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Abstract

Modeling the spatial distribution of soil heavy metals is important in deter-
mining the safety of contaminated soils for agricultural use. This study uti-
lized 60 topsoil samples (0 - 30 cm), multispectral images (Sentinel-2), spec-
tral indices, and ancillary data to model the spatial distribution of heavy met-
als in the soils along the Nairobi River. The model was generated using the
Random Forest package in R. Using R? to assess the prediction accuracy, the
Random Forest model generated satisfactory results for all the elements. It
also ranked the variables in order of their importance in the overall predic-
tion. Spectral indices were the most important variables within the rankings.
From the predicted topsoil maps, there were high concentrations of Cad-
mium on the easterly end of the river. Cadmium is an impurity in detergents,
and this section is in close proximity to the Nairobi water sewerage plant,
which could be a direct source of Cadmium. Some farms had Zinc levels
which were above the World Health Organization recommended limit. The
Random Forest model performed satisfactorily. However, the predictions can
be improved further if the spatial resolutions of the various variables are in-
creased and through the addition of more predictor variables.
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1. Introduction

Efficient waste management is essential for improving the quality of living and
sustainability of a country. However, this remains a challenge to developing

countries as it’s often expensive to execute. Managing an efficient waste man-
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agement system requires efficient integrated systems that are sustainable and so-
cially supported [1] [2].

In Kenya, waste disposal poses a great challenge, especially to the urban cen-
ters, including the country’s capital city Nairobi, the coastal city of Mombasa,
and Kisumu. Poor waste disposal in these metropolitan areas has been attributed
to urbanization, rapid population growth due to rural-urban migration, sprawl-
ing of slum areas, lack of proper dumpsite areas, and a long-term lapse in the
enforcement of urban planning and environmental laws [3]. Nairobi records the
highest tonnage of garbage generated among these cities, approximately 2977
tons daily, of which 774 t/day (26%) remains uncollected [4]. Some of the waste
generated are significant sources of heavy metal contamination to the environ-
ment, particularly industrial and electronic wastes (17,350 tons annually) [1].

Heavy metals like Manganese (Mn), Zinc (Zn), Copper (Cu), and Iron (Fe)
are essential micronutrients for the growth and development of plants and the
human body. While other elements like Cadmium (Cd), Lead (Pb), and Chro-
mium (Cr) have no known benefits to both human and plant physiological
processes. These toxic metals have been linked to several health problems in
humans, such as hallucinations, diarrhea with blood, abdominal pain, dermati-
tis, liver and kidney failure, lung disease, hepatic damage, mutagenic, teratogen-
ic, and carcinogenic effects [5].

Studies have shown the importance of remote sensing in detecting heavy met-
al stress [6] [7]. Heavy metals have adverse effects on plants. They inhibit physi-
ological and metabolic processes like photosynthesis by reducing the canopy
chlorophyll content, thus affecting growth and productivity [8]. Therefore,
chlorophyll content acts as an important bio-indicator of a plants’ health status
[9] [10]. Changes in chlorophyll content can alter the spectral reflectance of both
the near-infrared and visible portions of the electromagnetic spectrum. There-
fore, the red-edge region is closely associated with chlorophyll content in plants
[11] [12]. Additionally, some studies have shown that it can be an important in-
dicator of heavy metal stress levels in plants [13] [14]. This can be exploited to-
gether with other variables to model heavy metal contamination in soils.

Machine learning approaches like cubist, Principle Component Analysis, and
Support Vector machine have been used to map heavy metal contamination in
soil, and they have performed reasonably well [15] [16] [17]. However, re-
searchers are always looking for machine learning algorithms, additional va-
riables, and sensors that can provide higher prediction accuracies [15] [18].

The random forest classifier is a combination of multiple decision trees, where
each tree is built from a random vector independently sampled from the input
vector, and each decision tree casts a vote to find out the most popular class to
assign the input vector [19]. In recent years it has been used for many different
applications including, image classification [20] [21] [22], vegetation mapping
[23] [24], however very few studies have been done focusing on the use of Ran-

dom forest for the spectral analysis of soil, and specifically on heavy metals in
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soil [25] [26] [27] [28]. Nonetheless, the studies that focused on heavy metals did
not consider variables at a higher spatial resolution and additional dependent
variables such as HMSSI, SAVI, and WDVL.

