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Abstract 
Information diffusion on social media has become a key strategy in people’s 
daily interactions. This paper studies consumers’ participation in the product 
information diffusion, and analyzes the complexity of information diffusion 
which is affected by many factors. Prior investigations of information diffu-
sion have primarily focused on the composition of diffusion networks with 
independent factors and the intricacy of the process has not been completely 
evaluated. The majority of prior investigations have focused on strategies and 
the moving forces in social media processes and the determination of influen-
tial seed nodes, with few evaluations conducted about the factors affecting 
consumers’ choices in information diffusion. In this study, a Bayesian net-
work model of product information diffusion was created to examine the 
links between factors and consumer deportment. It revealed how those fac-
tors had an impact on each other and on consumer deportment choice. The 
innovation of the thesis is reflected in the exploration and analysis of the spe-
cific communication path of product information diffusion, which provides a 
better marketing idea and practical method for the development of mobile 
e-commerce. The research findings can help identify the quantitative rela-
tionships between the factors affecting the process of product information 
diffusion and user behavior. 
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1. Introduction 

Consumers generate a large quantity of data online and naturally create their in-
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dividual marketing networks as consumer-led media and technology—including 
mobile intelligent terminals, WeChat, and social media sites—quickly grow, ob-
scuring the boundaries between industries and consumers. Consumers (as con-
tent creators and data publishers) have established their unique media networks, 
while enterprises publish a vast quantity of product information via numerous 
forms of social media—including network platforms and intelligent media ter-
minals—to gain the attention of possible users. Enticements have been offered to 
prompt consumers to reveal product information on their self-organized social 
media so that consumers are converted from individuals who peruse product in-
formation and buy products into product advocates and enterprise partners. 
These types of associations are advantageous for both enterprises and consumers. 

Consumers have a unique group of friends on social media, and since con-
sumers are faced with vast quantities of data and media advertising and there-
fore are not always certain how to make the correct selection, they trust their 
friends’ recommendations (Figure 1). 

Information cascade is the main method of information diffusion. In social 
media, people often forward information posted by someone else, with such in-
formation usually coming from the user’s neighbors (friends) in the social net-
work. The spread of information between friends leads to information cascade. 
The most representative information diffusion models are discussed below. 
Kempe et al. [1] proposed two equivalent models: the general cascade (GC) 
model and the general threshold (GT) model, which are generalizations of the 
independent cascade (IC) model and the linear threshold (LT) model. In the GC 
model, the probability of node diffusion depends on the record of historical ac-
tivation, while this probability is set as a constant in the IC model. In the GT 
model, the threshold function determining whether each node is activated is the 
function of the weight of activated nodes; however, in the LT model, it is the 
sum of the weight of all of the activated nodes. In the IC and LT models, each 
activated node attempts to influence the nodes that have not been activated, and 
in the voter model [2], there are two options for each node, with two kinds of 
information competing to activate more nodes. 

 

 
Figure 1. Product information allocation and value generation in networks self-organized 
by consumers. 
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In addition to the traditional information diffusion models mentioned above, 
there are also many expansion models based on these models. The IC model 
with negative opinions (IC-N) [3] takes into account the diffusion of negative 
information. In the IC-N model, if a positive activated node successfully acti-
vates the silent nodes, then positive and negative information will be spread at 
the same time; if a negative activated node successfully activates the silent nodes, 
then only negative information will be diffused. Extending the LT model, the 
Competitive LT model (CLT) model [4] considers two kinds of competing in-
formation in the network; in the CLT model, the seed nodes are activated and 
attach to one of the two competing types of information to be spread; in the 
process of activating the silent nodes, the seed nodes try to persuade the silent 
nodes to accept the information they supported. The Signed Voter model [5] 
extended the Voter Model. When the two nodes on one edge were friends, one 
node successfully activated the other node and attempted to persuade it to accept 
the information he or she supported. When successfully activating the silent 
nodes, the IC-N model and the CLT model produce similar negative impacts, 
namely, making the other node hold the same opinion. 

