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Abstract 
As a hazard, flood is an extremely important indicator of how a city is resi-
lient to waterborne diseases and epidemics. Over many decades, flood as a 
hazard has been a major factor in inducing displacement of marginalized sec-
tion of the people. Austin city within Central Texas has been identified as one 
of the major hotspots for flooding in recent decades. Thus, the objectives of 
the paper are two folded: 1) Empirically, we analyzed and mapped out the 
susceptibility levels from the factors of physical environments to assess the 
risk of urban flooding (rainfall data, surface water bodies and topography); 
in Austin, Texas and 2) Methodologically, we created a re-useable ArcGIS 
scripting tool that can be used by researchers to automate the process of flood 
risk modelling with certain criteria. The paper showcases a novel time sensi-
tive building of a tool which will enable better visibility of flood within the 
city of Austin. 
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1. Introduction 

Flooding is one of the most widespread hazards around the globe. Atmospheric 
anomalies are responsible for the creation of flooding [1]. Central Texas has 
witnessed one of the highest recorded floods in any other region in the U.S. Be-
tween 2011 and 2020, statewide, central Texas experienced three 100-year floods 
[2]. The City of Austin lies in the heart of Central Texas and is prone to inland 
floods characterized by excessive precipitation and high-water runoff volumes 
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within the watershed of river or stream. The area’s rocky, clay-rich soil and steep 
terrain make it uniquely vulnerable to major flooding. In addition, the geo-
graphical location places the city at a meteorological disadvantage from flooding 
due to the major storms from west (from the Pacific Ocean) and southeast (from 
the Gulf of Mexico), and strong frontal boundaries coming in from the Great 
Plains. At times, such as with the “perfect storm” of 1998—known as, the Great 
Central Texas flood—more than 20 inches of rain fell too fast, for too long, 
leading to significant overburdening of streams and rivers [3]. Furthermore, new 
meteorological data, known as Atlas 14 [2] (NCEI/NOAA, n.d.), have now re-
vealed that parts of Austin will experience, on average, three inches more rain in 
major storm events than the National Oceanic and Atmospheric Administration 
had calculated with old rainfall data back in 1961 [4].  

The metropolitan area has experienced at least six major flood events through-
out the twentieth century, including the 1900 Austin Dam Break, the 1935 Upper 
Llano River flood event, the 1981 Memorial Day Flood, the 2013 Halloween 
Floods on Onion Creek, the Memorial Weekend Flood of 2015, and the Hill 
Country Flood of 2018. Therefore, with the construction of concrete structure 
the area becomes more urbanized, including adverse repercussion on biodiver-
sity, property damage, and increasing loss of homes to flooding for people lying 
at the bottom of the economy [5]. 

Austin (Figure 1) is situated within the Hill Country of Central Texas. The 
city has geographical coordinate(s) extending from 30.2672 North to 97.7431 
West. The city is covered majorly by the county of Travis, followed by some of 
the sub-urban regions by Hays and Williamson counties. Additionally, Austin is 
represented as the capital city of Texas State. According to the official website of  
 

 
Figure 1. Map of the study area. 
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Austin, Texas, the city has been experiencing population explosion over the last 
five years. The city remains the source of numerous lakes and waterways such as 
Lady Bird Lake, Lake Travis on the Colorado River, Barton Springs and Lake 
Walter E. Long, etc.  

Presently, with the advent of population growth, and changes in climatic con-
ditions, the city is now experiencing urban flooding at recurrent intervals. 
Therefore, it is significant to delve deeper into two sides of the coin. There exists 
a lot of research flood vulnerability/risk assessment as well as literature on the 
development of re-useable scripts for modeling purposes. However, there exists 
no literature that can specifically cater to flood risk modeling. One of the major 
ideas is to perceive the factors impacting the possibilities of flooding in a boom-
ing city like Austin and one of the other aspects will be to perceive the aftermath 
of the disaster. This will help in the creation of geospatial analytical tool using 
Python programming that can model flood susceptibility levels of a location 
based on a set of weighted criteria. This will serve as a base for the automation of 
future flood modelling research and projects without having users go through 
the manual struggles of carrying out each step to generate a susceptibility map. 
Also, depending on the criteria of interest, GIS (Geographic Information Sys-
tem) developers can build upon this model to factor in more variables pertinent 
to their risk assessment. 