In Kenya, the rivers in Nairobi County are too polluted with heavy metals for
human use [29]. Incidentally, recent google earth imagery shows the establish-
ment of peri-urban farms on the banks of the polluted river. And to our know-
ledge, there is no information in existence regarding the spatial distribution of
soil heavy metals in the banks along the Nairobi River. Therefore, it is para-
mount to establish the pollution levels of heavy metals in the soils used to grow
these crops.

This study’s novelty is to utilize the red-edge and optical bands from mul-
ti-temporal Sentinel 2 satellite imageries, with a temporal resolution of 10 days,
Random Forest, and ancillary data to model the distribution of heavy metals in
the soils used to cultivate the peri-urban farms. Therefore, this research aims to
map the distribution of toxic heavy metals (Cd, Pb, and Zn) in soils irrigated
using water from the polluted Nairobi River. This is achievable by first conduct-
ing a random soil sampling and laboratory analysis for heavy metal contamina-
tion along the Nairobi River riparian, followed by determining the performance
of the environmental parameters and spectral indices in the predictions. Lastly,
modeling and validating the distribution of heavy metal contamination in the

soils along the river.

2. Materials and Methods
2.1. Study Area

The study area shown in Figure 1 is located at the confluence of the Nairobi and
Thiririka rivers (1°11'57.36"S - 37°07'09.23"E). It shares a border between Ruiru
sub-county in Kiambu County and Kasarani sub-county in Nairobi County. It
covers a total area of approximately 17 km?

The climate is described as warm and temperate. It lies at an altitude of 1544
m above sea level and receives annual average precipitation of 752 mm.

According to the 2019 Census, Kasarani sub-county had a population of
780,656, and Ruiru sub-county had a population of 490,120 [30]. Figure 2 shows
the decadal increase in population around our study area.

The main socio-economic activity in the area is farming, and over the past two
decades, there has been a growth of peri-urban agriculture along the river chan-
nel. Therefore, we chose an area along the river channel with a continuous and a

high concentration of peri-urban farms as our study area.

2.2. Data and Methodology

Figure 3 gives a graphical illustration of the methodology used in this study.

2.2.1. Soil Sampling and Laboratory Analysis

60 soil samples were collected from 30 cm deep holes (A horizon) along the
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Figure 1. Study area.
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Figure 2. Study area population increase against time.
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Nairobi River riparian at Ruai, per the European Soil sampling guidelines for
pollution studies [31]. Sampling locations covered all the affected peri-urban
farms within our study area. The collection points’ geographic coordinates were
recorded using a 5 m accuracy hand-held Garmin GPS, as shown in Figure 4.

The samples were collected using an auger and taken to the Jomo Kenyatta
University of Agriculture and Technology for analysis. They were air-dried for
three days under room temperature. A 2 mm polyethylene sieve was used to
sieve the soil. They were later analyzed for the concentrations of Lead, Zinc, and
Cadmium.

0.5 g of each sample was added into a pre-cleaned Pyrex test-tube. 8ml of
concentrated hydrochloric acid and 3 ml of concentrated perchloric acid were
added. The mixture was heated in an aluminum block at 200°C for a period of 3
hrs until it was dry. After the test-tubes cooled down, 5% HNO3 was added and
then heated at 70°C for 1 hr. with occasional mixing.

After cooling down, the mixture was decanted into a polyethylene tube and
centrifuged at 3500 rpm for 10 min. All of the elements’ concentrations were de-

termined using an inductively-coupled plasma-atomic emission spectrometry.
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Figure 4. Sampling point locations.

2.2.2. Sentinel 2
Multi-temporal sentinel 2A (Level 1C) imagery from January 2019 to December
2019, with a spatial resolution of 10 m and 20 m, was acquired from the Euro-

pean Space Agency website (ESA https://earthexplorer.usgs.gov/).

All the products were radiometrically and geometrically corrected using the
sent2cor tool in SNAP and projected to the WGS 1984/UTM zone 37°S map
projection.

In R version 3.6.1, the images were used to extract predictor variables (spectral
indices, Land-use land cover map, and spectral bands) needed in the Random

Forest model. Table 1 describes the covariate obtained from Sentinel 2.

2.2.3. ALOS PALSAR Pre-Processing
Radiometric calibration is the first important step for Alos Palsar pre-processing.
It converts the signal number values to backscatter in sigma naught. Using the
Lee filtering method, Speckle filtering was done to reduce the salt and pepper
noise caused by speckle noise.

