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Abstract 
This study monitored land cover change in the mining sites of Golden Pride 
Gold Mine (GPGM) and Geita Gold Mine (GGM), Tanzania. The satellite 
data for land cover classification for the years 1997, 2010 and 2017 were ob-
tained from the United States Geologic Survey Departments (USGS) online 
database and were analyzed using Arc GIS 10 software. Supervised classifica-
tion composed of seven classes namely forest, bushland, agriculture, water, 
bare soil, urban area and grassland, was designed for this study, in order to 
classify Landsat images into thematic maps. In addition, future land cover 
changes for the year 2027 were simulated using a Cellular Automata (CA)- 
Markov model after validating the model using the Land Cover for the year 
2017. The results from the LULC analysis showed that forest was the most 
dominant land cover type in 1997 at GPGM and GGM covering 510 ha 
(52.1%) and 9833 ha (49.7%) respectively. In 2017, the forest area decreased 
and the bushland replaced forest to be the most dominant land cover type 
covering 219 ha (22.4%) for GPGM and 8878 ha (44.9%) for GGM. Based on 
the CA-Markov model, a predicted land cover map for 2027 was dominated 
by forest covering 340 ha (34.7%) and 8639 ha (43.7%) for GPGM and GGM 
respectively. An overall accuracy and kappa coefficient for GPGM were 
74.7% and 70.2% respectively and for GGM were 71.4% and 66.1% respec-
tively. Thus, land cover changes resulting from mining activities involve 
reduction of forest land hence endangers biodiversity. GIS and remote 
sensing technologies are potential to detect the trend of changes and pre-
dict future land cover. The findings are crucial as it provides basis for land 
use planning and intensifies monitoring programs in the mining areas of 
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1. Introduction 

Mining is an extraction of valuable materials from the earth’s surface usually 
from an ore which consequently results in loss of vegetation, loss of soil and loss 
of rocks [1]. Mining regions are geologically defined by economically feasible 
mineral resources and they often undergo abrupt and extensive changes in the 
land cover [2]. Large-scale mining is one of the main growing industries in Tan-
zania. Large-scale mining especially open-pit involves the clearing of large area 
of land and forest resulting in serious land cover changes [3]. During the past 
two decades, Golden Pride Gold Mine (GPGM) and Geita Gold Mine (GGM) 
among the gold mines within Lake Victoria Gold field have undergone signifi-
cant land cover changes due to mining operations within the licensed mining 
areas. Land cover is the biotic or abiotic features that cover the earth surface 
such as forest, bare soil, grassland, bushland and water [3]. 

From environmental point of view, the dynamic process of land cover change 
has been described as the most remarkable anthropogenic disruption of the en-
vironment [4] [5]. It is a dynamic variable because it reflects the interaction be-
tween socio-economic activities and regional environmental changes, and for 
this reason, it is necessary to be updated frequently [6]. Land Cover is necessary 
in identifying and mapping natural resources and human activities which have a 
great effect on landscape and soil degradation [7] [8]. Information on land cover 
plays a key role in natural resources management and spatial planning [9] [10]. 

This study used Remote Sensing (RS) and Geographical Information System 
(GIS) to monitor the trend of land cover change in the mining areas and to pre-
dict the future land cover [11]. Remote sensing techniques have been used over 
the years and have proven to be of great value for monitoring changes at regular 
intervals [8]. Using satellite remote sensing data is a practical option to identify 
and map the land cover categories [12]. Land cover mapping using satellite re-
mote sensing images has become widely popular in the last decades [13]. The 
reasons for selecting satellite image periods for this study considered the phases 
of mining projects from pre-mining, during active operations and post-mining 
phases. In addition, GIS tools are used to create the geo-database and integrate 
data extracted from satellite images with classes from the currently available land 
cover models [6]. However, developing countries still lag behind significantly 
compared with the developed countries in the application of remote sensing and 
GIS technologies. Land cover change models are very helpful for evaluating 
anthropogenic and natural impacts, predicting future patterns of land use changes, 
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aiding stakeholders of natural resources to achieve sustainable environments and 
planning and management of land transformation [11]. A GIS can be integrated 
to predict the future scenario of land cover using Cellular Automata (CA) Mar-
kov model. 

CA Markov model is widely used to predict and analyze likely future trajecto-
ry of LULC within a specified period and to characterize the dynamics of land 
use/cover, forest cover, coastal management, wetland landscape and so forth 
[14] [15] [16] [17]. The heart of a CA Markov model is the transition matrix 
between different temporal images to predict the future events [18] [19]. In gen-
eral, various traditional modellings in geography create a spatial layout of 
present and past land surfaces using dynamic optimization techniques [18]. 
Commonly used models for estimating land cover changes are statistical models, 
analytical equation-based models, evolutionary models, cellular models, Markov 
models, hybrid models, expert system models and multi-agent models [20]. 
Currently, the most commonly used models in land cover change monitoring 
and prediction are the mixed model [20]. The CA-Markov model is the mixture 
of the Cellular Automata and Markov models. CA Markov model has many ad-
vantages for geographic modelling; it is capable of supporting very large pa-
rameter spaces for simulation, the model makes an implicit use of space and 
spatial complexity by simple local raster transformation, it is capable of com-
bining space-time relationships, as well as supporting separate notions of space 
and time. Moreover, the model is capable of representing pattern, process, form 
and function. CA Markov model is vital in helping land use planners to make 
land use planning decision. 

Tanzania, like many other developing countries, the large-scale gold mining 
activities typically decrease land covered by vegetation through the process of 
forest clearing for formation of mining components such as pits, Waste Rock 
Dumps and Tailing Storage Facilities. However, the countries are still using tra-
ditional field investigation method instead of remote sensing and GIS technolo-
gies to monitor the trend of land cover changes in the mining areas. This tradi-
tional technology is low efficient, high labor demanding and impossible to con-
duct continuously, especially in large scale areas. Therefore, the use of remote 
sensing (RS) in combination with Geographical Information System (GIS) has 
proved to be effective in the spatial and temporal monitoring of the land cover 
changes in the mining areas.  