The aim of this paper is to create a re-useable scripting tool that can be ex-
ecuted within ArcGIS Pro for flood risk modelling, that automates the analysis 
of and mapping out of the susceptibility levels to flood risk from a physical en-
vironment perspective within Austin, Texas. Several studies have implemented 
flood risk mapping based on a multi-criteria approach to determine regions 
most susceptible to flooding [6] [7] [8]. However, we do see the need to generate 
a means of automating the modelling process with little to no alterations of cri-
terion. With this, components of the physical environment that are sensitive to 
or influence flood levels are merged to produce an overall physical vulnerability 
assessment tool. This could prove very useful in the automation of analytical 
procedures when dealing with flood risk modelling as well as aiding flood miti-
gation efforts and serving as a guide towards zoning and development in not just 
this study area, but other cities as well. As such, the following are the major ob-
jectives of this study:  

1) Map out the susceptibility level from the factors of physical environments 
to assess the risk of urban flooding: rainfall data, surface water bodies and topo-
graphy; in Austin, Texas. 

2) Create an ArcGIS tool that can automate the process of flood risk model-
ling with certain criteria. 

2. Literature Review 

Marginalized populations disproportionably inhabited the hazard-prone areas; 
they are more susceptible to the impact and have extremely low coping mechan-
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isms with socio-natural disasters [9]. The adverse impacts of flooding [are] ex-
perienced disproportionately by the poor [10]. Their research simulates the in-
teractions of flood events with flood response models to examine flood impact in 
socially heterogeneous communities. With the advent of increasing climate cri-
sis: urban flooding concerns the cities of the West, will need to focus on adapt-
ing to sophisticated methods to manage land use, infrastructure, and service 
provision” [11]. Lastly, Natural hazards have relatively more impact on people 
who are exposed to social inequality [12].  

Flood risk evaluation is approached using catastrophe theory [13], however, 
they lay a conceptual framework for considering flood risk that featured four 
categories used in the current research. Disaster Drivers include the weather 
patterns of a region, most importantly the average precipitation. Disaster Envi-
ronment refers to the geography of a region, examining slope and other physical 
features. Disaster Bearers consider the socio-economic factors of an urban envi-
ronment, and Disaster Bearing Capacity examines the environment’s ability to 
hold water. A Weighted Linear Combination technique to develop a GIS-aided 
urban flood hazard zoning map within Argentina by focusing on the analysis of 
the variables that control routing at times when high-peak flows surpass drai-
nage system capacity [14]. The weight values were assigned to each variable 
based on local characteristics of each layer as well as engineering geology devel-
opment. 

Another group of researchers adopted GIS and remote sensing techniques to 
arrive at a flood vulnerability map for the city of Ibadan, Nigeria by taking into 
consideration 7 contributing variables [15]. Each variable was introduced into 
the model one after the other to monitor the effects they had on the overall 
analysis. A comparative approach was taken between a Weighted Linear Com-
bination method and an Analytical Hierarchy Process to demonstrate the im-
portance of decision makers in the weight determination process and selection 
of appropriate techniques in decision making [16]. A more complex approach 
was taken with the combination of 3 multicriteria decision rules; Weighted Li-
near Combination, Analytical Hierarchy Process and Ordered Weighted Aver-
aging; to produce an overall flood risk map to deal with uncertainties in criteria 
values and how they influence the overall assessment [17]. 

A customized GIS tool within ArcGIS software using Python scripting, that 
could construct the minimum spanning tree of a connected, undirected, and 
weighted road network by considering all important network junction points as 
well as distance and time as the cost factors [18]. A GIS tool was created for infi-
nite slope stability analysis using a PISA-m algorithm based on the infinite slope 
model and the Fist Order Second Moment (FOSM) method, to assess the poten-
tial of seismic triggers in slope instability [19]. Another GIS tool was generated 
with Python scripting to support scale-dependent analysis of spatial heterogene-
ity with a focus on landscape ecology with results showing that valuable infor-
mation can be obtained from the spatial distribution of gaps in the input data at 
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different scales [20]. 

3. Data 

Based on existing literature centered around flood risk assessment 6 variables are 
considered for the assessment of flood risk using the GIS tools [21] [22] [23]. All 
the data for this analysis was obtained from secondary sources. For understand-
ing water data for the city of Austin, the National Oceanic and Atmospheric 
Administration website has been selected. Nineteen stations were identified across 
the city of Austin; these Gage Stations encounter precipitation/rainfall data in 
the region.  