The speckle filtering was followed by terrain correction. Finally, geocoding of

the image was done using ground control points obtained from 1:50,000 topo-
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graphic maps from the Ministry of Lands and Physical Planning. This was to
ensure that the image was properly georeferenced.

2.2.4. Environmental Parameters

Environmental parameters have proven useful as ancillary data in improving the
accuracy of predicting the distribution of pollutants and other soil attributes [15]
[32] [33]. In this study, we utilized selected environmental parameters (Anthro-
pogenic parameters like distance to environmental hotspots, geomorphology
data like slope, and a land-use land cover map) to predict the distribution of
heavy metal contamination in the soils along Nairobi River (Table 2).

The choice of these parameters was informed by our field observations and
their use in other predictive models performed in almost similar environmental
conditions.

1) Digital Elevation Model

An ALOS PALSAR Digital Elevation Model (D.E.M.) with a spatial resolu-
tion of 12.5 m was acquired from the Japanese Space Agency website

(https://www.eorc.jaxa.jp/ALOS/en/about/palsar.htm). The tiles were merged

using the Mosaic tool in ArcMap version 10.6. A map of the variations in eleva-
tion is shown in Figure 5. The DEM was used later used to generate the slope
variable used to predict the model.

2) Distance to environmental hotspots

The distance to the closest environmental hotspots (Ze., Industries, roads,
mines, dumpsites, and water treatment plants) was generated using the Eucli-
dean distance tool and Extract multi values to points tool in ArcMap 10.6. A
map showing the distance to hotspots is shown in Figure 6.

3) Land cover map

Land use and a land cover map (Figure 7) was generated from a 10 m spatial
resolution Sentinel 2 A image, with a <5% cloud cover. The image classification

was done using the Random Forest package in R version 3.6.1 software.

Table 1. Sentinel 2 data.

Covariate Representative digital data Source of data

NDVTI: Bands (8 — 4)/(8 + 4)

| Indi
Spectral Indices HMSSL: Bands [(7/5) - 1]/[(4 - 2)/6]

Sentinel 2 imagery

Table 2. Environmental parameters used to predict the distribution of soil heavy metals
along the Nairobi River.

Environmental covariates Representative digital data Source of data
Digital Elevation Model (m) Slope 12.5 m ALOS PALSAR
Distance to environmental Hotspots (Sewer treatment plants,
. R Google earth pro
hotspots (m) dumpsites, Industries, and roads)
Land-use land-cover map Bands 4, 3 and 2 10 m Sentinel 2
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2.3. Spectral Indices and Remote Sensing Images

The health of vegetation can provide important ancillary information when
modeling heavy metals’ spatial distribution in soil. Multi-temporal Sentinel 2
images of Nairobi County were acquired from the USGS Earth Explorer for a
period ranging from January 2019 to December 2019. This study used a higher

spatial resolution optical sensor, Sentinel 2 (10 m) to improve the prediction ac-

curacy.
NDVI = m (1)
NIR+R
HMSS| = Clred-edge @)
PSRI
PSRI = R0 —Rsoo (3)
750
Clred-edge = {%J -1 (4)
705
B8-B4
SAVI =ux(l+ L) (5)
B8+B4+L
WDVI = B8x B4 (6)
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where L =1.

A study by [15] has shown that the health of vegetation can be an important
indicator of heavy metal contamination in soil, and it could also improve the
accuracy of a soil heavy metal prediction model. The indices used in this study
were derived from Sentinel-2, and they include Normalized Difference Vegeta-
tion Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Weighted Differ-
ence Vegetation Index (WDVI) [34] and the novel Heavy metal stress-sensitive
index (HMSSI) by [35]. HMSSI was developed to improve the accuracy of de-
tecting heavy metal stress in Chinese rice fields using multi-temporal sentinel-2
images.

In calculating HMSSI, two red-edge spectral indices, namely plant senescence
reflectance Index (PSRI) and Red-edge chlorophyll Index (ClIred-edge), were
used. Low (Clred-edge) index values indicate low chlorophyll and high stress in

vegetation, while an increase in PSRI indicates an increase in canopy stress [35].

2.4. Spatial Modeling and Validation

This study created a prediction model for each element (Cd, Pb, and Zn) using
the Random Forest package (version 4.6 - 14) in R version 3.6.1 [36]. Random
forest operates by constructing multiple decision trees. Each tree is built from a
random vector independently sampled from the input vector, and each decision
tree casts a vote to find out the most popular class to assign the input vector [19].

