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Abstract 
In this paper, we solve the eigen solutions to the Dirac equation with local 
parabolic potential which is approximately equal to the short distance poten-
tial generated by spinor itself. The energy spectrum is quite different from 
that with Coulomb potential. The mass spectrum of some baryons is similar 
to this one. The angular momentum-mass relation is quite similar to the 
Regge trajectories. The parabolic potential has a structure of asymptotic free-
dom near the center and confinement at a large distance. So, the results imply 
that, the local parabolic potential may be more suitable for describing the 
nuclear potential. The procedure of solving can also be used for some other 
cases of Dirac equation with complicated potential. 
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1. Introduction 

For hadrons, the relation between mass m and quantum numbers ( ),n J  is 
usually described by the Regge-Chew-Frautschi formula [1] [2], 

2
0m an bJ m= + +                   (1.1) 

where ( )0, ,a b m  are constants for the exited states of the same kind particle. In 
many cases, the coefficients satisfy 2b a b≤ ≤  [3] [4]. The Regge trajectory is an 
important tool widely used to analyze the spectroscopy of mesons and baryons. 
Various theoretical models have been constructed to explain the mass spectra of 
particles and to derive the Regge trajectories, such as non-relativistic quark models 
[5]-[13], flux tube model or similar string model [3] [14]-[22], semi-relativistic 
potential model [23] [24] [25] [26], relativistic potential model [27] [28] [29] [30] 
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[31], quantum chromodynamics (QCD) sum rule [32] [33] [34], color hyperfine 
interaction [35] [36] [37] [38], Lattice QCD model [39] [40] [41] [42] [43] and so 
on. There are also some Regge phenomenology investigations [3] [21] [44]-[48]. 
By statistical and regressive method to get the relation ( ),m f n J= . 

In many models, the total potential between quarks is given by Cornell poten-
tial with some hyperfine terms of correction, and the mass spectrum is solved in 
relative Jacobi coordinates [8] [10] [13] [30] [31] [35] [49]. In [49], by semi clas-
sical approximation and Bohr-Sommerfeld quantization, the Regge-like relation 

( )2 2E L α α +
  and ( )2 2E n α α +

  for large ( ),n L  is derived for power-law 
confining potentials V rα∝ . By the phenomenological researches, we also find 
that the Regge-Chew-Frautschi formula (1.1) is only approximately valid, and a 
little nonlinearity always exists [44] [45] [47]. The specific Regge trajectories de-
pend on concrete confining potential. However, no matter what confining po-
tential is, the analytic relation ( ),m f n J=  for the excited states always exists. 

Recently, a number of experimental data for highly exited resonances were 
reported [50]-[58]. These data provide opportunity to check the previous calcu-
lations and develop more effective models. As pointed out in [58], a better un-
derstanding of the nucleon as a bound state of quarks and gluons as well as the 
spectrum and internal structure of excited baryons remains a fundamental chal-
lenge and goal in hadronic physics. In particular, the mapping of the nucleon 
excitations provides access to strong interactions in the domain of quark con-
finement. While the peculiar phenomenon of confinement is experimentally well 
established and believed to be true, it remains analytically unproven and the 
connection to quantum chromodynamics (QCD)—the fundamental theory of 
the strong interactions—is only poorly understood. In the early years of the 20th 
century, the study of the hydrogen spectrum has established without question 
that the understanding of the structure of a bound state and of its excitation 
spectrum needs to be addressed simultaneously. The spectroscopy of excited ba-
ryon resonances and the study of their properties are thus complementary to un-
derstanding the structure of the nucleon in deep inelastic scattering experiments 
that provide access to the properties of its constituents in the ground state. 

The quark models employ multiplets of spinors and nonlinear interactive vec-
tors with gauge symmetries, which are too complicated to get exact solutions and 
an overview for the properties. In this paper we examine the following simple and 
closed Dirac equation with short range self-generating vector potential µΦ ,  

( ) ( )21 ,
2

i s c bµ µ α µ
µ µ µ α µφ α φ µ γ+= ∂ − Φ − + ∂ Φ ∂ Φ − Φ Φ

    
(1.2) 

in which γ φ γφ+= . (1.2) has plentiful spectra. By the Regge trajectories we find 
the excited states may be relevant to some of baryons. 