Numerous researches have been published on the effects of large scale mining 
activities on land cover worldwide [2] [3] [11] [21] [22] [23]. In general, studies 
revealed that mining activities cause extensive land use changes, which pose sig-
nificant management challenges for mining companies and regulatory authori-
ties. The effects identified in the studies include land degradation and conver-
sion of land from forest covers to non-forest covers such as built-up areas, bare 
lands, Waste Rock Dumps and abandoned quarries filled with water.  

In Tanzania, [24] monitored geomorphic and hydrologic change at GGM us-
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ing Digital Elevation Model (DEM) data from the Space shuttle Radar Topogra-
phy Mission (SRTM) and the Advanced Spaceborne Thermal Emission and Ref-
lection Radiometer (ASTER). The authors assessed the effects of mining activi-
ties on farmers, village water supplies, and community forests using a hydrologic 
flow model. The results indicated that more than 81 million m3 of waste has 
been deposited in the tailings storage facility and waste rock dumps. [1] also 
analyzed the impact of mining activities on land cover using Arc View GIS and 
ERDAS Imagine. The results indicated that there was significant conversion of 
forest cover into non-forest cover from 1991-2011 in Nanyala Ward. The author 
concluded that as the mining activities increase, the area affected by mining in-
creases posing a serious threat to the environments. From the above back-
ground, it is evidently that, as far as land cover change due to gold mining op-
eration is concerned, there is limited knowledge evaluating and predicting the 
future land covers in the gold mining environment of Tanzania. The aim of this 
study therefore, was to monitor land cover changes from 1997 to 2017 and then 
predict the future land cover for the year 2027 at GPGM and GGM mining li-
censed areas. The prediction of future land cover is important in the sense that, 
it will enhance understanding of the present land cover and will provide some 
foundation for effective planning of the future land use. This will help in moni-
toring the mining landscape for sustainable development to meet the needs of 
the present and future generation. We recommend effective management of 
degraded mining areas by intensifying progressive rehabilitation programs 
through planting trees as this will help to achieve positive post mine closure 
outcomes. 

2. Materials and Methods 
2.1. Overview of the Study Area 

GPGM and GGM are located in the Sukuma land Greenstone belt within Lake 
Victoria Goldfield in Northern Tanzania. Lake Victoria Goldfield is among the 
three principle goldfields which are the main producers of gold in Tanzania. 
Other goldfields are Mpanda and Lupa located in the Western and Southern 
Tanzania respectively [25]. Geographically, the GPGM is located at latitude: 040 
23'31"S and longitude 0320 53'55"E in Nzega District, Tabora Region, Tanzania. 
It is approximately 18 km north of Nzega Township, and 200 km south of 
Mwanza regional center. Average annual rainfall is between 700 - 800 mm per 
year and average temperatures range from 22˚C to 27˚C [26]. Whereas, GGM is 
located at latitude: 020 52'03"S and longitude: 0320 11'11"E it is approximately 4 
km west of Geita town and 90 km south-west of Mwanza City in north-western 
Tanzania (Figure 1). There is very little annual variation in daytime tempera-
tures throughout the year with an annual average daily temperature of 25˚C as 
recorded at GGM. Evaporation rates throughout the year are related to the 
monthly rainfall and are much greater during the dry season, yet are overall rela-
tively low, ranging between 70 and 140 mm per month.  
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Figure 1. Location map of golden pride gold mine and Geita gold mine. 

2.2. Research Materials 

This paper covers Land Cover classification and Accuracy Assessment. In order 
to determine the effects of large-scale mining on the land cover of the study area, 
land cover satellite data sets for the years 1997 and 2010 were delivered from 
Landsat Thematic Mapper and for the year 2017 were delivered from Landsat 8 
Operational Land Imager (OLI). The satellite data sets were obtained from the 
United States Geologic Survey Department (USGS) online database through 
http//earthexplorer.gov. Various digital image processing techniques were em-
ployed to prepare land cover maps of the study areas.  

2.3. Research Methods 
2.3.1. Remote Sensing Data Collection 
To prepare the base maps, the Landsat satellite images (1997, 2010 and 2017) 
were collected from the official website of US Geological Survey (USGS). Land-
sat Path 171 row 62 covered GGM and Landsat Path 170 row 63 covered GPGM. 
The pixel size of the images was 30 × 30 m. Accordingly, the land cover was clas-
sified into seven classes namely forest, bushland, agriculture, water, bare soil, 
urban area and grassland, for the three sampling periods i.e. 1997, 2010 and 
2017. 
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2.3.2. Data Acquisition and Processing 
Time analyses of land cover change require a proper selection and preparation to 
ensure the compatibility of the Landsat images. In this study, the images were 
selected from the same season (July-September) and with minimal cloud cover 
(<10%). The images were from different sensors with similar spectral resolution 
i.e. 30 metres.  

2.3.3. Land Cover Change Detection 
The land cover change detection was done using ArcGIS10.3 software. The two 
classified Land cover layers i.e. Land cover 1997 and 2010 and Land cover 2010 
and 2017 were used. Spatial analysis was done using the zonal tabulate area 
function and was used to generate land cover change matrix. The function cal-
culates cross-tabulated areas between two datasets and provides output of a table 
that displays a record for each unique value of the zone dataset and a field for 
each unique value of the class dataset. Also, the land cover change analyses were 
performed and cross tabulation was done using Spatial analysis function in Arc-
GIS 10 software [5]. 

