
Journal of Data Analysis and Information Processing, 2020, 8, 229-240
https://www.scirp.org/journal/jdaip

ISSN Online: 2327-7203
ISSN Print: 2327-7211

DOI: 10.4236/jdaip.2020.84013 Sep. 29, 2020 229 Journal of Data Analysis and Information Processing

Resizable, Rescalable and Free-Style
Visualization of Hierarchical Clustering
and Bioinformatics Analysis

Ruming Li

School of Information Engineering, Baise University, Baise, China

Abstract
Graphical representation of hierarchical clustering results is of final impor-
tance in hierarchical cluster analysis of data. Unfortunately, almost all ma-
thematical or statistical software may have a weak capability of showcasing
such clustering results. Particularly, most of clustering results or trees drawn
cannot be represented in a dendrogram with a resizable, rescalable and
free-style fashion. With the “dynamic” drawing instead of “static” one, this
research works around these weak functionalities that restrict visualization of
clustering results in an arbitrary manner. It introduces an algorithmic solu-
tion to these functionalities, which adopts seamless pixel rearrangements to
be able to resize and rescale dendrograms or tree diagrams. The results
showed that the algorithm developed makes clustering outcome representa-
tion a really free visualization of hierarchical clustering and bioinformatics
analysis. Especially, it possesses features of selectively visualizing and/or sav-
ing results in a specific size, scale and style (different views).

Keywords
Hierarchical Clustering, Clustering Visualization, Dendrogram Drawing,
Tree Drawing, Resizable and Rescalable, Free-Style Visualization

1. Introduction

Hierarchical cluster analysis plays a great role in exploratory data analysis, in-
formation classification, phylogenetics and so forth. The clustering is capable of
processing the data such that each of the items is treated as a cluster, pairwise
clusters can be merged as one cluster on a similarity basis, and then the paired
clusters are joined on a relaxed similarity basis until all the clusters are merged

How to cite this paper: Li, R. (2020) Re-
sizable, Rescalable and Free-Style Visuali-
zation of Hierarchical Clustering and Bio-
informatics Analysis. Journal of Data
Analysis and Information Processing, 8,
229-240.
https://doi.org/10.4236/jdaip.2020.84013

Received: June 24, 2020
Accepted: September 26, 2020
Published: September 29, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jdaip
https://doi.org/10.4236/jdaip.2020.84013
https://www.scirp.org/
https://doi.org/10.4236/jdaip.2020.84013
http://creativecommons.org/licenses/by/4.0/

R. Li

DOI: 10.4236/jdaip.2020.84013 230 Journal of Data Analysis and Information Processing

as a single cluster. It is the agglomerative hierarchical clustering as a default fa-
shion. Alternatively, this fusion can be carried out reversely (divisive fashion).
Whichever fashion the clustering may take, it performs computing and merging
all the items and this process is completed [1]-[10].

The next process is how we represent its clustering results—the last but not
least part of our work. Usually, clustering results are represented graphically
with a tree diagram such as an evolutionary or phylogenetic tree, which is
termed as dendrogram (including cladogram and phenogram). It is a tree-like
branching diagram representing a hierarchy of classes or categories based on the
degree of similarity or the number of shared characteristics or traits especially in
biological taxonomy. A dendrogram is drawn with the line connecting two clus-
ters that are closest to each other, the line connecting two primary mergers that
are closest to each other, the line connecting two secondary mergers that are
closest to each other, and the like. This stepwise process continues until all mer-
gers and items are connected as a single big merger (i.e., a fusion of clusters).

The dendrogram helps visualize the relationships among clusters, which is the
way we use hierarchical data to understand phylogenetics, taxonomy, informa-
tion architecture, etc. Being resizable (changeable size) and rescalable (adjustable
scale in length and width) are desirable for these purposes. However, this graph-
ical representation is static with a fixed size and scale between length and width.
A static dendrogram is not resizable and rescalable so that a desired tree view of
clusterings is not available. As far as the topic is concerned, almost all existing
mathematical or statistical software may not be capable of drawing dendrograms
in a free style manner. A nonresizable and nonscalable dendrogram cannot ac-
tually meet the needs of viewing clustering results in an arbitrary way. As a re-
sult, the static dendrogram is not pragmatically usable but a merely graphical
output of data clusterings. Most commercial software can provide only such a
simple output function such as MatLab, SPSS and SAS. The typical dendrogram
drawing programs available are TreeView, Phylip, Paup, MEGA (Molecular
Evolutionary Genetic Analysis) and so on, which provide a representation of
graphical clusterings [3] [4] [6] [7]. Some of these programs may be dynamic
and the others are static. Some of the dynamic programs (e.g., TreeView) are
rescalable but not resizable or vice versa, as well as not in a free-style fashion.
Even if these programs are both resizable and rescalable in time, their algorithms
are not known to the world or known in different approaches and programming
languages (e.g., R and Python). They only possess the basic function for a den-
drogram. This impedes the communications between developers to better un-
derstand, improve or enhance these algorithms.

