 3 4

3 3
4 8 7.56685 10

15
J m Kka

c c h
σ − − −π

= = ⋅⋅= × ,           (140) 

1 4

2.72468 KT
a
ρ = = 

 
.                    (141) 

To incorporate the cooling period during which the temperature drops to 3000K, 
we need a more detailed approach. We take the self-referencing age of the un-
iverse at the end of quantum inflation ( ) 31 3 3 2

- 2 e si
s ref siA θθ=  [Equations 

(120)-(122)], add the time elapsed AT1-T0 during expansionary cooling [Equation 
(137)], multiply by the rate of mass accretion 3 2siθ  kg·s−1 [Equation (110)], 
convert to kg·s−1 mf/tf [Equation (111)] and subsequently to energy by multiply-
ing by c2. We then divide by the volume VU of the universe [Equation (57)] to 
get the density and finally multiply by the radiation constant σ to get the tem-
perature T. We may reduce the calculation somewhat before solving, 

( )( ) ( )( )3 3

1- 0 1

2 33 2
1 3 1 33 2 3

0
2

-
1 12 e 2 e

2 2
si sif f sisi

si si
f

T T T
U f

T
U

l l cc
m V

T A
V

A
m

θ θ θθθ θ
σ σ

+=+= ,(142) 

( )( ) ( )
3

1

2 3
1 3 3

- 0
1- 0

2
3

32 e
2 4 2

si
T T

f si
si

f si T T

l c
T A

Am c
θ θ

θ
σ θ

+
π

= ,        (143) 

( )( )3

1- 0 3
1- 0

1 3 3 2 32 e 2.72469 K
64

si f
si

f
T T

T T

l
m

T A
cA

θθ
σ

+ =
π

= .      (144) 

The difference of 3 × 10−6 K from the prior calculation is the same value to six 
significant figures. The two results differ in the sixth significant figure because of 
a coincidence where both are subject to a rounding threshold. 

Thus, the accumulated mass is confined in a quantum bubble with a radius 
less than 3 fl . The only stable mass/energy allowed during the calculated pe-
riod consists of high-energy photons and elementary particles. We may refer to 
this as the Quantum Inflationary plasma (i.e. QI plasma) or just the plasma. The 
plasma is thermally distributed homogenously across the quantum universe over 
the 363,309-year QI epoch (678,889 years with respect to an inertial frame in the 
expansionary epoch) during which quantum fluctuations create small variations 
in the plasma density leading to the CMB distribution we see today. 

3.14. Expansion 

Finally, when the radius of the universe reaches 3 fl , expansion commences. 
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The accumulated plasma drops in density and temperature. For 2U si UD Aθ= , 
we find that a local measure of the Hubble constant is 

19

9
1 1

7
km Mpc 3.08567758 10 km Mpc 70.860

13.799 10 y 3.15576 10
km s Mpc

s yU

H
A

− −⋅ ⋅
×

= = =
× × ×

, (145) 

18 1
19

70.860 km s Mpc 2.2964 10 s
3.08567758 10 km MpcfH − −⋅

= = ×
×

.       (146) 

In MQ, we refer to this as the universal expansion HU, the expansion of space. 
This differs from the motions of galaxies within space, which must be resolved 
separately. There is no specific correlation between the two, but it is conjectured 
that baryonic mass remains nearly static in space with respect to where it origi-
nates. 

4. Discussion 

MQ has enabled us to offer physically significant descriptions of phenomena we 
observe in nature. Bearing in mind that MQ is a nomenclature, and hence what 
we present is little more than classical mechanics written in a less familiar form. 
More significant, is that the expressions demonstrate a physical correspondence 
that matches the measurement data. 

By example, we look to expressions describing the fundamental units them-
selves, each which matches the 2014 CODATA to six significant figures. We also 
look to the calculation of θsi and gravitational curvature. Taking the value for ei-
ther produces the other with the same level of physical correspondence. The 
calculation of Hubble’s constant and the volume and mass of the universe are 
also in agreement. Moreover, the quantity, age, density, and temperature of the 
CMB again match the data. The calculation of the fine structure constant re-
solves a significant and long-standing discrepancy with the measurement data. 
Looking to the power spectrum of the CMB, the distributions are in correspon-
dence. The effects of relativity with respect to several phenomena are each re-
flected in the calculations, each aligning with the measurement data. 