2.3.4. Land Cover Change Modelling 
Coupled Cellular Automata (CA)-Markov model was employed to conduct 
Land cover change modelling. The CA-Markov model combination represents 
advancement in spatio-temporal dynamic modelling and forecasting, and en-
able achieving a better simulation of land cover changes both in quantity and 
space based on studies of land use changes in the past [14] [20]. The algorithms 
in the IDRIS Andes package integrate the functions of the CA filter and Markov 
process, using conversion tables and conditional probabilities from the conver-
sion map applied to simulate and forecast the states of Land cover change [15]. 
Therefore, to simulate future land cover changes for this study sites using a 
CA-Markov model, the following specific processes were followed: 1) After 
converting the vector data to raster, the classified land cover maps for the years 
1997, 2010 and 2017 were used to obtain the transition matrices for the land 
cover categories between 1997 and 2010 as well as 2010 and 2017 based on the 
first-order Markov model. 2) The transition suitability maps, which were used 
to predict the land cover in 2017 and to simulate the distribution in 2027 were 
generated based on the main transitions that occurred among the land cover 
categories from 2010 to 2017. In addition, to determine CA filters, the regular 5 
× 5 contiguity filter was used as the neighbourhood definition. 3) Based on the 
CA–Markov model approach, the land cover for the year 2017 was modelled 
using the transition probabilities from 1997 to 2010 with the land cover base 
map from the year 2010. Kappa statistics were used to assess the accuracy of the 
forecasted 2017 land cover map to evaluate its agreement with the actual 2017 
land cover map. 4) Finally, following the same process, the land cover for the 
year 2027 was projected with the CA-Markov model in IDRISI using the transi-
tion probabilities from 2010 to 2017 and the land cover base map from the year 
2017.  
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2.3.5. Cross Tabulation 
Idrisi software was used to perform a cross-tabulation analysis. It compared im-
ages containing categorical variables of two types. Cross Tabulation provides the 
information on the frequencies with which each land cover classes remained ei-
ther unchanged or has changed to one of the other classes, using two thematic 
maps of different dates [27]. Three cross-tabulation tables were generated from 
thematic maps 1997-2010, 2010-2017 and 2017-2027.  

2.3.6. Accuracy Assessment 
The process of determining accuracy for a classified image is one of the most 
important steps undertaken in post-classification [1]. To acquire a better accu-
racy, ground truthing, or physical appearance in the study site is necessary [28]. 
However, in these cases, training points located in remote areas could not be vis-
ited in the field due to time and cost constraints. Kappa statistics was used to as-
sess the accuracy of the forecasted land cover map to evaluate its agreement with 
the actual land cover map and the analysis was done using validate tool in Idris 
Selva software. The classified land cover for year 2017 was compared using pro-
jected land cover for year 2017.Kappa coefficient estimates the agreement be-
tween map and reality and it ranges from 0 to 1, where 0 represent total dis-
agreement and 1 total agreement [6]. [29] also provides the interpretation of 
Kappa statistics as presented in Table 1. 

3. Results 
3.1. Land Cover Classification 

The Landsat images for the study area were classified in order to identify the 
changes in the cover between the four periods, i.e. 1997, 2010, 2017 and 2027 
and this yielded four Land Cover maps from the satellite images for each site. 
Seven major land cover categories: agriculture, bare soil, built-up area/urban 
area, bush land, forest, grassland and water were recorded in Golden Pride and 
Geita Gold Mines respectively. The land cover maps of the study areas for dif-
ferent periods (1997, 2010, 2017 and 2027) are presented in Figure 2 for GPGM 
and Figure 3 for GGM. Graphical presentation of the areas for each land cover 
category for the years 1997, 2010 and 2017 are shown in Figure 4 for GPGM and 
Figure 5 for GGM. The results on land cover and the extent of change in hec-
tares and percentage of each land cover category for the three years were deter-
mined as presented in Table 2 and Table 3 for GPGM and GGM respectively. 
Transition matrices are presented on Tables 4-6 for GPGM and Tables 7-9 for 
GGM. The land cover categories delineated in the study areas reveal the changes 
in land cover (in hectares and percentages) that have taken place during the pe-
riod between 1997-2017 as being due to the expansion of mining activities. Clas-
sified Accuracy Assessment report and Kappa statistics for GPGM are provided 
in Table 10 and Table 11 respectively and for GGM are presented on Table 12 
and Table 13 respectively.  
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Figure 2. Land cover map at GPGM. 

 

 
Figure 3. Land cover map at GGM. 
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Figure 4. Total area in hectares of each land cover category at GPGM. 

 

 
Figure 5. Total area in hectares of each land cover category at GGM. 

 
Table 1. Interpretation of Kappa statistics [29]. 

Kappa 
Interpretation of Kappa 

Agreement 

<0 Less than chance agreement 

0.01 - 0.20 Slight agreement 

0.21 - 0.40 Fair agreement 

0.41 - 0.60 Moderate agreement 

0.61 - 0.80 Substantial agreement 

0.81 - 0.99 Almost perfect agreement 

 
Table 2. GPGM land cover change for the years 1997-2017 and prediction for 2027. 

Land Use/Cover Types 
Land Cover Land cover change 

Year: 1997 Year: 2010 Year: 2017 Year: 2027 1997-2010 2010-2017 2017-2027 

 Ha % Ha % Ha % Ha % Ha Ha Ha 

Agriculture with  
Scattered Settlements 

176.0 18.0 100.0 10.2 173.0 17.7 177.0 18.1 −76.0 73.0 4.0 
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Continued 

Bare Soil 1.0 0.1 129.0 13.2 98.0 10.0 52.0 5.3 128.0 −31.0 −46.0 

Bushland 187.0 19.1 219.0 22.4 308.0 31.5 299.0 30.5 32.0 89.0 −9.0 

Forest 510.0 52.1 209.0 21.3 303.0 30.9 340.0 34.7 −301.0 94.0 37.0 

Grassland 87.0 8.9 109.0 11.1 73.0 7.5 94.0 9.6 22.0 −36.0 21.0 

Built up Area 18.0 1.8 170.0 17.4 17.0 1.7 12.0 1.2 152.0 −153.0 −5.0 

Water 0.0 0.0 44.0 4.5 7.0 0.7 4.0 0.4 44.0 −37.0 −3.0 

Total 979.0 100.0 980.0 100.0 979.0 100.0 978.0 100.0    

 
Table 3. GGM land cover change for the years 1997-2017 and prediction for 2027. 