The information diffusion model explored in this study is different from pre-
vious models in the following aspects: 

1) A different problem was studied. Most currently available models consider 
1 - 2 factors of information diffusion at most, and they tend to lock information 
sources and identify the seed nodes [6] [7] [8] [9] [10], but it remains unknown 
how the product information transmission chain initiated by the seed nodes can 
influence consumer behavior. Therefore, in this study, multiple factors affecting 
the process of information diffusion were extracted, the degree to which they in-
fluence consumer behavior choice was analyzed, and the quantitative relation-
ship between the two was explored. 

2) Different methods are used. This study adopted Bayesian network model-
ing, giving it two major advantages: a) it is multi-factor and b) due to condition-
al independent distribution and the chain rule of the Bayesian network, the 
number of parameters in the table is exponentially smaller than the number of 
parameters in joint distribution, that is, the conditional probability distribution 
(CPD) of the nodes in the Bayesian network depends only on the father nodes. 
Even if n, the node of the entire Bayesian network, is very large, k, the father 
node of each node is very small, reducing the complexity of the operation, which 
is a major advantage of the Bayesian network. 

The logic structure of the study is as follows: in the subsequent section, the 
product information diffusion Bayesian network model is established. In the 
third part, the influence reasoning process is explored. In the fourth part, the 
reasoning process is analyzed and the influence reasoning is verified. The con-
clusions are presented in the fifth part. 

2. Product Information Diffusion Bayesian Network Model 

As a probabilistic digraph, a Bayesian network can naturally express people’s 
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causal intelligence with digraphs, perform multifactorial modeling, graphically 
demonstrate joint probability distribution among random variables, and handle 
numerous undetermined factors. 

In this study, multiple factors during the information diffusion process should 
be taken into consideration to model product information diffusion; this is an 
advantage of using the Bayesian network to express data with such structures. 
Thus, a Bayesian network was implemented in this study to demonstrate the da-
ta organization of the product information diffusion network. 

2.1. Establishment of Random Variables in the Product  
Information Diffusion Process 

Variables were chosen for implementation in the Bayesian network modeling of 
the information diffusion process according to three features: network structure, 
information attributes, and user attributes. They were defined as: 

1) Network structure 
Cross diffusion: Cross diffusion encourages information diffusion in numer-

ous groups through the elimination of clustering inside the community structure 
of social media that prevents large-scale diffusion of information. 

2) Information attributes 
Theme: Product information intently developed by enterprises is diffused on 

social media, while social media users display messages regarding certain prod-
ucts to create a theme. 

Emotion conveyed by each piece of information: this covers disagreements 
over a particular theme or idea, including both positive and negative informa-
tion. 

Origin of information: Social media generate a vast amount of real-time con-
tent at an outstanding pace, and associations between users can impact users’ 
discernment of information. Concurrently, the value of the information will im-
pact associations among users. Thus, the origin of the information is critical for 
information diffusion. 

Resonance of users toward the information: The manner in which emotions 
conveyed by information settles with users is of particular significance for in-
formation forwarding. 

3) User attributes 
User state: This involves seed nodes, diffusion nodes, and information nodes. 

Seed nodes possess a vast quantity of connections that impact the diffusion of 
information, and they are typically efficient information origins in product in-
formation diffusion. Their greatest function is to alert consumers to novel prod-
ucts and stimulate large information cascades. Diffusion nodes compel users’ 
forwarding behaviors as well as the information cascades stimulated by the seed 
nodes. It is usually challenging for information nodes to initiate lengthy chain 
responses, but they have the added benefit of quantity and they are also the ge-
nerators of ultimate value. 

Connection strength between nodes: This incorporates strong and weak asso-
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ciations [11] [12]. Weak connections offer a great number of bridges linking ad-
ditional networks, and numerous weak connections diffuse new information, 
occupying a leading role in information diffusion [13]-[19]. Strong associations 
bind user nodes together via close personal relationships. Virtually all of the so-
cial relationships happen between close friends who frequently know each other 
in real life [20]. Strong associations add to expanding human deportment on so-
cial media, online or in real life, and strong associations are more persuasive 
between individuals. 

User effect: This involves deportment or abilities impacting individuals with-
out noticeable compulsory measures or immediate orders. 

User preference: This refers to if users are curious about the information they 
obtain. 