While these calculations provide opportunity for establishing a physical signi-
ficance, we emphasize that it is the description that is under investigation, not 
the approach. The approach is classical, a field that already enjoys a century of 
published support. 

Perhaps it would be of significance to then consider the mathematical impli-
cations of MQ. Does math play a role in physical behavior? Are the laws of 
physics derivatives of mathematical structure or is mathematics merely a tool 
coincident with our interest in describing nature? 

Indeed, these are questions that have arisen in this presentation. In response, 
we should focus our attention on the scientific method. These questions are not 
the subject of this paper. For centuries, the community has been complacent 
with the coincidence of mathematics to describe nature. That a universe of ra-
dius 3  units of fundamental length should so accurately describe nature is 
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irrelevant. The goal, as has always been central to the field of physics, is to find 
the math that provides the greatest correspondence, to present a mathematical 
story that is measurable, verifiable, and falsifiable. For that, MQ provides several 
examples to six digits of physical significance. 

As such, we hope that these considerations have not been a distraction. Yes, 
MQ brings mathematics even more into the limelight. And yes, there will likely 
be even more debate about the role of math in describing nature. However, at 
least for now, our focus is in providing new tools and new ways with which to 
understand the early universe. We have, with MQ, revealed that the power spec-
trum is in part a function of elapsed time, that there is no dark energy or dark 
matter [11]; rather, it is all matter. What we are seeing reflects a history of in-
formation corresponding to that which we measure presently, what will be mea-
surable, and that which can never be measured. MQ offers the ability to correlate 
the quantum to the cosmological with equal footing in gravity as well as elec-
tromagnetism. In this light, we have presented some insight to questions that 
have until this point been a mystery. 

To end, we remark that observations of the physical significance of funda-
mental units of measure require the interpretations presented. However, they do 
not necessarily exclude some conjectures, such as inflation theory. At present, 
there is no support for inflation from the early universe events described using 
MQ, but this does not mean that inflation theory describes something that never 
happened. Rather, we add MQ to the collection of tools used in determining the 
physical significance of inflation among other conjectures that have filled the 
gaps in our understanding of the early chronology of the universe. 
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Appendix A: Numerical Limits to QLnLr 

Throughout the paper, the term QLnLr is used repeatedly and is referred to as the 
Informativity differential in recognizing the central role it plays in describing 
how fractional values less than the theoretical limit reflect a distortion effect in 
distance measurements. Knowing the limits to QLnLr is essential to resolving the 
fundamental measures. This product is obtained from Equation (28) multiplied 
by count nLb, 

( )21L Lr Lb Lb LbQ n n n n= + − .                   (A1) 

In the initial presentation, we identify sides a, b, and c such that side b has some 
count nLb of reference lf. We later reconsider side c such that Lc Lr Ln n Q= +  and 

Lb Lrn n= . Because our focus is then on side c, we drop the nLb term and use nLr 
throughout all expressions when discussing MQ. 

The approach is justified in that what is measured always equals a whole-unit 
count of a fundamental measure, and with nLa = 1, we find that nLr must equal 
nLb for all values. This is easily verified in that the highest value for QL is ob-
tained for nLb = 1 where ( )0.521 1 1 0.414+ − ≈  and the “observed” distance of 
side c presented as a count nLc is always rounded down to the highest integer 
value equal to the count nLr with 2LQ =  at its highest and quickly approach-
ing 0 with increasing nLr. Therefore, 

( )21L Lr Lr Lr LrQ n n n n= + − .                   (A2) 

The lower limit, i.e., when nLr = 1, is easily produced, ( )1lim 2 1r L Lrf Q n= = − . 
Conversely, if we divide by nLr, then add nLr, square, subtract 2

Lrn , and divide by 
2, we find that 

2 1
2 2

L
L Lr

Q Q n+ = .                         (A3) 

QL decreases with increasing nLr until the left term drops out. Distance does not 
need to be considerable to reduce the Informativity differential to 0.5. At just 
104lf, QLnLr rounds to 0.5 to nine significant figures. 