Land Use/Cover Types 
Land Cover   Land cover change 

Year: 1997 Year: 2010 Year: 2017 Year: 2027 1997-2000 2010-2017 2017-2027 

 Ha % Ha % Ha % Ha % Ha Ha Ha 

Agriculture with  
Scattered Settlements 

899.0 4.5 953.0 4.8 1917.0 9.7 1869.0 9.4 54.0 964.0 −48.0 

Bare Soil 14.0 0.1 930.0 4.7 996.0 5.0 1107.0 5.6 916.0 66.0 111.0 

Built-up Area 137.0 0.7 219.0 1.1 488.0 2.5 648.0 3.3 82.0 269.0 160.0 

Bushland 6964.0 35.2 8878.0 44.9 4093.0 20.7 4107.0 20.8 1914.0 −4785.0 14.0 

Forest 9833.0 49.7 5792.0 29.3 8728.0 44.1 8639.0 43.7 −4041.0 2936.0 −89.0 

Grassland 1916.0 9.7 2898.0 14.6 3453.0 17.5 3286.0 16.6 982.0 555.0 −167.0 

Water 19.0 0.1 111.0 0.6 108.0 0.5 126.0 0.6 92.0 −3.0 18.0 

Total 19,782.0 100.0 19,781.0 100.0 19,783.0 100.0 19,782.0 100.0    

 
Table 4. Land cover change by cross tabulation for GPGM for the years 1997-2010. 

Year 2010 

Year: 1997  

Agriculture with  
scattered settlements 

Bare Soil Built-up Bushland Forest Grassland 
Total in  

year 2010 
Gross gain  

[Total-unchanged] 

Agriculture with  
scattered settlements 

30.8 0.7 1.2 14.4 40.9 11.6 99.5 68.8 

Bare Soil 19.7 0.2 1.4 22.4 70.7 13.5 127.8 127.6 

Built-up Area 24.8 0 6.3 32.5 96.2 13 172.7 166.4 

Bushland 37.4 0 4.5 45.8 112.1 17.8 217.7 171.9 

Forest 29.2 0 3.7 38.1 119.8 19.7 210.4 90.6 

Grassland 26 0 0.5 19.4 53.4 7.8 107.1 99.3 

Water 6.9 0 0.5 13.9 18.8 3.3 43.5 43 

Total in year 1997 174.8 0.9 18 186.5 511.8 86.8 978.8  

Gross loss 144 0.7 11.7 140.7 392 78.9   
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Table 5. Land cover change by cross tabulation for GPGM for the years 2010-2017. 

 Year: 2010  

Year 2017 
Agriculture with 

scattered settlements 
Bare  
Soil 

Built-up  
Area 

Bushland Forest Grassland Water 
Total in  

year 2017 
Gross gain  

[Total-unchanged] 

Agriculture with 
scattered settlements 

46.3 18.8 41.5 34.6 4.1 30 1.8 177 130.8 

Bare Soil 3.7 30.8 48.7 3.2 1.7 2.3 9.6 100 69.2 

Built-up Area 0.7 1.5 7.5 3.5 2.9 0.2 0.5 16.8 9.4 

Bushland 24.5 38.5 47.2 72.3 53.7 59.8 9.7 305.6 233.4 

Forest 17.3 25.3 22.1 101.4 118.5 12.2 3.9 300.8 182.3 

Grassland 7 11 2.1 2.7 29.3 2.4 17 71.6 69.1 

Water 0.1 1.9 3.7 0.1 0.1 0.2 0.9 6.9 6 

Total in year 2010 99.5 127.8 172.7 217.7 210.4 107.1 43.5 978.8  

Gross loss 53.3 97 165.2 145.4 91.9 104.7 42.6   

 
Table 6. Land cover change by cross tabulation for GPGM for the years 2017-2027. 

 Year: 2017  

Year 2027 
Agriculture with 

scattered settlements 
Bare  
Soil 

Built-up  
Area 

Bushland Forest Grassland Water 
Total in year 

2027 
Gross gain  

[Total-unchanged] 

Agriculture with 
scattered settlements 

148.2 4.6 3.7 14.8 0 6.7 0 177.9 29.7 

Bare Soil 0.3 44.6 6.4 0.1 0 0.1 0 51.4 6.8 

Built-up Area 0 0 5.5 2.6 4.2 0 0 12.3 6.8 

Bushland 11.2 30.4 0.6 189.1 20.8 46.3 0 298.4 109.3 

Forest 14.8 10.5 0 99 215.2 0 0 339.5 124.3 

Grassland 2.6 8.8 0 0 60.6 18.5 4.4 95 76.4 

Water 0 1.1 0.6 0 0 0 2.5 4.2 1.7 

Total in year 2017 177 100 16.8 305.6 300.8 71.6 6.9 978.7  

Gross loss 28.8 55.4 11.3 116.5 85.6 53 4.4   

 
Table 7. Land cover change by cross tabulation for GGM for the years 1997-2010. 

Year 2010 
Year: 1997  

Agriculture with 
scattered settlements 

Bare  
Soil 

Built-up 
Area 

Bushland Forest Grassland Water 
Total in year 

2010 
Gross gain  

[Total-unchanged] 

Agriculture with 
scattered settlements 

441.8 1.4 9.5 171.2 241.4 84.5 0.3 950 508.2 

Bare Soil 58.1 2.7 10.1 346.7 242.6 259.3 12.1 931.6 928.9 

Built-up Area 12 0.5 14.9 67.2 44.5 76.6 2.3 217.9 203 

Bushland 194.9 2.5 27.1 3713.00 4385.40 540.9 1 8864.80 5151.80 

Forest 24.9 0 3.2 1478.80 4287.70 20.6 0.2 5815.40 1527.70 

Grassland 151.2 6.3 67.1 1154.20 589.7 918.9 2.3 2889.60 1970.70 

Water 4.6 0.3 2.3 32.9 36 34 1.1 111.2 110.1 

Total in year 1997 887.5 13.8 133.9 6964.00 9827.30 1934.80 19.2 19,780.50  

Gross loss 445.7 11.1 119.1 3251.00 5539.60 1015.90 18.1   
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Table 8. Land cover change by cross tabulation for GGM for the years 2010-2017. 