For the purposes of secondary data collection, monthly rainfall/precipitation 
data (19 stations) was obtained for the city of Austin from January 2021 to De-
cember 2021 from the National Oceanic and Atmospheric Administration (NOAA). 
Mean precipitation for the year is averaged across all 12 months for each station. 
A Digital Elevation Model (DEM) of Austin was taken from the United States 
Geological Survey (USGS) in a 10 m-by-10 m TIFF 32-bit format. This serves as 
a source to obtain not just the elevation of the study area, but also the slope, fill, 
and flow accumulation. Updated hydrology polygons are obtained from the City 
of Austin’s Open Data portal representative for all the lakes and rivers in the city 
as well as other inland water bodies. Land Cover/Land Use data is also derived 
from the city of Austin’s Open data portal representative of land use inventory 
used for regional land use modelling and prediction as well as growth manage-
ment and watershed modelling. 

4. Methodology 

Upon extensive review of research done by [21] [22] [23], the 6 factors used for 
analysis in this study are precipitation, slope, flow accumulation, elevation, Euc-
lidean distance, land use/land cover. All analysis will be done with ArcPy using a 
set of tools from the ArcGIS Pro Toolbox (Figure 2). Using the elevation raster, 
four important variables will be needed to determine risk levels from a hydrolo-
gy and elevation perspective. The steepness of each cell of the elevation raster is 
calculated to obtain the slope of the study area. This works with the notion that 
the steeper the slope, the lower the flood risk level of that area whereas a gentle 
slope is indicative of a higher risk of flood. Sinks within the DEM are filled to 
ensure a proper outline of the streams and basins before the flow direction down-
slope and flow accumulation can be taken into consideration (in the event of 
rainfall). Flow accumulation is simply the accumulated flow of the weight of all 
cells flowing downslope in each cell in the output raster. Cells with high accu-
mulation values have concentrated flows and are more likely to be susceptible to 
flooding. An inverse weighted distance (IDW) technique is used to interpolate 
the rainfall data, thus producing a raster surface representative of rainfall levels. 
Higher rainfall levels are representative of higher flood risk levels and vice versa. 
It is also important to take into consideration the distance from water bodies in  
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Figure 2. Methodological framework. 

 
the study area to every other point within the defined processing extent. For this 
study, the straight-line distance (Euclidean distance) is calculated for each point 
away from an existing water body. The closer a point on the ground is to an in-
land water source or lake, the higher the flood risk potential and vice versa. Data 
from the land use/land cover will be separated and classified based developed/ 
impervious cover and undeveloped/pervious cover, the notion behind this being 
that places with impervious cover tend to fall at a higher risk to flooding than 
places of pervious cover. 

A weighted linear combination method will then be used to assign weights as 
percentages to all the variables used in this analysis with the total weight sum-
ming up to 100. 

Weighted Linear Combination 

A weighted linear combination works based on the concept of a weighted aver-
age of continuous data that are standardized on a common numeric range and 
then combined by means of a weighted average. Weights are assigned to each 
criterion by decision makers based on their relative importance to each attribute 
considered for the analysis. These attribute criteria are then combined by apply-
ing the respective weights and are summed up to produce one composite overall 
suitability/susceptibility map as represented in Equation (1) [8],  

i iS ω χ= ∑                            (1) 

where S is the suitability, wj is the weight assigned to factor i, and xi serves as the 
criterion score of factor i. 

This technique can be implemented on both vector data and raster data. For 
this analysis, four experts in flood hazard modelling were consulted in the weight 
derivation process for a better understanding of the influence of each factor to 
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flood risk exposure. To do this, the weights were evaluated and generated using 
two techniques according to [24]: 
● Ranking method: Every criterion is ranked based on the experts’ preferences. 

This is the simplest method for assessing the importance of weights. 
● Rating method: Weights are estimated based on a predetermined scale. 

Using ArcPy, the methodology for this project will be used to create a separate 
new tool within the ArcGIS Pro toolbox to enable its use by other researchers. 
Each variable will be reclassified into 3 classes based on a Natural breaks (Jenks) 
classification scheme) and also on a criteria value range with a factor rating as-
signed (Table 1). For the purpose of this study, five experts in the field of flood 
risk assessment were consulted individually, with the aim of having them rank/ 
weight each variable based on the perceived level of importance. Results from 
each expert were collated and averaged out to produce the final weighting sys-
tem that guides the rest of this study. 

5. Results 
5.1. Tool Interface and Design 

The underlying principle of this work, to decipher flood susceptibility, is that  
 
Table 1. Weight linear combination classification criteria. 