User activity: User activity possesses high- and low-attribute values. 
Limited user attention: This refers to the information captivating users. 
Similarities between users: This involves the confluence of user features in 

terms of deportment, interest, activity, language, and other factors. Homogenous 
users are more frequently linked than divergent users. 

User behavior: This incorporates three behaviors: forwarding, purchasing, and 
becoming information nodes. Forwarding involves the dispersal of information 
users obtain via their personal social media. Purchasing occurs in which the us-
ers are curious about the product endorsed by the information and then buy the 
product to create value, thereby becoming value nodes. Becoming information 
nodes describes users viewing information, but they do not act on it. For ease in 
performing later reasoning of the model, every variable was indicated by a cor-
responding symbol (Table 1). 

2.2. Establishment of the Bayesian Network Model of Information  
Diffusion 

A typical manner to generate a formation is via backward construction; it starts 
with a variable of interest (e.g., user deportment) for which we then attempt to 
discover its prior probability. If the probability is unclear due to its dependence 
on additional elements, then other elements will be included as the father nodes 
of the variable and then taken into the network. Finally, when we establish the 
formation, we will need to note that approximation could not be precluded. 

We can set up a situation for the aforementioned variables in which a variable 
is dependent on other variables. There are numerous weaker effects as well as the 
connections among the noted variables. Nonetheless, if all of the variables were 
accounted for, the network would become too intricate; these types of networks 
are difficult to comprehend and mend, and the parameters are challenging to 
establish. Further, as Bayesian network reasoning is greatly reliant on connec-
tion function, adding the edges would likely make the utilization of the network 
very expensive. Figure 2 reveals the network arrangement of product informa-
tion diffusion and its accompanying symbol portrayal. 
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Overall, every variable in the model is connected with a CPD. This is utilized 
to indicate the dispersion of the value of this variable under the condition that 
each joint assignment of its father node is established. For nodes without father 
nodes, CPD is subject to an empty variable set. Therefore, CPD is altered into a 
marginal distribution, such as ( )P T  and ( )P N . The network structure of 
information diffusion forms the Bayesian network difussionB  along with CPD. 

In difussionB , there are two kinds of unique variable nodes, one is the 
“S-Strength of Connection”. Variable S is denoted as the multiplexer of CPD. 
That is to say, the a priori probability of the chosen variable is a duplicate of one 
of the values of its father nodes. 

Packaged CPD variables are an additional kind of unique variable node, 
namely, “N-Near” and “I-Effect”, and their priori probabilities were determined 
by other variables. 

 
Table 1. Symbolic depiction, type, and value of variables in information diffusion net-
works. 

Name of variable Symbol Type Value 

Cross diffusion D-Cross diffusion Binary variable 
{ 0d  to the disadvantage of,  

1d  to the advantage of} 

Connection C-Connection Binary variable { 0c  hard, 1c  easy} 

Theme T-Themes Integer variable { 1, , kt t } 

Emotion conveyed  
by information 

E-Emotion Binary variable { 0e  negative, 1e  positive} 

Origin of  
information 

O-Origin Boolean variable { 0o  no, 1o  yes} 

Resonance toward  
the theme 

R-Resonance Binary variable { 0r  not friends, 1r  friends} 

User state U-Users 
Three-valued  
variable 

{ 0u  information node,  
1u  diffusion node, 2u   

seed node} 

Connection strength 
between nodes 

S-Strength of  
connection 

Binary variable { 0s  weak, 1s  strong} 

User effect I-Effect Binary variable { 0i  small, 1i  big} 

User preference F-Preference Binary variable 
{ 0f  disinterested, 1f   
interested} 

User activity A-Activity Binary variable { 0a  low, 1a  high} 

Limited user  
attention 

L-Limited attention Binary variable { 0l  not attracted, 1l   
attracted} 

Similarities between 
users 

N-Near Binary variable { 0n  low, 1n  high} 

User behavior B-Behavior Binary variable 
{ 0b  forward, 1b  purchase, 

2b  information node} 
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Figure 2. Network structure and symbolic depiction Gdiffusion of product in-
formation diffusion. 