Appendix B: Measurement of S 

The MQ approach offers an alternate solution to describe a maximally entangled 
Bell state with respect to a lattice vector G . That is, we recognize as discussed 
by Shwartz and Harris that this occurs where one vector describes the polariza-
tion of the electric field in the scattering plane and the other describes the pola-
rization orthogonal to the scattering plane. Therefore, we only need to divide the 
magnitude of the pump vector coordinate components such that they are oppo-
site in sign. The x and y components then are respectively the arccosine and arc-
sine of the lattice vector such that ( ) ( )( )cos , sinpx pyn nθ θ− , for which 

arccos x

sx ix px

G
n n n

θ
 
  + − 

= ,                 (C1) 
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arcsin y

iy iy py

G
n n n

θ
 
  + + 

= ,                    (C2) 

where the pump, signal, and idler vector magnitudes n (a function of the pump 
frequency or the phase matching properties of the nonlinear optical crystal) are 
identified with subscripts p, s and i followed by an x or y representing the coor-
dinate axis. 

Placing these values in vector form and breaking out the component vectors, 
then 

( )( ) ( )( )( )cos sin,sx ix px iy iy pyn n n n n nθ θ+ − + + =G ,          (C3) 

( ) ( ) ( ) ( ) ( ) ( )( )cos cos cos sin sin sin,sx ix px iy iy pyn n n n n nθ θ θ θ θ θ+ − + + =G , (C4) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n nθ θ θ θ θ θ+ − − =G , (C5) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )cos , sin cos , sin cos , sinsx sy ix iy px pyn n n n n nθ θ θ θ θ θ+ − − =G . (C6) 

Moving the pump coordinate to the right alongside of the lattice vector, tak-
ing the angular difference of the y-component to make the sine positive, and 
matching that form in the x-component, we then obtain 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )cos , sin cos , sin cos ,2π s 2in πsx sy ix iy px pyn n n n n nθ θ θ θ θ θ+ = − − +G . (C7) 

We find that s iθ θ= , and that the pump angle is 2pθ θ= π − . Moreover, with 
the pump beam split evenly, then the momentum of the beam is divided evenly. 
Therefore, when the angles of the k vectors with respect to the atomic plane are 
equal to half the momentum of the entangled photons (i.e., S), then 

3 1
2 2
f f

f
f

l c l
S m

G t
 

= =   
 

.                      (C8) 

Thus, the respective angles at maximal entanglement θMax associated with the 
signal and idler follow Equation (C7) as described in the second row of Table 
A1. An additional solution (first row) may be resolved by subtracting each angle 
from π, (i.e., π - θp, π - θs, π - θi). 

In Shwartz and Harris’s 2011 paper, “Polarization Entangled Photons at 
X-Ray Energies” [15], they resolve a total of five instances representing two Bell 
states that generate entangled photons. Using their nomenclature, the states are 
defined such that H  is the polarization of the electric field of the X-ray in the 
scattering plane and V  is the polarization orthogonal to the scattering plane, 
which contains the incident k vector and the lattice k vector G . 

The Shwartz and Harris measures precisely match the MQ calculations (Table 
A2) confirming the predictions described by MQ to six significant figures, which 
is the extent of precision allowed by G. Moreover, the error in angular measure 
for the Shwartz and Harris results is estimated to be less than 2 micro-radians. 

Of interest are the component terms that define the scalar constant 
3 2fS l c G= : Planck length lp, speed of light c, and gravitational constant G. 

Using the 2014 CODATA [16] values for guidance, then 
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Table A1. Predicted radian measures of the k vectors of the pump, signal and idler for the 
maximally entangled state at the degenerate frequency of X-rays. 

 
θp θs θi 

π−θMax (lfc3/2G)−π (0.1208) π−(lfc3/2G) (−0.1208) π−(lfc3/2G) (−0.1208) 

θMax 2π−(lfc3/2G) (3.02079) (lfc3/2G) (3.26239) (lfc3/2G) (3.26239) 

 
Table A2. Angle setting in radians of the k vectors of the pump, signal and idler for 
maximally entangled states at the degenerate frequency (Ref. [11]). 