The Random forest has some advantages over other classification and regres-
sion tree algorithms. In addition to eliminating bias, it reduces the variance in
the predictions usually associated with tree-based approaches by growing the
trees further, then averaging their predictions [37]. Another important advan-
tage of Random Forest over other machine learning algorithms is when the
training data is small; it has the ability to capture complex and non-linear rela-
tionships between predictors and the outcome [37]. It’s also important to note
that with random forest, the accuracy of prediction increases with an increased
number of predictor variables [38].

In this study, the various model outputs were validated using the “out of bag”
(OOB) testing. The OOB samples are the observations not included in the mod-
el, and since they are not used to predict the model, they are used to test it.

To test prediction quality, 75% of the predictor variables were used for cali-
bration, while the remaining 25% was used for validation. The datasets were
chosen using a Latin hypercube sampling to ensure that both the validation and
calibration datasets were appropriately represented.

After selecting the training and test sets, we fitted the random forest model
using default parameters [36]. The number of trees (ntree) was set at 500. The
model was then fine-tuned by changing the number of variables randomly sam-
pled at each stage (mtry) to 13. Evaluation of the model was done using Root
Mean Square Error (RMSE), Bias, and coefficient of determination (R?), which

were calculated using the Out of Bag Error Estimation. In this, 25% of predictor

DOI: 10.4236/jgis.2020.126035

606 Journal of Geographic Information System


https://doi.org/10.4236/jgis.2020.126035

E. Omondi, M. Boitt

variables were used to validate the trees.
RMSError =+/1-r’SDy (7)

where SDy is the standard deviation of y
Bias=E(H)-6 (8)

where H is the expected values of the estimator less the values @ being esti-

mated

R? =MSS/TSS = (TSS— RSS)/TSS 9)

where MSS is the model sum of squares, and TSS is the total sum of squares as-

sociated with the outcome variable.

3. Results and Discussion

3.1. Soil Sampling and Analysis

A total of 60 samples were collected from selected points within the study area
and later analyzed for heavy metals in a lab. The metals’ different concentrations
are shown in Figure 8, Figure 9, and Figure 10. Table 3 shows the safety thre-
sholds for heavy metals recommended by WHO, FAO, and USEPA.

The results indicate that for Zinc heavy metal, 17 out of the 60 soil samples
collected exceeded the WHO/FAO permissible limits. According to [41], Zinc
concentrations in the study area can be presented by anthropogenic activities
like waste combustion at Dandora dumpsite, Steel processing activities at Nairo-
bi Industrial area, and stone quarrying.

Additionally, 12/60 Lead samples exceeded the WHO/FAO/USEPA permissi-
ble safety limits. Lead is mainly used in the manufacture of lead storage batteries.
In this case, it’s highly likely that its presence results from leachates and run-offs
from electronic waste components at the Dandora dumpsite. Lead poisoning
occurs when there is direct ingestion of Lead contaminated soil. Vegetables pro-
duced in soils with less than 300 ppm of Pb contamination are considered safe

for consumption. The risk increases with an increase in the concentration in soil.

Table 3. Heavy metals safety limits. World Health Organization (WHO), Food and
Agriculture Organization (FAO), United States Environmental Protection Agency
(USEPA) [39] [40].

Samples Standards Zn Pb Cd
WHO/FAO (2007) 2.0 5.0 0.01
Water (mg/L)
USEPA, 2010, USEPA., 2010 2.00 0.015 0.005
WHO/FAO (2007) 300 - 600 250 - 500 3.0-6.0
Soil (mg/kg)
USEPA, 2010, USEPA., 2010 200 300 3.0
WHO/FAO (2007) 60.0 5.0 0.2
Plant (mg/kg)

USEPA, 2010, USEPA,, 2010 - - -
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Figure 10. Zinc concentrations at sampling points.

High Cadmium levels were found. However, non-exceeded the
WHO/FAO/USEPA permissible limits. Cadmium pollution is linked to industri-
al effluents and water treatment sludge. Agricultural inputs like pesticides and
fertilizers also increase their total concentration in soils [42].

According to [41], the high Cadmium concentrations can be attributed to the
fact that the Nairobi river passes through several environmental hotspots, like
the Dandora dumpsite, Industrial area, Nairobi sewerage treatment plant, and
high traffic networks like the busy Nairobi Eastern bypass.