3. Influence Reasoning Process 

Cooper [21] for the first time, conducted a formal analysis of the computational 
complexity of probability reasoning in the Bayesian network. Variants of the va-
riable elimination algorithm were invented independently by multiple teams. An 
early variant came from the peeling algorithm proposed by Cannings et al. [22] 
[23], which is a systematic exposition of genetic lineage analysis. 

The general problem of probability reasoning in the graph model was first 
solved by Kim and Pearl [24], who proposed a local message passing algorithm 
in the Bayesian network featuring the multiple tree structure. These views pro-
voked the development of various algorithms that are more common, including 
a series of methods proposed by scholars, such as [25]-[30]; all of these methods 
end with the variable elimination algorithm. These methods were first described 
by Zhang and Poole [31] and then developed by Dechter, while Huang and Dar-
wiche [32] provided some useful techniques for the effective implementation of 
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such algorithms. 
Following the idea of the multi-tree algorithm, Pearl presented a simple ap-

proach, namely generating multiple trees with clustering nodes, but the efficien-
cy of the process is low. The sum-product message passing algorithm was de-
veloped by Shenoy and Shafer [33]. They described it with a very broad form, 
which, in addition to the probability graph model, also applies to many factori-
zation models. The sum-product-division method was developed in a series of 
papers by Lauritzen and Spiegelhalter [34] and Jensen, Olesen, and Andersen 
[35]. Studies in this direction have also produced the theory that takes message 
passing operations as a re-parameterization implemented on the initial distribu-
tion. The sum-product-division algorithm described by Andersen, Olesen, and 
Jensen [36] formed the basis of the Bayesian network system, which then led to 
the extensive application of this method. 

Influence reasoning used the clique tree data structure to pass influences or 
information between adjacent cliques. First, all of the influences were sent to the 
root clique to work out the marginal posterior probability of ( )P B . On this ba-
sis, the root clique sent the information to the sub-cliques until all of the leaf 
nodes were used to estimate the marginal posterior probability of factors in-
fluencing consumer behavior choice and obtain the quantitative correlation be-
tween them. 

3.1. Mechanism of Influence Reasoning 

The influencing reasoning process includes the upward pass and the downward 
pass. When passing upward, a root node is selected to send all of the influences 
to the root clique, and when the process ends, the root node has all of the influ-
ences. Thus, the root node could now send appropriate information to its child 
node (mapped to difussionB , that is, to its father node). The algorithm continues 
until the leaf node of the tree that is used to send information is no longer 
needed. The second stage is called the downward pass. 

The two transfer factors of each edge can be calculated according to the fol-
lowing method. When a clique receives all of the influences sent by its down-
stream neighbors, it can send influences to the upstream clique. Assume T as a 
clique tree; if iC  receives information from all of the neighbors except for jC , 
then the information passing from iC  to jC  is ready. When the message 
passing from iC  to jC  is ready, it can be calculated ( ),i j i jSδ →  by multiply-
ing its initial potential with information sent from all of its neighbors except for 

jC , and the variables in ,i i jC S−  are eliminated. The message passing process 
is as follows: 

1) Initialization of the clique tree. 
2) When there is ,i j , that makes the transmission from i to j ready. 
3) ( ) ( ), Message Influence ,i j i jS i jδ → ← . 
4) Initialize each clique. 
5) 

ii i k Nb k iβ ψ δ∈ →= ⋅∏ . 

6) Return to { }iβ . 
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3.2. Reasoning of All Factors in the Product Information Diffusion  
Bayesian Network Model 

Figure 3 shows the upward pass of the clique tree algorithm with C12 as the root 
clique in the information diffusion network and the downward pass on this basis. 
Based on influences from C5 and its own initial potential energy, C12 sends mes-
sages to its child node C11. Once the child node of the root group receives the 
message, it will have all of the messages that need to be sent to its child node; for 
example, messages passed downward from C11 to C10. At the end of the process, 
all of the cliques in the tree can be calculated by multiplying the initial potential 
energy with each incoming message factor. The key is that the message factor 
used to calculate iβ  is exactly the same as the influencing factor in the upward 
pass algorithm with iC  as the root node. Therefore, if we initialize each clique, 
according to the downward pass algorithm, iβ  can be expressed by the follow-
ing equation: 

( ) ( )
i

i i
x C

C P xβ
Φ−

= ∑


                       (1). 