2. Equations and Simplification 

At first, we introduce some notations. Denote the Minkowski metric by  
( )diag 1, 1, 1, 1µνη = − − − , Pauli matrices by 
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( ) 0 1 0 1 0
, , .

1 0 0 0 1
j i

i
σ σ

 −       = =       −       



          
(2.1) 

Define 4 4×  Hermitian matrices as follows 

0 0 0 0
, , ,

0 0 0 0
I I iI

I I iI
µ σ

α γ β
σ

  −        = = =        −         





     
(2.2) 

where { }0,1,2,3µ ∈ , 0x ct=  and 0µ µα γ γ= . By variation of (1.2) we get the 
Dirac equation and dynamics of µΦ , 

( ) .i s cµ
µ µα φ µ γφ∂ − Φ =                (2.3) 

2 , .b sα µ µ µ µ µ
α α α φ α φ+∂ ∂ Φ + Φ = − = 

           (2.4) 

For the eigen states of φ , only the magnetic quantum number zm  and the 
sipn s are conserved. So the eigen solution takes the following form 

( )
2T

1 2 1 2, e , , e exp ,i i
z

mcu u iv iv m i itϕ ϕφ ϕ
 

= − − − 
          

(2.5) 

where the index “T” stands for transpose, { }0, 1, 2,zm ∈ ± ±  , and ( ), 1, 2k ku v k =  
are real functions of r and θ . However, the exact solution of (2.5) does not exist, 
and we have to solve it by effective algorithm [59] [60]. Since the numerical so-
lutions are also unhelpful to understand the global structure of the mass spec-
trum, we seek for the approximate analytic solutions in this paper. 

Different from the case of an electron, a proton has a hard core with charge 
distribution, and the radius of the distribution is about 1 × 10−15 m. The follow-
ing calculation shows the local parabolic potential is approximately equal to 

µΦ  near the center, then we have 

( ) ( )
2 2

0 2 2 1 , 0, 12 ,
2
w r c rη µ ρ
ρ

 
Φ = − − Φ = < 

 



 

        
(2.6) 

in which w is the strength factor, η  is a parameter to adjust the depth of con-

finement to fit the true confining potential. 
c

ρ
µ

=
  is the theoretical Compton 

wave length, which is used for nondimensionalization of the Dirac equation. 
In order to simplify (1.2), we make transformation [60] 

1 2 1 2, .g u u i f v v i= + = −                 (2.7) 

Substituting (2.5), (2.6) and (2.7) into (1.2) we get Lagrangian as 

( )0 ,f cµ= +                     (2.8) 

in which we defined 

( ) ( )
( ) ( )

0

2 2

2 2
2 2

2

e

1
sin 2

2 1 2 ,
2

i
r r

z

i ig f f g
r r

i m gf gf g f
r

w r g f

θ
θ θ ρ

ρ ε
θ

η κ
ρ

    ≡ ℜ − ∂ + ∂ + ∂ + ∂    
    

 − + − + + 
 

 
+ − − − + 
 



       

(2.9) 
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where ℜ  stands for taking real part, and 

( )
2 2

2
2 2 1 .

2f
w r fκ η
ρ

 
≡ + − − 
 


             

(2.10) 

In (2.9), ε  is relative mass defect defined by 

( )2 21 , ,mmc c µε µ ε
µ
−

= − =
             

(2.11) 

and ρ  is used as length unit, κ  is a constant to let 2
0

d 0f r r
∞

→∫   so that  

convergent rate of the procedure is optimized. In the case (2.6), we set  
( )1κ η= −  which is about the mean value of the potential in the effective do-

main, and then f  can be omitted for the 0th order approximation. For proton 
we have 

( ) 161 ,  2.1037 10 m.
p pc m c m c

ρ ε λ
µ

−= = − = = ×
  

       
(2.12) 

In (2.8), 0  almost keeps all invariance of relativity and has simple and 
complete eigensolutions, which can be used as the bases of Hilbert space of re-
presentation. f  is the trouble terms with small energy, which acts as pertur-
bation in the calculation. If taking 1, 1cµ ρ= = , (2.8) becomes dimensionless. 