Bell’s State θp θs θi 

( ), , 2s i s iH V V H+  0.1208 −0.1208 −0.1208 

 
3.02079 3.26239 3.26239 

 
35

1

33

1
1.616199 10 299792458 3.26239

2 2 6.67408 1
radia s

0
nfl c

S
G −

−× ×
= = =

× ×
.      (C9) 

The role of the fundamental measures to this point is a mathematical con-
struct, a proposed interpretation of the existing argument. The measures exist 
only in their expressions until the presentation of formal values for the funda-
mental measures. Whereas CODATA estimates may be used to guide our un-
derstanding of S, up to this point, no theoretical values are assumed. Our confi-
dence in correlating S to θsi rests in the correctness of interpreting S as a mo-
mentum and an angular measure, their correlation which accounts for Planck’s 
length expression, the resulting measurement predictions, and the collaborating 
measures made by Shwartz and Harris. 

Appendix C: Discrete Measures 

In modern theory, we quantify the relationship between length and time with 
respect to the speed of light c l t= . However, mass stands alone, without a spe-
cific phenomenon correlating mass to length or time. To resolve all three of the 
fundamental measures requires a correlation. Starting with the geometric ap-
proach presented in Equation (31) QLc3/rθsi and its correlation to the gravitational 
constant G, then removing the Informativity differential ( )lim 1 2

Lrn L Lrf Q n→∞ =  
(Appendix A)—a physically significant equivalent for any macroscopic dis-
tance—it follows that 

( )
3 33 3

2

2si s

f fL L
Lr f L

i s si
L r

i

l c l cQ c Q cG r n l Q n
rθ θ θ θ

=≈ ≈= .           (D1) 

with 3
f fG c t m=  from Equation (13), then 

3 3

2
f f

f si

t c l c
m θ

≈ ,                         (D2) 

2 sif f fl m tθ≈ .                        (D3) 

We call this the fundamental expression. 
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Although a macroscopic expression for fundamental length may be resolved 
directly from Equation (31), we start with the initial geometric formulation fina-
lized in Equation (30) and our understanding of 3

f fG c t m=  [Equation (13)] 
to correlate gravity through substitution directly. This helps significantly in re-
ducing the number of considerations to this point. Breaking down the expres-
sion, and applying the macroscopic form for the Informativity differential 

( )lim 1 2
Lrn L Lrf Q n→∞ = , we resolve the fundamental length; specifically, 

33 3
f fL L L

si Lr f si Lr f si f f

c t mQ c Q c Q
r n l n l m tθ θ θ

= = ,                (D4) 

3
fL L

si Lr f si f

mQ c Q G
r n l tθ θ

= ,                     (D5) 

3
fsi L

f
L Lr si f

mr Ql G
Q c n t
θ

θ
= ,                     (D6) 

3 2
Lr f si f fL

f
L Lr si f

n l m mQl G G
Q c n t c

θ
θ

= = ,                 (D7) 

2 3

21 2f
f

si si

f

t Gl G
c l c

θ θ
= = .                   (D8) 

Then, for all macroscopic distances, the fundamental units are 
11

35
3 3

2 2 6.67408 10 3.26239 1.61620 10 m
299792458

si
f

Gl
c
θ −

−× × ×
== = × ,    (D9) 

11
44

4 4
2 2 6.67408 10 3.26239 5.39106 10 s

299792458
f si

f

l Gt
c c

θ −
−× ×

= = ×=
×

= , (D10) 

3
82 2 3.26239 2.17643 10 kg

299792458
si

f f
cm t

c G
θ −×

= = ×= = .       (D11) 

when we say macroscopic, we mean any distance greater than 2.247lf as de-
scribed in Table A1. For any distance greater than this, the geometric skew be-
cause of the Informativity differential is a value less than 0.5 of the sixth digit of 
physical significance. To resolve a form of this expression accurately with greater 
precision, the fundamental length may be written as 

3
3 3
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t tGl c
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θθ θ 
= = =  

 
.             (D12) 

The fundamental expression in “expanded” form—the term used when applying 
this effect—is written as 

 

L Lr f f si fQ n l m tθ= .                       (D13) 
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