The distinct variation in the heavy metals results from a combination of dif-
ferent anthropological activities like the application of agricultural inputs, dis-
charge of effluents from Industries and a sewerage treatment plant, leachates,

and run-offs from Dandora dumpsite into the river, and mining activities.

3.2. Statistical Analysis of Heavy Metal Data

One of the benefits of RF and other classification and regression tree algorithms
is that they do not require the input data to be normalized. Therefore, no box
plots and histograms were required for this study.

The general statistics for (75%) Calibration and (25%) Validation are shown
in Table 4 and Table 5, respectively.

Table 6 displays Pearson’s correlation between the three soil toxic metals.

There was no significant correlation between any of the metals, implying that
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they possibly did not come from the same source [15] [42].

The validation results of the spatial modeling for soil heavy metals contamina-
tion are shown in Table 7. Generally, the calibration model performed well with
regards to the R* and RMSE estimates.

Our validation results for both Lead and Zinc had a higher correlation coeffi-
cient than [15] R* (Zn = 0.51) and R? (Pb = 0.53). This improvement could be
attributed to the use of finer spatial resolution (10 m) for environmental predic-
tors and spectral images in comparison to [15] at 30 m and [16] at 1 km. Addi-
tionally, the use of a high number of evenly distributed sample points in a
smaller study area (17 km?) also meant that the accuracy of prediction in our
study was improved. On the other hand, the climatic difference between Kenya,
Qatar [15], and Europe [16] could be a contributing factor to the difference in

Table 4. Calibration statistics dataset. 75% of the data. (Standard Deviation) SD.

Element (mg/kg) n Mean Median SD Variance
Pb 45 217 221 95.82 9181.7
Cd 45 0.96 0.975 0.62 0.384
Zn 45 221 261 150 22,454.76

Table 5. Validation dataset statistics 25% of the data.

Element (mg/kg) n Mean Median SD Variance
Pb 15 229.75 213.5 64 4074
Cd 15 1.2 0.82 0.654 0.427
Zn 15 259.5 186 141 19,905

Table 6. Pearson correlation coefficients between Lead, Cadmium and Zinc (n = 60).

Pb Zn Cd
Pb 1 0.39* -0.15
Zn 1 -0.26
cd 1

Levels of significance *p < 0.05, **p < 0.01.

Table 7. Validation results for different soil heavy metals concentration.

R? RMSE Bias
Lead 0.8335727 0.4382932 -1.076752
Zinc 0.8309954 0.5139823 —3.516596
Cadmium 0.7882876 0.2719324 0.01085672
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results. Nairobi has a warm and temperate climate; Qatar is a desert while Eu-
rope is generally temperate. The soil parent rock materials and anthropogenic
activities are also different. For these reasons, the choice of variables for model-

ing was different for the different study areas.

3.3. Variable of Importance Usage by Random Forest

The variable of importance is measured based on the out of bag samples. These
are observations not included in the Random Forest model. Also, they are based
on a mean square error accuracy measure. The value is averaged over all trees
[36].

From the output, it’s evident that the model utilized all the variables for pre-
diction but gave more emphasis to the most important ones.

For Lead (Figure 11), HMSSI and SAVI were dominant within the top ten
important variables. HMSSI was the best performer while the land-use and land
cover map also performed considerably well in the prediction.

For Zinc, 3 WDVI, 3 HMSSI, and 2 NDVI were selected among the top ten
important predictors. At the same time, distance to environmental hotspots was
in the 7 position (Figure 12).

The top ten important variables for Cadmium’s prediction (Figure 13) in-
cluded spectral indices (3 WDVI, 3 HMSSI, and 2 NDVI). The land-use and

land-cover map also performed considerably well, occupying the 5% position.
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Figure 11. Ranking of predictors in Lead from Random Forest model fitting.
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Figure 12. Ranking of predictors in Zinc from Random Forest model fitting.
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Figure 13. Ranking of predictors in Cadmium from Random Forest model fitting.
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In the prediction, the random forest model included the vegetation spectral
indices (NDVI, SAVI, WDVI, and HMSSI) within the top ten important va-
riables for all the heavy metals. This indicates their importance in predicting the
distribution of heavy metals, which is in line with previous studies [15] [16].

The distance to the environmental hotspots variable was high in the ranking
of all the metals, implying that human activities highly influence their concen-
trations.

The land-use and land-cover map performed reasonably well in the predictions

despite being a new additional variable absent in previous research [15] [16].