 Year: 2010  

Year 2017 
Agriculture with 

scattered settlements 
Bare Soil 

Built-up 
Area 

Bushland Forest Grassland Water 
Total in  

year 2017 
Gross gain  

[Total-unchanged] 

Agriculture with 
scattered settlements 

102.7 26.4 22.2 968.6 199.4 580 0.2 1899.50 1796.80 

Bare Soil 11.5 570.8 55 64.7 36.4 193.3 69.8 1001.40 430.7 

Built-up Area 29.3 115 79.1 60.2 8.8 190.3 0.5 483.2 404.1 

Bushland 113 18.5 8.9 2273.50 1115.60 542.1 0 4071.60 1798.10 

Forest 395.8 128.7 39 3736.50 4030.10 440.8 3 8773.90 4743.80 

Grassland 296.7 23.7 6.6 1758.10 424.6 933.4 0.4 3443.40 2510.00 

Water 1 48.6 7.1 3.2 0.4 9.8 37.4 107.5 70.1 

Total in year 2010 950 931.6 217.9 8864.80 5815.40 2889.60 111.2 19,780.50  

Gross loss 847.4 360.8 138.8 6591.30 1785.20 1956.20 73.8   

 
Table 9. Land cover change by cross tabulation for GGM for the years 2017-2027. 

Year 2027 
Year: 2017 

Agriculture with 
scattered settlements 

Bare 
Soil 

Built-up 
Area 

Bushland Forest Grassland Water 
Total in 

year 2017 
Gross gain 

[Total-unchanged] 

Agriculture with  
scattered settlements 

1174.7 0.0 4.4 251.7 11.2 433.6 0.0 1875.6 700.9 

Bare Soil 0.7 866.6 16.2 0.4 1.3 195.9 20.8 1101.9 235.3 

Built-up Area 19.4 35.8 372.3 1.0 0.1 222.9 0.0 651.5 279.2 

Bushland 55.5 0.0 0.0 2905.8 935.1 212.5 0.0 4109.0 1203.1 

Forest 307.4 82.8 76.1 469.9 7626.2 44.1 0.1 8606.5 980.3 

Grassland 340.7 0.0 0.0 442.3 199.3 2322.1 0.0 3304.3 982.2 

Water 0.8 15.9 14.2 0.0 0.0 11.4 86.6 129.0 42.4 

Total in year 2010 1899.1 1001.2 483.2 4071.1 8773.1 3442.6 107.5 19,777.7  

Gross loss 724.4 134.6 110.9 1165.2 1146.9 1120.5 20.9   

 
Table 10. Classified accuracy assessment report for GPGM. 

Classification Accuracy assessment report (Accuracy totals) 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

Agriculture 29 22 16 55.20% 72.70% 

Bare Soil 26 26 18 69.20% 69.20% 

Built-up Area 11 20 11 100.00% 55.00% 

Bushland 27 24 19 70.40% 79.20% 

Forest 22 23 18 81.80% 78.30% 

Grassland 15 14 12 80.00% 85.70% 

Water 16 17 15 93.80% 88.20% 

Totals 146 146 109   

Overall Classification Accuracy = 74.7% 
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Table 11. Kappa statistics for assessing the accuracy of GPGM forecasted land cover map 2017. 

KAPPA (K) STATISTICS 

Overall Kappa Statistics = 70.2% 

Conditional Kappa for each Category. 

Land cover Kappa 

Agriculture 0.66 

Water 0.868 

Built-up Area 0.513 

Bushland 0.744 

Forest 0.744 

Grassland 0.841 

Bare Soil 0.626 

 
Table 12. Classified Accuracy Assessment Report for GGM. 

Classification Accuracy Assessment Report (Accuracy Totals) 

Class Reference Classified Number Producers Users 

Name Totals Totals Correct Accuracy Accuracy 

Agriculture 25 22 18 72.00% 81.80% 

Water 26 15 15 57.70% 100.00% 

Built-up Area 26 22 16 61.50% 72.70% 

Bushland 28 31 21 75.00% 67.70% 

Forest 43 58 39 90.70% 67.20% 

Grassland 26 22 17 65.40% 77.30% 

Bare Soil 25 29 16 64.00% 55.20% 

Totals 199 199 142   

Overall Classification Accuracy = 71.4% 

 
Table 13. Kappa statistics for assessing the accuracy of GGM forecasted land cover map 2017. 

KAPPA (K) STATISTICS 

Overall Kappa Statistics = 66.1% 

Conditional Kappa for each Category. 

Land cover Kappa 

Agriculture 0.7921 

Water 1 

Built-up Area 0.6863 

Bushland 0.6246 

Forest 0.5821 

Grassland 0.7386 

Bare Soil 0.4873 
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3.2. Land Cover Map 
3.2.1. Land Cover Map at GPGM 
The examination of the land cover map in 1997, showed the forest to be the do-
minant land cover in the study area. During that period there were no mining 
activities in the area. The project commenced operations in 1998. Thus, by 2010 
part of the forest has been replaced by other land covers and bushland is seen as 
the dominant land cover, due to the fact that, re-vegetation of the degraded 
mining sites was done concurrently with the mining operations. The satellite 
image of 2017 has shown that the area which was initially covered by forest has 
not returned into its original state and bushland is seen to dominate the area 
(Figure 2). During this period the project had already ceased and the areas 
which were seen covered by bushland are the rehabilitated areas.  

3.2.2. Land Cover Map at GGM 
Like at GPGM, in 1997 forest was the dominant land cover type in the study 
area. During that period there were no mining activities in the area. The mining 
activities commenced in 2000. In 2010 the portion of forest was replaced by oth-
er land covers and bushland is seen as the dominant land cover scattered all over 
the study area. The satellite image of 2017 showed that the areas which were in-
itially covered by forest have not yet returned to their original state yet, but are 
seen as the dominant land cover type (Figure 3). 