Weights Rank Variables 
Range (Natural  

Breaks Classification) 
FactorRating/ 

Reclassification Value 

0.47 1 Rainfall 

0.075 - 0.099 Low Risk (3) 

0.1 - 0.111 Moderate Risk (2) 

0.112 - 0.135 High Risk (1) 

0.15 2 
Flow  

Accumulation 

0.001 - 175,361.941 Low Risk (3) 

175,361.942 - 631,302.988 Moderate Risk (2) 

631,302.989 - 1,277,637 High Risk (1) 

0.11 4 
Euclidean 
Distance 

0.001 - 0.005 High Risk (1) 

0.006 - 0.012 Moderate Risk (2) 

0.013 - 0.035 Low Risk (3) 

0.05 6 Elevation 

116.232 - 187.537 High Risk (1) 

187.538 - 244.93 Moderate Risk (2) 

244.931 - 337.976 Low Risk (3) 

0.10 5 Slope 

0.001 - 4.276 High Risk (1) 

4.277 - 12.59 Moderate Risk (2) 

12.591 - 60.574 Low Risk (3) 

0.12 3 Land Use 
0-Pervious cover Low Risk (2) 

1-Impervious cover High Risk (1) 

1     
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several geographic factors work in unison to create varying levels of flood risk in 
a region. All these factors do not contribute to flooding in a uniform way. Ra-
ther, some factors have more weightage/relative strength towards causing floods 
vs others. The tool attempts to generate relevant data with regard to each identi-
fied geographic factor. In order to generate such data, the tool takes user input of 
the location of several files (.tif, .shp, .csv) which describe the region under in-
vestigation (Figure 3) and feeds them into the tool based on the data prompts of 
the user interface (Figure 4). 

With the tool interface in ArcGIS, users provide the location of shapefiles for 
1) boundary under observation, 2) water bodies in that area 3) the land use and 
land cover of the area 4) the raster describing the DEM of the region 5) a .csv 
describing the precipitation of the region (Figure 5). Once the factors are quan-
tified for the region, the tool then reclassifies every factor into a uniform scale 
(Figure 6 and Figure 7). 

Finally, the tool superimposes the flood risk levels into a unified overlay based 
on user defined weightage assigned to each factor. The final outcome is an over-
laid map (.img file) of the project area, showing the risk of flood in each region.  

 

 
Figure 3. Python code organization. 

Environment and 
Code Setup

•Set up Python and GIS environment.
•Get user input - location of input raster/SHP files, output overlay name, etc.
•Define local variables.

Primary processing 
and intermediate 
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•Precipitation (IDW tool).
•Water flow direction/accumulation - Fill tool, flow direction tool, flow 
accumulation tool.
•Area slope - Slope tool (planar method).
•Land use/Lan cover - Clip tool.

Reclassification of 
generated factors

•Reclassify each generated factor to a uniform scale - Reclassify tool: 1 - low risk; 
2 - moderate risk; 3 - high risk.

Final Overlay 
generation and 

save

•Use weighted overlay tool to assign user defined weights to each factor to 
create final overlay.
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Figure 4. User interface with weighted overlay tool in ArcGIS. 

 

 
Figure 5. Methodological variables/criteria. 
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Figure 6. Reclassified criteria values. 
 

The cumulative risk level of the region is computed using the Weighted Overlay 
tool in ArcGIS, which provides the weighted sum of the risk levels contributed 
by each individual factor (Figure 7). The final product denotes the highest risk 
of flooding in the northern region of Austin, with small, isolated regions of rela-
tively low risk trending toward the southwest. 

5.2. Analytical Results and Maps 

Figure 4 is the user interface of the newly created tool within ArcGIS Pro. The 
parameters marked with an asterisk are the necessary variables as well as weighted 
values that are plugged in to generate the final risk map (Figure 7), show the 
relative susceptibility of parts of Austin. A greater portion of the high-risk areas 
falls within North-west Austin with sparing patches in the South-west. Down-
town Austin all the way to the south fall within the medium risk parts and a 
small part of South-east Austin lies in a low-risk area. It is however important to 
note that results may vary with the difference in weighted values. The experts for 
these types of studies could have certain factors of particular interest to them that 
could influence their weighting decisions. Some could be focused on emergency  
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Figure 7. Final combined map for overall susceptibility. 
 
management and hazard mitigation; others could be focused on resource alloca-
tion and urban development. These factors influence the risk trends that we will 
see in the overall susceptibility map. This tool can be used in other flood model-
ling studies and projects to map out susceptibility levels for different interven-
tion schemes. 