At the end of the process, each clique contains the marginal probability of the 
variables within its scope. In the upward pass, the clique containing one specific 
variable could be selected to calculate the marginal probability of this variable 
and eliminate the redundant variables in the clique. The key point is that the re-
sults obtained by this process do not depend on the clique selected; that is, if the 
variables appear in two cliques, then their marginal probabilities must be con-
sistent. The influence reasoning process is shown in Figure 3. 

4. Analysis and Verification of the Reasoning Process 

In the above algorithm, only when influences are sent from iC  to jC , and 

iX C∈  and jX C∉ , could the variable X be eliminated. If X is eliminated 
when the influences are sent from iC  to jC , then X will not appear at the jC  
side of the edge ( )i j−  in the tree. If X appears in kC , which is a specific cli-
que at the jC  side in the tree, jC  will be on the path from iC  to kC . How-
ever, we know that X appears simultaneously in iC  and kC , but it does not 
appear in jC , thus it violates the running intersection property. 

Based on this finding, a semantic interpretation is provided for the influences 
applied in the clique tree. Assume ( )i j−  as one edge in the clique tree, 

( )i jF →

 denotes the set of factors at the iC  side of the edge in the clique, and
 

( )i jV →

 represents the set of variables at the iC  side but not in the cut set. For 
example, in the clique tree shown in Figure 3,

 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }3 6 , | , | , , | , , | , , , , , ,F P T P F T P R E T P L F P E P B L R O U I A S→ =


 

and ( ) { }3 6 , , ,V T F E L→ =


. Intuitively, the product of all of the factors in ( )i jF →

 
is passed between iC  and jC , which is the marginalization (summation of all 
of the other variables) on all of the variables in the cut set. 
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Figure 3. Upward and downward pass process of the information diffusion 
network. 

 
In the above algorithm,

 i jδ →  is an influence from iC  to jC , and 

( )
( )( )

,
i j i j

i j i j
V F

S
φ

δ φ
→ →

→
∈

= ∑ ∏
 

. First of all, the basic situation was considered, where 

clique iC  was the leaf node in the tree. In this context, it could be directly cal-
culated by the operation on the clique, as shown in Figure 3. If clique iC  is not 

a leaf node, then

 ( )( )i j i jV Fφ
φ

→ →∈
∑ ∏
 

. If 1, , mi i  is the neighbor clique of iC  ra-

ther than jC , and because X will not appear at the jC  side of the edge ( )i j−  

in the tree if X is eliminated when the influences is sent from iC  to jC , 

( )ki iV →

 has a disjoint union, ( )i jV →

, where 1, ,k m=  , and the variable iY  

eliminates itself at iC . Similarly,
 ( )i jF →

 is the disjoint union of ( )ki iF →

, and 

iψ  is calculated per factor iF . Thus, 
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( )( ) ( ) ( )( )( )1 1i ii j i ii j i i i i i im m
V Y V VF F F Fφ φ φ φ

φ φ φ φ
→ →→ → → →∈ ∈ ∈ ∈

    
  =          

∑ ∑ ∑ ∑∏ ∏ ∏ ∏
   

       (2) 

As shown above, for each k, the variables in ( )ki iV →

 will not be found in any 
other factor. Therefore, based on the simple rule that the sum and the product of 
a factor are interchangeable, the following equation is obtained from the sum-
mation equation on ( )ki iV →

 in Equation (2): 

( ) ( )( )( )1 1

. ...
i i i i i i i i i im m

Y V VF F Fφ φ φ
φ φ φ

→ → → →∈ ∈ ∈

   
             

∑ ∑ ∑∏ ∏ ∏
 

              (3) 

According to the inductive assumption and the definition of iψ , the above 
equation is equivalent to: 

1 m
i

i i i i i
Y
ψ δ δ→ →⋅∑                           (4) 