3.3. Change Detection  
3.3.1. Change Detection Analysis at GPGM  
Gold Mining in GPGM resulted in widespread land cover change between 
1997-2017. Data in Table 2 reveal that both positive and negative changes oc-
curred in the land cover pattern of GPGM. For example, in 1997 before com-
mencement of the mining operations, the largest mining licensed area was cov-
ered by forest (52.1%), representing 510.0 ha. However, in 2010 forest area had 
decreased by 21.4% representing 209.0 ha and agriculture with scattered settle-
ments decreased to 10.2% representing 100.0 ha. The analysis confirmed that, 
conversion of forest and agricultural land to mining pits, waste rock dumps, 
tailing storage facilities and other components were the most important fac-
tor leading to land cover changes within the mining area (Table 2 and Fig-
ure 4). However, in 2017, there was a slight increase in the forest area to 31.0% 
representing 303.0 ha and agriculture with scattered settlement to 17.7% 
representing 173.0 ha. The areas for forest and bushland increased from 2010- 
2017 due to progressive rehabilitation conducted in the area. It is also projected 
that, from 2017-2027 the areas under forest will increase from 303.0 ha (31.0%) 
to 340.0 (34.7%) (Table 2 and Figure 4). The area of forest is projected to in-
crease, if the rehabilitated areas won’t be disturbed by socio-economic activities 
such as small-scale mining, livestock grazing and poles collection, which in-
volves cutting down trees. 
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3.3.2. Change Detection Analysis at GGM 
In 1997 before commencement of the mining operations the largest area of the 
mining licensed land was under forest (49.7%), representing 9833.0 ha. But in 
2010, the forest area had decreased to 29.3% representing 5792.0 ha. Decrease in 
of forest area implies that mining operations were actively conducted during this 
period (Table 3 and Figure 5). However, in 2017, there was considerable in-
crease in the forest area from 5792.0 ha (29.3%) to 8728.0 ha (44.1%) while the 
area under bushland recorded significant decrease from 8878.0 ha (44.9%) to 
4093.0 ha (20.7%). It was also projected that, from 2017-2027 forest will be the 
dominant land cover type, however, the area will slightly decrease from 8728.0 
ha (44.1%) to 8639.0 ha (43.7%) (Table 3 and Figure 5). The area of forest is 
projected to decrease because GGM is still active hence there is a possibility of 
logging of trees and clear-cutting or burning of vegetation. Also, the nearby 
communities are using the forest resources to obtain ecosystem services such as 
fodder, timber, construction materials, charcoal and firewood. However, the area 
for bushland increased in 2010 due to progressive rehabilitation and the decrease 
in 2017 could be due to socio-economic activities within the area such as char-
coal making, livestock grazing and trespassing for low grade rocks and Tailing 
Storage Facility slurry. 

3.4. Transition Probability and Future Land Cover 
3.4.1. Transition Probability Matrix for GPGM 
Cross tabulation is a means of determining quantities of conversions from a one 
land cover to another. The type of change within the seven classes of LC patterns 
can be depicted from the change trends in the Markov transition matrices be-
tween the period 1997-2017. The probability that each LC class remained un-
changed is shown by diagonal values, whereas those which changed from one 
class to another are presented by off-diagonal values [11]. For example, in 
1997-2010 the highest unchanged transition probability was forest 119.8 ha 
(Table 4). This indicates that the economic activities within the area did not 
cause large transformation of forest to other land covers. This has also been the 
case for the year 2010-2017 where the highest unchanged Land Cover was forest 
118.5 ha and the lowest unchanged cover was water bodies 0.9 ha (Table 5). The 
predicted land covers which will not be changed by the year 2027 at GPGM are 
forest 215.2 ha, bush land 189.1 ha, agriculture with scattered settlement 148.2 
ha, bare soil 44.6 ha, built up area 5.5 ha, grassland 18.5 ha and water bodies 2.5 
ha (Table 6). The results of the transition matrices for the years 1997-2010, 
2010-2017 and 2017-2027 indicate clearly that, the highest unchanged transition 
probability is forest and the lowest unchanged transition probability is water. 

3.4.2. Transition Probability Matrix for GGM 
Tables 7-9 provide results on overall change of land cover classes (in ha) for 
GGM for the years 1997-2010, 2010-2017 and 2017-2027 respectively. From 
1997-2010, the results on Table 7 show that the land cover areas that were un-

https://doi.org/10.4236/jgis.2020.125024


C. Kahangwa et al. 
 

 

DOI: 10.4236/jgis.2020.125024 402 Journal of Geographic Information System 
 

changed to other land uses were agriculture 441.8 ha, bare soil 2.7 ha, built-up 
area 14.9 ha, bush land 3713.0 ha, forest 4288.0 ha, grassland 918.9 ha and water 
1.1 ha. The results for the years 2010-2017 show that the land cover areas that 
were found unchanged are agriculture 102.7 ha, bare soil 570.8 ha, built-up area 
79.1 ha, bush land 2273.5 ha, forest 4030.1 ha, grassland 933.4 ha and water 37.4 
ha (Table 8). The predicted land covers which will not be changed by the year 
2027 at GGM are agriculture with scattered settlement 1174.7 ha, bare soil 866.6 
ha, built up area 372.3 ha, bush land 29.5.8 ha, forest 7626.2 ha, grassland 2322.1 
ha and water bodies 86.6 ha (Table 9). The results of the transition matrices for 
the years 1997-2010, 2010-2017 and 2017-2027 indicate clearly that, the highest 
unchanged transition probability is forest and the lowest unchanged transition 
probability is water. 

3.4.3. Analysis of Future Trend of Land Cover Classification 
In this study, the 1997, 2010 and 2017 land cover maps were used to classify the 
future land cover of 2027. Future land covers can be observed in Table 3, Figure 
4 for GPGM and Table 4, Figure 5 for GGM. It is seen in the projected land 
cover map of 2027 of GPGM that, the large part of the area is covered by forest 
followed by bushland then agricultural land with scattered settlements (Figure 
2). These projected results may be useful references to the regulatory agencies 
and the mining companies in dealing with management challenges and planning 
for future land use. The future land cover map within the specified period was 
analyzed using CA-Marcov model.  