For (2.9), the rigorous eigen solutions take the following form [60] 

( ) ( ) ( ) ( ) ( ) ( ), e .ig U r P Q i f V r P Q i θθ θ θ θ −= + = +           (2.13) 

By variation of (2.9), we get 

( )cot ,z zP m P m K Qθ θ∂ = + +              (2.14) 

( ) ( )cot 1 1 ,z zQ m Q m K Pθ θ∂ = − + + + −           (2.15) 

in which 1, 2,K = ± ±   corresponding to orbital angular momentum, ,P Q  
are associated Legendre functions. The radial functions satisfy 

( ) ( ) 2 2
2

2 2 4

1 32 2 0,
2r r

K K w r
U U U

r r
ε η

ρ ρ
 − − −

∂ + ∂ − − + =  
 



    
(2.16) 

( )( )
( )

1
,

3
rr U K U

V
r

ρ
ε η

∂ − −
=

− −               
(2.17) 

in which we defined 

( )( )1 2 2 3
2

ε η ε η= − − − −
                  

(2.18) 

( )( ) ( )( )21 1 2 2 3 1 ,
2

M Mη η η= − − + − +
          

(2.19) 

Or inversely,  

( )( )21 5 3 1 8 ,
2

ε η η ε= − − + +
                 

(2.20) 

where mM
µ

=  is dimensionless mass. The above equations can be easily solved, and 

the solutions are all elementary functions. The normalizing conditions are as follows 
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( ) ( )2 2 2 2 2
0 0

2 sin d 1, d 1.P Q U V r rθ θ
π ∞

+ π = + =∫ ∫       
(2.21) 

3. Eigen Solutions to the Equation 

For (2.16), we have the solution 

( )
2 2

1
1 2 1 2 2

2 exp ,K K J
n

n n

r rU C r C r L
r r

− −
−

   
= + −   

             
(3.1) 

1 1 3 51,2,3, , , , , ,
2 2 2 2

n J K= = − = 

           
(3.2) 

where 1
J
nL −  is associated Laguerre polynomials, n is radial quantum number, 

and J is angular momentum quantum number; 1 0C =  corresponds to 0K <  
and 2 0C =  corresponds to 0K > . The energy spectrum and radius parameter 
is given by 

( )
( )

2

1, 1 ,
21 1 8

Nw N n J
η η

= = + −
+ + + +



         

(3.3) 

2 2 .n
N Nr Mρ λ= =
                  

(3.4) 

Substituting (2.19) into (3.3) we get Regge-like relation as follows 

( )22 1 1 2 2 .
2

n J M M
w

η η+ − = − + − +
          

(3.5) 

Or inversely, 

( ) ( )
2 2

23 31 14 1 5 4 ,
36 3

M η η
−

= + + + − 
          

(3.6) 

( )32 2216 2 24 162 3 1 .Nw N w η= + − +           (3.7) 

In (3.5), we have 3 constants ( ), ,w η µ  for the same series of particles to be 
determined by empirical data. Although the form of (3.5) or (3.6) is quite dif-
ferent from (1.1), the following calculation shows that the curves of (3.5) in the 
effective domain are quite near straight lines (see Figure 1). 

Substituting (3.1) and (3.3) into (2.17), we can derive V. By calculation we get 

( ) ( ) ( )
( ) ( ) ( )

2 2
2 2

,0 2 2

1 1 8 1 4
d .

1 1 8 1 6
K nU r r

η η η

η η η

∞ + + + + + +
=

+ + + + + +
∫

 

         
(3.8) 

For all meaningful eigen solutions, we have 0.1 4< < , and then we have 
2 2

,0
d 0.8 1K nU r r

∞
=∫  . Therefore, the relative truncation error for the 0th ap-

proximation is about 10%. 

The ground state corresponds to 11,
2

n J= = , and then we have 3
4

N = .  

Considering energy degeneracy, we only need to calculate the energy spectrums 
while 1K ≥ . For the ground state of proton, we have empirical data  
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Figure 1. Regge trajectroies of (3.5). Each intersection between lines 1
2

J j= +  and curves ( )2,J J n M=  corresponds to one 

or more particles, and we have about 90 intersections in the figure. Considering degenerate states, the figure contains more 

than 1000 particles with different quantum numbers ( ), , ,zn K m s . 