6. Conclusion 

Flood hazards have proven over time to be one of the deadliest natural pheno-
mena with an abundance of literature from researchers trying to establish and 
implement susceptibility models that can highlight the high-risk areas in an at-
tempt to aid mitigation efforts as well as urban planning, carry out environmen-
tal justice studies, to mention but a few. The cumbersome task of having to go 
through the flood modeling process step by step can be automated in a way that 
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all the necessary/selected variables can serve as inputs into a single tool, that 
enables the users to plug in weighted values for each criterion based on their lev-
el of importance while reducing computational time. This study attempted to 
create a Python tool that can be implemented in a geospatial environment to 
model flood risk levels using Austin, Texas as a case study. Existing literature has 
highlighted elevation, slope, flow accumulation, rainfall/precipitation, land use/ 
land cover and distance from water bodies as major factors that influence flood 
levels, however they vary based on the environment and scope of the study. As 
such, developers can advance this tool in more complex ways to suit their re-
search needs. With this tool, analysis with a weighted linear combination (WLC), 
Analytical Hierarchy Process (AHP) and even computational programming can 
be carried out once experts have been consulted on a pairwise comparison and 
the determination of criteria weights, and the maximum and minimum values 
per variable are known.  

This study is however not without limitations with the most prominent being 
the classification scheme. Ideally users should be able to set the determined 
ranges for each variable that fit specific needs or requirements. However, for this 
study, a natural breaks (Jenks) classification scheme was used to segment the 
different variables but the range of values for this scheme was gotten manually 
and hard coded into the tool, thus forcing users to hard code their ranges within 
the script. Future studies in this regard will be centered on adopting the array of 
classification schemes from ArcGIS Pro into python to make this process seam-
less.  
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Appendix 

Table A1. Rainfall and precipitation data source: national oceanic and atmospheric administration (NOAA); accessed: 22nd 
March 2022. 

STATION NAME LATITUDE LONGITUDE ELEVATION DATE PRCP(INCH)S 

US1TXTV0044 
AUSTIN 1.0 N 45TH  
AND SHCRK, TX US 

30.320713 −97.750208 196.9 12/31/2021 0.116275072 

US1TXTV0293 AUSTIN 1.0 NNE, TX US 30.318536 −97.743766 196 12/31/2021 0.106740331 

US1TXTV0111 AUSTIN 10.8 WSW, TX US 30.195271 −97.90217 277.1 12/31/2021 0.134660767 

US1TXTV0332 AUSTIN 2.1 WNW, TX US 30.316692 −97.782559 176.8 05-02-2021 0.102 

US1TXTV0334 AUSTIN 2.8 E, TX US 30.310035 −97.7043067 189.3 12/31/2021 0.073644315 

US1TXTV0087 AUSTIN 3.9 NNE, TX US 30.3574 −97.72355 229.2 12/31/2021 0.115766871 

USW00023907 AUSTIN 33 NW, TX US 30.6222 −98.0846 414.8 12/31/2021 0.09260274 

US1TXTV0122 AUSTIN 5.6 WSW, TX US 30.280817 −97.839183 240.8 12/31/2021 0.125328185 

US1TXTV0164 AUSTIN 4.1 SW, TX US 30.2277973 −97.793987 205.4 12/31/2021 0.105666667 

US1TXTV0117 AUSTIN 5.9 NW, TX US 30.372069 −97.81338 217.6 12/31/2021 0.116920821 

US1TXTV0333 AUSTIN 6.6 SSW, TX US 30.21334 −97.77586 189 12/31/2021 0.109378531 

US1TXTV0318 AUSTIN 7.0 N, TX US 30.404979 −97.770507 258.5 12/31/2021 0.116704871 

US1TXTV0113 AUSTIN 7.3 SW, TX US 30.207183 −97.843988 229.2 12/31/2021 0.097270195 

US1TXTV0292 AUSTIN 7.6 W, TX US 30.295181 −97.877516 239.9 12/31/2021 0.091263158 

US1TXTV0320 AUSTIN 8.2 N, TX US 30.424167 −97.763333 282.9 12/31/2021 0.131732026 

US1TXTV0228 AUSTIN 9.8 WSW, TX US 30.24137878 −97.89620209 313 12/31/2021 0.080864553 

USW00013904 
AUSTIN BERGSTROM 

INTERNATIONAL AIRPORT, TX US 
30.18311 −97.67989 146.5 12/31/2021 0.110739726 

USW00013958 AUSTIN CAMP MABRY, TX US 30.3208 −97.7604 204.2 12/31/2021 0.103369863 

USC00410433 AUSTIN GREAT HILLS, TX US 30.4144 −97.7664 268.2 12/31/2021 0.116821918 
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