In the projected land cover map of 2027 of GGM, the large part of the area is 
seen to be covered by forest followed by bushland then grassland (Figure 3). 
These projected results may be useful references to the regulatory agencies and 
the mining companies in dealing with management challenges and planning for 
future land use. Marcov chain model was also used to analyze the future land 
cover map within the specified period. 

3.5. Accuracy Assessment 
3.5.1. Classification of Accuracy Assessment for GPGM 
The final stage of classification is to determine accuracy assessment. Each of the 
land cover map was compared to the reference data to assess the accuracy of the 
classified images. Accuracy Assessment classified for GPGM presented in the 
Classified accuracy assessment report (Table 10) indicated that the overall ac-
curacy is 74.7% and the accuracy assessment of the forecasted land cover map to 
evaluate its agreement with the actual land cover using Kappa statistics was 
70.2% (Table 11). These assessments indicate that there is substantial agreement 
between the classified land cover and actual land cover. 

3.5.2. Classification Accuracy Assessment for GGM 
Accuracy Assessment classified for GGM presented in the Classified accuracy 
assessment report (Table 12) indicate that the overall accuracy is 71.4% which is 
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acceptable and the accuracy assessment of the forecasted land cover map to 
evaluate its agreement with the actual land cover using Kappa statistics was 
66.1% (Table 13) indicating almost perfect agreement.  

4. Discussion 
4.1. Land Cover Change Detection 

The land cover changes observed in GPGM and GGM have superficial impacts 
on plant species in natural habitats in the past 20 years. The multi-temporal sa-
tellite data generated from the mining areas provide evidence on the detected 
changes in land cover types based on the development stage of the mining activ-
ities. The impacts of mining operations in the study area within the period under 
review indirectly influenced adjacent land uses [2]. The results from the Land 
Cover analysis showed that, for the year 1997 at GPGM before the project 
started operations in 1998, forest was found to be the dominant land cover type, 
covering over 50% of the total study area, followed by bushland, then followed 
by agriculture with scattered settlements, grassland, built up area, bare soil and 
the water were not detected in this period.  

Our satellite-based analysis established that, between the years 1997-2010 at 
GPGM, the area of forest and agriculture decreased due to the mining activities 
in the active mining phase. At this time, a large number of trees in the forest 
were cut and the agricultural land was replaced by components of the mining 
infrastructure such as open pit, waste rock dumps, tailing storage facility, 
processing plant [24], infrastructure (access and energy) and construction of 
camps and town [30]. This is supported in the study conducted by Perpetual 
[16] who found that, between 1990-2010 high density forest and sparse forest in 
the Prestea mining area in Ghana were lost to pave way for mining operations. 
For the case of decreased agricultural land, this study is in line with the study 
conducted by [31], on the effects of loss of agricultural land due to large-scale 
gold mining on agriculture in Ghana. The authors confirmed that, a total of 
4935.3 ha of agricultural land, representing 25.5% of the three concessions, were 
lost due to large-scale gold mining operations in the study period. The results 
are also supported in the studies conducted by [23] who found out that, there 
was substantial loss of forest resulting from mining activities to pave way for 
mining operations such as pits development. Moreover, [32] pointed out that, 
mining activities have disturbed biodiversity at the mining sites of Nigeria. The 
major focus in this study is the natural forest cover which is a major habitat for 
fauna. 

The decrease in the area of forest and agriculture in the active mining phase 
results in the increase of the areas for bushland, grassland, built up area, water 
and bare soil. For example, the built-up area increased because of the construc-
tion of staging area that would house project personnel, equipment and the 
processing plant. This is in line with the study conducted by [33], who evaluated 
land use/cover change with temporal satellite data and information systems and 
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reported that increase in the built-up area by 135.7% was largely accompanied 
by the loss of vegetation cover by 29.4%. Moreover, the area of bushland and 
grassland increased due progressive rehabilitation programs conducted in the 
degraded mining sites such as the area for Waste Rock Dumps. The area for bare 
soil increased due to the infrastructure development such as access roads and 
energy. Finally, the presence of Tailing Storage Facility slightly increased the 
area for water bodies from 0.0% to 4.5% as all the slurry from the processing 
plant are channeled to the Tailing storage facility. 

The study findings have further revealed that, in the year 2017, bushland and 
forest were the leading land covers in the area and accounted for 308.0 ha 
(31.5%) and 303.0 ha (30.9%) respectively, followed by agriculture with scattered 
settlements while the least classified was water 7.0 ha (0.7%). The increase in the 
area for bushland and forest could be associated with the progressive rehabilita-
tion of Waste Rock Dumps and Tailings Storage Facilities conducted from the 
period around 2003 [34]. It was the policy of GPGM mine to carry out progres-
sive rehabilitation of all disturbed areas that are no longer required for the min-
ing operation in accordance with final Closure objectives. 

The land cover classification at GGM for the year 1997 indicated that, forest 
was the dominant landcover type, which occupied 49.7%. This was followed by 
bushland, which occupied 35.2%. However, the least classified Land cover was 
bare soil and water, which occupied 0.1% each. The analysis also indicated that, 
between the years 1997-2010 forest area decreased during development and ac-
tive mining phases. During these phases, a huge number of trees in the forest 
were cut and replaced by components of the mining such as open pits, waste 
rock dumps, overburden and Tailing storage facilities [24], infrastructure devel-
opment (access road and energy) and construction of camps within the mining 
area [35].  

However, in the year 2010 the bush land dominated the land covering 44.9% 
of the total area, followed by forest, which occupied 29.3%. While, the least clas-
sified was the area covered by water which occupied 0.6%. The findings revealed 
that, in the year 2017 at GGM, the most dominant land cover type was forest 
that accounted for 44.1%. This was followed by bushland, grassland, agriculture, 
bare soil and built up area. The least classified was water covering 0.5%. The for-
est and bushland being the dominant land cover type in 2017 could be attributed 
by the progressive rehabilitation which started in 2004.  

