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Abstract 
Base optimum thickness is determined for a front illuminated bifacial silicon 
solar cell n+-p-p+ under magnetic field. From the magneto transport equation 
relative to excess minority carriers in the base, with specific boundary condi-
tions, the photocurrent is obtained. From this result the expressions of the 
carrier’s recombination velocity at the back surface are deducted. These new 
expressions of recombination velocity are plotted according to the depth of 
the base, to deduce the optimum thickness, which will allow the production, 
of a high short-circuit photocurrent. Calibration relationships of optimum 
thickness versus magnetic field were presented according to study ranges. It is 
found that, applied magnetic field imposes a weak thickness material for solar 
cell manufacturing leading to high short-circuit current. 
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1. Introduction 

One major problem of silicon solar cells is the small collection of minority 
charge carriers which may be due among others at short diffusion lengths and 
carrier’s mobility and surfaces recombination velocity issues. In order to im-
prove its performance, several characterization techniques relating to minority 
carriers deflection under magnetic field, were presented [1]-[6]. Thus, the struc-
ture solar cell studied can be with: 

1) horizontal junction (monofacial, bifacial or double side surface field) [7] [8] 
[9]. 
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2) multiple vertical junction (series or parallel) [10] [11] [12].  
The operating conditions are various regimes i.e.: static [13] [14] [15] and 

dynamic [16] [17] [18] [19]. The phenomenological parameters to be deter-
mined are, diffusion length (L), diffusion coefficient (D), lifetime (τ), surface 
recombination velocities respectively at the junction (Sf) and the rear (Sb) [20] 
[21] [22] [23] [24]. The imposed both, thickness (H) [25] and doping rate [26] 
are to be take into account. The applied external conditions such as, radiation 
flux and energy [27], temperature and magnetic field [28] [29] [30], influence 
the phenomenological parameters. 

In this work, we present a method to determinate the optimum thickness 
(Hopt) of silicon solar cell under external conditions i.e. magnetic field (B) and 
polychromatic illumination. 

2. Theoretical Study 
2.1. Monofacial Solar Cell Presentation  

Silicon solar cell type n+/p/p+ [5] subjected to multi spectral illumination and a 
constant magnetic field (perpendicular to Ox axis), is presented in Figure 1. 

2.2. Magnetotransport Equation 

The B  magnetic field influences the movement of minority charge carriers. In 
this condition the distribution equation relative to minority charge carriers 
( ),x Bδ  in the base is given as follows [4] [6] [14] [31] [32]. 

( ) ( )
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G(x) is the minority carrier’s generation rate [33] 
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D(B) is the minority carrier’s diffusion coefficient depending on B [25] [28] [31] 
[34] and D0 is diffusion coefficient without magnetic field.  
 

 
Figure 1. Front illuminated silicon solar cell structure type n+/p/p+. 
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L is the minority carrier’s diffusion length B depending and τ their lifetime.  

2.3. Solution  

The Magnetotransport equation solution is given by following expression ( ),x Bδ  
for front illumination:  
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The previous relationship is fully defined, by determining the coefficients E 
and F, using base boundary conditions, what are junction (i.e. space charge re-
gion) and back side (p/p+ surface). 

2.4. Boundary Conditions 

­ At the junction x = 0:   

 ( )
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Sf is excess minority carrier junction recombination velocity and describes the 
solar cell operating point [35] [36].       
­ At back side x = H: 

 ( ) ( )
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δ
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=
=

∂ −
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                       (7) 

Sb is back surface recombination velocity induced by the back surface field for 
low high junction (p/p+) and thus minority carriers are pushed back to the junc-
tion. The space charge region’s (n+/p) electrical field allows them to be collected 
and to contribute to the photocurrent [37] [38] [39].             

2.5. Photocurrent Density for Different Magnetic Field Values 

The excess minority charge carriers collected through junction give photocur-
rent density ( ),Jph Sf B  obtained from the following Fick relation. 

( ) ( ) ( )
0

,
,

x

x B
Jph Sf B q D B

x
δ

=

 ∂
= × ×  ∂ 

                (8) 

Figure 2 gives the plot of photocurrent density versus minority carrier’s re-
combination velocity at the junction (Sf). 

Regardless of the magnetic field values, the photocurrent increases with the 
junction recombination (Sf). When junction recombination velocity is high, 
short circuit photocurrent is obtained, and then, magnetic field reduced by def-
lection the electric charges due to increased Lorentz force intensity. Thus two 
study intervals will be defined according to magnetic field B value. 

https://doi.org/10.4236/jemaa.2020.127009


C. Thiaw et al. 
 

 

DOI: 10.4236/jemaa.2020.127009 106 Journal of Electromagnetic Analysis and Applications 
 

 
Figure 2. Photocurrent density for large magnetic field values versus junction recombi-
nation velocity (in front side H = 200 µm, D = 35 cm2/s).  