 
151 10 mnr
−×  and 938.28 MeVpm = . Substituting them and 3

4
N =  into 

(2.11), (2.12), (2.18) and (3.4), we get constants ( )0, , , ,w η ρ µ ε  expressed by 

0 . If taking 0 0.17618= , we have solution 

0
16 2

0.74238, 0.11972, 0.33220,

1.4048 10 m, 1.4051 GeV.

w

c

η ε

ρ µ−

= = =

= × =            
(3.9) 

For a proton, by (3.9) we find 7nr ρ . By (2.11) and 0ε  we find the relative 
mass defect of strong interaction confinement is about 33%. The observational 
mass pm  is much less than constant mass µ . This case is quite different from 
an electron without strong interaction. 

Substituting (3.9) and ( ),n K  into (3.5), (3.6) and (3.7), we find the masses of 
many baryons are near the spectra, and (3.5) is quite similar to the Regge trajec-
tories of baryons (see Figure 1). By (3.3) and (3.4), we find the radius parameter 

nr  of the excited states even decreases a little when the quantum number N in-
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creases. The detailed calculation shows we always have ( )4 10r ρ=   for all 
particles. This means a particle with local parabolic potential or short distance 
potential αΦ  has a very hard core. This phenomenon is quite different from 
the case of Coulomb potential, where we have 2r n∝ . 

For convenience, we take J as row index and n as column index, then the mass 
spectrums of the eigen states are listed in Table 1. 

We find the masses of many baryons are near the spectra. Obviously each ex-
cited state should correspond to an observable particle. This means some ba-
ryons can be regarded as excited resonances of a proton. How to exactly identify 
the quantum numbers for each particle observed in experiments is an important 
but fallible problem. 

As the 0th order approximation with only 3 free coefficients, the result is sa-
tisfactory. To get more accurate solutions of (1.2), we can expand φ  as series of 
the eigen functions of (2.9) and then solve mass spectra of (1.2) [60]. However, 
in this case, we have only numerical results without an overview on the spectra. 

4. Effectiveness of the Parabolic Potential 

Now we check the effectiveness of the parabolic potential for nuclear potential. It 
is well known the global parabolic potential cannot be used as confining poten-
tial of Dirac equation. However, the following calculations show the local para-
bolic potential is effective to describe nuclear potential approximately. 

At first, we check all radial functions ( ), ,,K n K nU V  and their module 2 2U V+  
are almost distributed in the domain 12r < , where is also the effective area of 
the local parabolic potential. The first couple of the radial functions is given by 

2 20.05873333 0.05873333
1,1 1,10.29450687e , 0.01796750 e ,r rU V r− −= = −    (4.1) 

we find 2 1%V U  . See Figure 2 and Figure 3 as follows, where we take 1ρ =  
 
Table 1. Mass spectra of Dirac equation with local parabolic potential (MeV). 

( ),m J n  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1/2 938 1249 1535 1801 2052 2291 2520 2740 2953 3159 3359 3554 3744 3930 

1 + 1/2 1098 1395 1670 1928 2173 2407 2631 2847 3056 3260 3457 3650 3838 4022 

2 + 1/2 1249 1535 1801 2052 2291 2520 2740 2953 3159 3359 3554 3744 3930 4112 

3 + 1/2 1395 1670 1928 2173 2407 2631 2847 3056 3260 3457 3650 3838 4022 4202 

4 + 1/2 1535 1801 2052 2291 2520 2740 2953 3159 3359 3554 3744 3930 4112 4290 

5 + 1/2 1670 1928 2173 2407 2631 2847 3056 3260 3457 3650 3838 4022 4202 4378 

6 + 1/2 1801 2052 2291 2520 2740 2953 3159 3359 3554 3744 3930 4112 4290 4465 

7 + 1/2 1928 2173 2407 2631 2847 3056 3260 3457 3650 3838 4022 4202 4378 4552 

8 + 1/2 2052 2291 2520 2740 2953 3159 3359 3554 3744 3930 4112 4290 4465 4637 

9 + 1/2 2173 2407 2631 2847 3056 3260 3457 3650 3838 4022 4202 4378 4552 4722 

10 + 1/2 2291 2520 2740 2953 3159 3359 3554 3744 3930 4112 4290 4465 4637 4806 

11 + 1/2 2407 2631 2847 3056 3260 3457 3650 3838 4022 4202 4378 4552 4722 4889 
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Figure 2. Some radial wave functions of a spinor in local parabolic potential. 