Equation (4) is the very operation to calculate the influencing factors in the 
upward pass algorithm and the message factors in the downward pass algorithm. 
Thus, the cut set can divide the graph into conditionally independent fragments, 
and such conditional independence enables messages on the cut set to com-
pletely sum up the information on one side of the clique tree, which is extremely 
important for the calculation of the information on the other side. Based on this 
analysis, we calculated the posterior probability of the variables in the selected 
root clique, and if rC  is the root clique of the tree, then: 

( ) ( )
r

r r
x C

C P xβ
Φ−

= ∑


                        (5) 

For the Bayesian network B, if Φ  is composed by the CPDs in B and it is 
simplified by the influencing factor e, then ( ) ( ),r r B rC P C eβ = . Moreover, the 
joint probability of this factor should be normalized as 1 before the marginal 
posterior probability of the variables on rC  can be calculated. 

Verification of Influence Reasoning 

Assuming that the prior probabilities of all of the influencing factors are ran-
domly generated, the upward pass reasoning was performed first to gain the 
marginal posterior probability of ( )P B ; on this basis, the downward pass rea-
soning was conducted to obtain the marginal posterior probability of each in-
fluencing factor; after 500 iterations the mean and standard deviation of each in-
fluencing factor were obtained, as shown in Table 2. Then, we can obtain the 
degree to which each influencing factor affects consumer behavior, and quantify 
the relationship between the influencing factors and user behavior. 

5. Conclusions and Future Research 

In this study, based on the product information diffusion in consumers’ 
self-organized social networks, the factors affecting consumer behavior choice 
were explored during the product information diffusion process, and the main 
achievements and innovations are: 
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Table 2. Marginal posterior probability, mean value, and standard deviation of influen-
cing factors. 

Variable ( )P X  mean std 

T-Theme 
0.3584 
0.6416 

0.4703 
0.5297 

0.3116 
0.3116 

E-Emotion 
0.5687 
0.4313 

0.5014 
0.4986 

0.2647 
0.2647 

O-Origin 
0.0466 
0.9534 

0.5020 
0.4980 

0.2397 
0.2397 

A-Activity 
0.4773 
0.5227 

0.5040 
0.4960 

0.2353 
0.2353 

I-Influence 
0.5808 
0.4192 

0.4984 
0.5016 

0.2381 
0.2381 

U-Users 
0.0672 
0.7697 
0.1631 

0.3370 
0.3228 
0.3401 

0.1801 
0.1827 
0.1824 

N-Near 
0.6779 
0.3221 

0.5004 
0.4996 

0.2784 
0.2784 

F-Favor 
0.2816 
0.7184 

0.5115 
0.4885 

0.2386 
0.2386 

L-Limited Attention 
0.8481 
0.1519 

0.4882 
0.5118 

0.1976 
0.1976 

R-Resonance 
0.1769 
0.8231 

0.4085 
0.5915 

0.2278 
0.2278 

C-Connection 
0.2268 
0.7732 

0.4996 
0.5004 

0.2961 
0.2961 

S-Strength of Connection 
0.6181 
0.3819 

0.4938 
0.5062 

0.1729 
0.1729 

 
1) Multiattribute Analysis of Product Information Diffusion. Of the factors 

impacting the product information diffusion process, those with critical values 
were identified, and the causal link between them was evaluated. Rational ranges 
were designated to the binary, three-valued, and Boolean variables of those fac-
tors to more precisely evaluate the intricacy of the product information diffusion 
process. 

2) Bayesian Model of Product Information Diffusion. A Bayesian network was 
implemented to depict information diffusion operations under the effects of 
multiple elements. It revealed how those factors had an impact on each other 
and on consumer deportment choice. It also demonstrated the process and con-
struction generated by the product information diffusion network, thereby de-
monstrating the product information diffusion network in a more precise form. 

3) Influence Reasoning in Product Information Diffusion. The marginal post-
erior probability of factors leading to the specific behaviors of users was esti-
mated with a quantitative method so as to gain the quantitative association be-
tween user behavior and the influencing factors. 
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Dynamic Bayesian network model of information diffusion considering the 
time factor would be proposed in the future research to analyze the associations 
between factors affecting the diffusion of product information among consum-
ers and consumer behaviors.  
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