2.6. Back Surface Recombination Velocity and Optimum  
Thickness Determination 

Otherwise, we note that at high values recombination velocity Sf, photocurrent 
remains constant and becomes short circuit current Jsc(B, H). So its derivative 
with respect to Sf, is therefore zero [39]. Solving such an equation gives the new 
back surface recombination velocity (Sb) expressions, of excess minority carriers, 
magnetic field dependent.  
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Equation (9) leads to two expressions of back surface recombination velocity 
of excess minority charge carriers in the base respectively, Sb1 and Sb2 [24] [39]:  

( ) ( )
( ) ( )

1 , tanh
D B HSb H B
L B L B

 
= − ×   

 
                    (10) 

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )

3

1

e cosh sinh

2 ,
sinh cosh e

i

i

b H
i

i b H
i

H HL B b
L B L BD B

Sb H B
L B H HL B b

L B L B

⋅

= ⋅

    
⋅ − −            = ⋅

   
− ⋅ ⋅ + −      

   

∑   (11) 

Sb1 electronic parameters dependent (D and L), is designed as intrinsic back 
surface recombination, while Sb2 also depending of average (composite) absorp-
tion coefficient (bi) [33] is considered as extrinsic one.  
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2.7. The Base Optimum Thickness Determination 

The optimum thickness determination technique, already used on solar cells 
maintained under other conditions [26] [29] [30] [40] [41] [42] [43] is applied 
here, according to two ranges of magnetic field values. Sb1 and Sb2 are plotted 
versus H base thickness, for given magnetic values.  

1) Low range values: 
Figure 3 gives the representation of Sb1 and Sb2 versus H, for given magnetic 

field values B as: 3.75 3.5510 10 TB− −≤ ≤ . 
For each magnetic field B value, the optimum base thickness (Hopt) is deter-

mined by projection on absciss-axis of the intercept point of velocity curves Sb1 
and Sb2. Thus the different values are presented in Table 1, and represented on 
Figure 4, as Hopt versus B. 

The correlation between optimum thickness and magnetic field is established 
below:  

 ( )cmHopt u B y= × +                       (12) 

with: 11.9508 cm Tu −= − ⋅  and 0.0634 cmy =  
2) Large range values: 
Figure 5 shows Sb1 and Sb2 versus thickness H, for the second range of mag-

netic field B values: 3.45 3.2510 10 TB− −≤ ≤ .  
The previous technique is used to determine the numerical optimum thick-

ness (Hopt) value of the base. Thus the different values are presented in Table 2. 
Figure 6, gives the obtained Hopt values representation versus B. 

 

 
Figure 3. Back surface recombination velocity versus solar cell base thickness for differ-
ent magnetic field values. 
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Table 1. Optimum thickness (Hopt) for different magnetic field (B) values. 

B (T) 10−3.75 10−3.7 10−3.65 10−3.6 10−3.55 

Hopt (cm) 0.0176 0.0150 0.0127 0.0100 0.0074 

 
Table 2. Optimum thickness (Hopt) for different magnetic field (B) values. 

B (T) 10−3.45 10−3.4 10−3.35 10−3.3 10−3.25 

Hopt (cm) 0.0158 0.0149 0.0139 0.0129 0.0117 

 

 
Figure 4. Optimum thickness Hop of base versus magnetic field. 

 

 
Figure 5. Back surface recombination velocity versus thickness base for different values 
magnetic field. 
 

The correlation between optimum thickness and magnetic field is established 
below: 

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.023 0.024 0.025 0.026 0.027 0.028 0.029

O
pt

im
um

 th
ic

kn
es

s (
cm

)

Magnetic field (T)

https://doi.org/10.4236/jemaa.2020.127009


C. Thiaw et al. 
 

 

DOI: 10.4236/jemaa.2020.127009 109 Journal of Electromagnetic Analysis and Applications 
 

 
Figure 6. Optimum thickness Hop versus magnetic field B.  

 

 ( )cmHopt Bγ ψ= × +                     (13) 

with: 10.581cm Tγ −= − ⋅  and 0.0343 cmψ =  
The results obtained by the application of the optimum thickness determina-

tion technique, show here, a thickness decrease with the magnetic field, for the 
two magnetic field ranges. This means that Lorentz’s strength increases with the 
magnetic field imposes lower thicknesses to recover minority carriers, for a 
maximum photocurrent delivered by the solar cell. Both lowest and highest 
magnetic field values give respectively 176 μm and 117 μm solar cell base opti-
mum thickness. This appears as a compromise between the different physical 
mechanisms of generation-diffusion-recombination-deflection, which take place 
in the base of the solar cell. This allows us to conclude that a front illuminated 
silicon solar to operate under magnetic field requires less material for its manu-
facturing. 

It should be noted that previous work, using the same technique or other [44], 
has produced very interesting results, maintaining the solar cell (horizontal or 
vertical junction [41] [45]) under variation of: absorption coefficient [45], dop-
ing rate (hence the lifetime, the diffusion coefficient) [26] and irradiation flux by 
nuclear particles [40]. 

Modelling studies by combination of two to two or three of the previous con-
ditions [29] [30] [42] have revealed the important economy of matter in the 
manufacture of solar cell, for these specific uses. The mathematical relationships 
between the optimum thickness of the base of the solar cell and the parameters 
of these specific conditions have been established 

It appears from the analysis of these results that the deflection of minority 
carriers due to the magnetic field, leads to lower optimum thicknesses than in 
other cases, such as thermal agitation (Umklap process), or the use of monoch-
romatic absorption coefficient radiation (short wavelengths). 

3. Conclusion 

The calibrating silicon solar cell base thickness under polychromatic illumina-
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tion operating and applied magnetic field, was realized. The optimal thickness 
(Hopt) decreases significantly with the external applied magnetic field. This 
yield makes a judicious and optimal choice of the thickness of the base solar cell 
during its manufacture for an application of this kind.  
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