 

 
Figure 3. The effective domain of local parabolic potential and modules of radial wave functions. The spinor with short distance 
potential is mainly concentrated near the center, and it does not diffuse when K or n increases. 
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as length unit. 
Secondly, for the following short-range potential Φ  with source ( )q r , 

( )
2 3

41 65 .
q rα

α ρ ρ
π

∂ ∂ Φ + Φ = − ⋅
              

(4.2) 

By Figure 4, we find the solution Φ  is almost parabolic potential 0Φ  in the 
domain 8r <  for the above source, for which the normalizing condition is 

( ) 24 d 1q r r rπ =∫ . This means in the interior of a baryon, the potential of strong 
interaction may be different from the Cornell potential or potential generated by  

point source 
e r

r

−

−  or the MIT bag model. It may be more suitably described by 

local parabolic potential. 
Thirdly, by (3.3) we find that, different from electron in Coulomb potential, in 

this case, the radius parameter nr  of the wave function even decreases a little as 
the increasing of quantum number N. So the local parabolic potential is also 
suitable for the excited states. 

5. Discussion and Conclusion 

As the 0th order approximation, the above calculation provides some important 
messages. The Dirac equation with short distance potential has quite different 
energy spectrum and eigen functions from that with Coulomb potential. Dirac equ-
ation is a magic equation with marvellous properties which should be strictly ana-
lyzed [61] [62] [63]. The nuclear potential may be more similar to local parabolic  

potential, rather than the MIT bag model or 
e r

r

−

−  or s ar
r
α

− − . Obviously,  

 

 

Figure 4. The parabolic potential versus the short range potential generated by ( )q r . 
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the spinor in short distance potential (4.2) has the asymptotic freedom near the 
center and strong confinement near 10r ρ

 (see Figure 3 and Figure 4). 
To get more accurate results, we should directly calculate the coupling system 

of (2.4) and (2.3), and expand the radial functions ( ),U V  upon the bases 

, ,,K n K nU V  of the representation space [60]. However, in this case, we have not 
explicit analytic expression (3.3) for mass spectra. 

As the alternative models for fundamental particles, some simple and closed 
systems such as the following one are worth to be carefully studied, 

( ) ( )
( )2

,

1 1 .
2 2

i eA s c F

A A b

µ
µ µ µ

µ α µ α µ
µ α µ α µ

φ α φ µ γ γ β+= ∂ − − Φ − +

− ∂ ∂ + ∂ Φ ∂ Φ − Φ Φ



 

        

(5.1) 

Some deep secrets may be concealed under the nonlinear potential F and short 
distance potentials, because the spinor equation is a magic equation. 

If we denote 1 0 1φ ψ ψ ψ−= + +


, where kψ  are basis eigenfunctions in the 
Hilbert space of representation, and 0ψ  is the main component. Substituting 
them into (5.1) and using the orthogonality of kψ , we get 

( ) ( )( )
( ) ( )

1

1

2

,

1 1 , , .
2 2

k k k k k
k

k

i eA s c F

A A b G A

µ
µ µ µ

µ α µ α µ α α
µ α µ α µ

ψ α ψ µ γ γ β

ψ

+

=−

= ∂ − − Φ − +

− ∂ ∂ + ∂ Φ ∂ Φ − Φ Φ + Φ

∑


 




  

(5.2) 

In (5.2), ( )1 0 1, ,ψ ψ ψ−  may be easily interpreted as quarks with fraction electric 
charge and confinement, and the cross terms G may be interpreted as gauge 
fields. For any complicated mathematical models, a little vigilance should be re-
mained, because Nature only uses simple but best mathematics, and the compli-
cated equations easily lead to inconsistence and singularity. 

On the other hand, the regression analysis for empirical data to derive mass 
function with single integer variable ( ) ( ), 1, 2,3,m m N N= =   for similar  

particles is much important, because like Hydrogen spectra 2 21
2NE Nωα −=  ,  

such analytic function certainly exists and is usually very simple, and then to de-
termine the further relation between quantum numbers 0N an bJ m= + +  is 
relatively easy. This procedure needs not to concern the physical meanings of N 
at first and gets rid of the fallible and misleading task to identify the quantum 
numbers n and J for each particle at the beginning. If we can arrange the masses 
of similar particles from small to large at each horizontal integer coordinates N 
to get smooth curves, the regressive function ( )m m N=  for all smooth curves 
can be derived. From the final mass function ( )0m m an bJ m= + +  of high pre-
cision, we can determine the specific potentials in Dirac equation conversely. 
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