4.2. Transition Matrices 

GPGM and GGM are among the large-scale gold mines in Tanzania, where the 
forest covers have been significantly changed to non-forest covers leading to su-
perficial loss of vegetation. Before the commencement of the projects local 
people from the surrounding environments used the areas for anthropogenic ac-
tivities such as agriculture, cattle grazing and timber harvesting. These activities 
were among the drivers of land cover changes in the areas [26]. After the 
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projects took off these activities ceased and mining and its associated activities 
have been among key drivers of land cover changes experienced in the licensed 
areas. 

In the 1997-2010 transition matrix at GPGM, large part of forest has been 
transformed into bushland and built up area. The main driver of forest change 
was clearing of vegetation for construction of roads, construction of buildings 
for project personnel and the development of other infrastructure. This indicates 
that, the large part of the forest with tree species of more than 10% crown cover 
and the minimum height of 3 m could be removed hence changed to bushland. 
Also, the forest cover was cleared off to pave way for construction of project in-
frastructures and accommodation for project personnel. At GGM during 
1997-2010 and 2010-2017 periods, the main driver of forest land cover change 
was also bushland. This indicates that, these changes are associated with intense 
deforestation resulting from transforming forest to bushland. 

4.3. Land Cover Projection (Future Land Cover) for the Year 2027 

The findings have further revealed that, in both studied sites, it was projected 
that in the year 2027, forest will remain to be the most dominant land cover type 
while water bodies will be the least land cover type. Although, the forest is pro-
jected to be the most dominant land cover type in 2027, it will not reach the total 
area it covered in 1997. For example, at GPGM in 1997 the area covered by for-
est was 52.1% and, in the projection of 2027, it will be 34.7% and at GGM the 
area covered by forest in 1997 was 49.7% and in the projection, it will be 43.7%. 

In addition, uncontrolled gold mining operations led to loss of biodiversity 
and ecosystem services. Notwithstanding the increased mining industry due to 
the government effort on promoting investment to achieve economic develop-
ment of Tanzania, there should be strong enforcement of the laws to ensure that 
mining companies rehabilitate the degraded mining sites to the level close to its 
original condition. Also, it is important for the government and mining opera-
tors to enhance monitoring measures in the revegetated areas to avoid trespass-
ing. Thus, there is a need of involving local people in the management of the re-
habilitated areas. 

4.4. Accuracy Assessment for Both GPGM and GGM  

In this study, the accuracy assessment classification was done with reference to 
the raw satellite images. The aaccuracy assessment classified for GPGM indi-
cated that the overall accuracy is 74.7% and the assessment of land cover model 
using Kappa statistics is 70.2%. Whereas, the accuracy assessment classified for 
GGM indicated that the overall accuracy is 71.4% and Kappa statistics is 66.1%. 
The overall accuracy values for GPGM and GGM falls within standards sug-
gested by [36] and the Kappa statistics were interpreted as being in substantial 
agreement than by chance alone [8] [29] [37]. This is confirmed in the study 
conducted by [38] who provided land use and land cover accuracy of 82.00% 
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and Kappa (K) statistics of 77.02% which is acceptable in both accuracy total and 
Kappa statistics. According to [29] the overall accuracy is interpreted as almost 
perfect agreement and Kappa Statistics accuracy is interpreted as substantial 
agreement. In addition, the study conducted by [39] achieved overall classifica-
tion accuracies of 95.32% and 95.13% and overall kappa statistics of 0.9237 and 
0.9070 respectively for the classification of 1992 and 2012 images. Moreover, the 
change detection approach conducted by [23] yielded a reliable change map with 
an overall accuracy of 83.3% and a kappa coefficient of 0.79 which is acceptable.  

5. Conclusion and Area for Further Research 
5.1. Conclusion 

The study aimed at monitoring land cover changes of GPGM and GGM toward 
1997-2017 and prediction of 2027 by using remote sensing and GIS technologies. 
Supervised classification method was used to delineate land cover classes. In this 
study, seven major land cover classes were distinguished from satellite images of 
1997, 2010 and 2017 for the mining areas of GPGM and GGM to monitor min-
ing activities over a twenty-year period. These classes include agriculture with 
scattered settlement, forest, bushland, grassland, bare soil, built-up areas and 
water bodies. The study provides land cover maps for the years 1997-2027 and 
the trend of land cover changes during the time period from 1997-2017 which 
also gave the projection of change to the year 2027. At GPGM the results from 
the LULC analysis showed that, in 1997 and 2027 forest was the most dominant 
land cover type and in 2010 and 2017 bushland was the most dominant land 
cover type. Whereas, at GGM the most dominant land cover type in 1997, 2017 
and 2027 was forest and in 2010 was bushland. The overall trend suggests that 
forest area decreased from 1997 to 2010 due to clearing to pave way for mining 
operations such as development of pits, Waste Rock Dump and Tailing Storage 
Facility which resulted into significant reduction in vegetation cover. The results 
also imply that, mining operations were actively conducted during this period. 
However, the forest and bushland cover increased from 2010-2017 due to pro-
gressive rehabilitation conducted in the area. The study revealed that consider-
able portion of the land cover especially the forest area was converted to other 
land covers during the period of 1997-2010. It was also projected that in the year 
2027 the area for forest and bushland in all mines will be dominant land cover 
types and the least land cover will be open water bodies. These results are an in-
dication of an excellent state of the ecosystem will be found in the GPGM and 
GGM in the future. Thus, it is important for the government and mining opera-
tors to enhance monitoring measures in the revegetated areas to avoid en-
croachment. Similarly, there is a need to have an integrated forest management 
approach by involving the local people in Nzega and Geita Districts, who are the 
direct beneficiaries of the forests. The application of remote sensing and GIS 
technology was successful, but it is important to point out the limitations of the 
study; the technology was fairly expensive due to financial constraints and the 
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technology required specialized skills thus frequent training was vital.  

5.2. Area for Further Research 

Remote sensing and GIS technologies used in this study serve as a reference 
point for further studies; the following area needs further research: Determining 
and quantifying the health of vegetation in the gold mining areas using Norma-
lized Difference Vegetation Index (NDVI) by measuring the difference between 
near-infrared and red light. 
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