3.4. Vegetation Indices for Toxic Metals Prediction

In order to improve the predictive capability of heavy metals in soil, spectral in-
dices were calculated for all the Sentinel 2 images. Four spectral indices HMSSI,
SAVI, WDVI, and NDVI were derived.

The four variables were present within the top ten important variables in the
prediction of all the heavy metals. In the prediction of Zinc, NDVI was the do-
minant index, followed by SAVI and HMSSI. For Lead prediction, NDVI was the
most dominant index within the top 10 important variables. Of the top 10 im-
portant variables for Cadmium prediction, NDVI and HMSSI contributed three
indices, each within the top important variables, followed by SAVI and WDVL

3.5. Predicted Maps for Toxic Metals in Soil

Three predicted maps are shown in Figure 14, Figure 15 and Figure 16. With a
300 m buffer along the rivers’ riparian, we can easily tell how the three different
heavy metals are distributed within the peri-urban farms.

There is a high concentration of Cadmium on the easterly end of the river.
This can be linked to the study area’s proximity to the Nairobi water treatment
plant at Ruai. Its abundance in the water treatment plant is because, besides oth-
er sources of Cadmium, it can also occur as an impurity in detergents [41]. The
water treatment plant serves a population of 4,397,073 residents, which dramat-
ically increases the probability of high Cadmium concentrations within the
wastewater. There is also a possibility that the treated wastewater being dis-
charged into the river is still toxic.

Another possible source of Cadmium in the soil is the application of phos-
phate fertilizers and pesticides on the peri-urban farms. Additionally, the dis-
posal of Industrial waste upstream, as the river passes through an industrial area,
also increases the total concentration of Cadmium in soil.

Some farms have a high concentration of Lead in their soil. However, these
soils are safe for agricultural production because they have not exceeded the
WHO/FAO/USEPA permissible limits. Additionally, plants do not uptake Lead
into their system unless the concentration levels rise above 300 ppm. Further, a
study done by [41] indicates that Lead does not readily accumulate in the fruit-
ing parts of a plant.
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Figure 14. Predicted map (10 m resolution) of topsoil (0 - 30 cm) of Zn using the Random Forest algorithm.
LEAD
Concentration
mg/kg
Value
High: 287
Low: 25

Figure 15. Predicted map (10 m resolution) of topsoil (0 - 30 cm) of Lead using the Random Forest algorithm.
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Figure 16. Predicted map (10 m resolution) of topsoil (0 - 30 cm) of Cd using the Random Forest algorithm.

Below the 300 mg/kg permissible limit, Lead poisoning can only occur
through direct ingestion of contaminated soil particles.

Lead is a significant component in lead storage batteries, cable coverings, and
other electronic equipment. In this regard, the probable source of Lead in the
water could be leachates and run-offs from the Dandora dumpsite.

Some farms had Zinc levels, which were above the WHO/FAO/USEPA rec-
ommended limit. Zinc occurs naturally in soils in concentrations between 10 to
100 mg/kg; it’s a highly toxic heavy metal at high concentrations for both plants
and animals. Anthropogenic activities such as atmospheric deposition, waste
combustion, mining, steel processing, and sewage sludge application continue to
enrich the topsoils with Zinc. In this study, therefore, the most likely sources of
Zinc are; The Dandora dumpsite where waste combustion takes place, the Nai-
robi Water and sewerage plant where treated wastewater is discharged into the
river, and the Nairobi Industrial area where some industries carry out metal

processing.

4. Conclusions

From the variable rankings, it’s clear that anthropogenic activities played a sig-
nificant role in the pollution levels. Additionally, the predictive maps indicate
that the soils are too polluted to grow food crops, thereby posing a great risk to

Nairobi’s residents. Health risks notwithstanding, the Water Resources Man-
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agement Authority (WARMA) doesn’t license individuals to abstract water from
the river because of its high pollution levels.

Legal enforcement of the existing land, health, and environmental laws should
end the anthropogenic activities that pollute the river. However, In the short-term,
phytoremediation of the soils can be done to manage soil toxicity.

The Random Forest model gave satisfactory results in predicting the distribu-
tion of heavy metals in soil. However, the model can be improved further if the
spatial resolution of the various variables is increased and through the addition
of more predictor variables. It would also be interesting to determine how other
machine learning algorithms like PCA, cubist, and SVM compare with Random
Forest in predicting soil heavy metals. Finally, more research needs to be done
along the Nairobi River on the distribution of other potential heavy metals like

mercury, arsenic, chromium, and copper.
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