The author previously published and presented a textual tree drawing of bio-
logical data clusterings but it was not free-style and graphical [11]. This paper
introduces an algorithm that is very useful for one to get insight into how a re-
sizable, rescalable and free-style tree is drawn yet usable immediately for devel-
opers to build, improve or enhance such programs.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 231 Journal of Data Analysis and Information Processing

2. Methods

The context of dendrogram drawing programs is not confined to phylogenetic
data as is by most of the tree drawing programs and is applied to any other data
that are clusterable. Likewise, the metrics used to define the relationships be-
tween clusters are not limited to distance measures and can be any other mea-
surements as long as they can generate quantitative differences between clusters
[5] [12]. To put it simply, however, the metric data are clustering dis-
tances/dissimilarities that are used to define and measure the branch lengths of
nodes in a dendrogram. The computer language used to create a dendrogram is
Java that is most popularly used programmatic solution than others, although it
can be any other language. Thus the Java-based portable program produced by
this algorithm can be migrated to and employed in any other systems or plat-
forms.

As we know, a dendrogram is structured as horizontally clustering levels (i.e.,
nodes) and vertically clustering lines (i.e., branches), and constructed from both
ways. Then the two-way tree drawing constitutes the formation of a dendrogram
scaled in width and height. There are three possible directions (styles) of tree
drawing: the first is drawing a tree from left to right (default view), the second is
drawing a tree from right to left (mirror view), and the third is drawing a tree
from the bottom up (upright view). Creating a dendrogram is done by drawing
different nodes and branches whose graphical representation is composed of
pixels. Indeed, a dendrogram is drawn by arranging pixels on the background.
The so-called static image of tree drawing is made in essence by a fixed number
of pixels whose number is constant such that the image is not alterable. The
so-called dynamic image of tree drawing is made essentially by a number of pix-
els whose number is changeable such that the image is alterable. Therefore, the
alterability of an image drawn depends on how pixels are dynamically incre-
mented or decremented over the background. This is just a matter of dynami-
cally redrawing a picture on the canvas or, just as what the algorithm suggests,
rearranging pixels at runtime of tree drawing. But how pixels are rearranged
while resizing and rescaling a dendrogram is what the algorithm addresses. This
algorithm is based on such a “dynamic” drawing instead of “static” one with
pixels being freely rearranged. It is described in detail as below.

When a dendrogram is resized and rescaled, the pixels are required to incre-
ment or decrement in order to adapt to a new scale and size. What is more, this
pixel increment or decrement is a continuous process or called “seamless” pro-
gression such that resizing and rescaling a dendrogram is a course of smoothly
growing or shrinking. However, the pixels incremented or decremented may not
be able to be equally assigned to each of level/line intervals (i.e., the space be-
tween clustering levels or branches). If the number of pixels happens to be the
same as the number of levels/lines, each of spaces between levels/lines can re-
move or be assigned one pixel such that each of space widths/heights can de-
crease or increase. But if the number of pixels is not the same as the number of

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 232 Journal of Data Analysis and Information Processing

levels/lines or the former is not the multiple of the latter, the former is divided
by the latter and gets a remainder. How these remainder pixels, i.e., those pixels
greater or less than or not the multiple of the number of levels/lines, could be
allocated to or removed from a dendrogram?

There are two solutions to this issue about the remainder pixels not matching
the number of levels/lines: one is to assign the remainder pixels incremented to
the intervals of right-left levels/top-down lines or removed from there the re-
mainder pixels decremented. Another solution is to add the remainder pixels to
or remove them from the intervals of left-right levels/bottom-up lines. The core
code below is the algorithm that implements the resolution to how the remaind-
er pixels are rearranged while resizing and rescaling a dendrogram. The intervals
of right-left levels/top-down lines are assumed to be the default spaces between
levels/lines where pixels are added or removed. So the algorithm addresses this
way of dendrogram drawing, but one can choose the intervals of left-right le-
vels/bottom-up lines and the rationale behind the way is the same.

Suppose we have the following variables whose definitions are given in the
graphical context of any dendrogram drawing program:

HC = the class of Hierarchical Clustering
CL = the number of clustering levels or nodes
CN = the number of clustering lines or branches
CK = the check point for forward or reverse drawing
UP = true if upright drawing, false if the upright drawing
 is reset to get otherwise drawing
DH = the signed difference in height/width by resizing
PH = the picture height in drawing
PW = the picture width in drawing
UW = the increased/decreased unit width of a tree
HR = the signed remainder pixels of horizontal resizing
VR = the signed remainder pixels of vertical resizing
LSP = level/line spacing adjustment control (spacer)
Tot = the total of signed and accumulated HR
Sum = the sum of signed and accumulated VR
I = the initial PW
J = the initial PH
K = intermediately or temporarily stored value

// The core code that implements the algorithm of resizing, rescaling and
// restyling a dendrogram or tree diagram:
DH = UP? J - PH : I - PW; //DH is zero initially in conditional statement
// if UP is true by ?-checking, starting vertical coordinate of tree drawing
// if UP is false, starting horizontal coordinate of tree drawing
if (HC.Mode == 1) {
 // Horizontal/vertical auto-resizing is realized by positive/negative Tot
 Tot += DH;
} else {
 // Handle horizontal drawing width

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 233 Journal of Data Analysis and Information Processing

 if (DH * HR < 0) {
 CK = 1; // To the reverse direction of resizing
 } else {
 CK = 0; // To the same direction of resizing
 }
 K = HR; // Store HR value before being changed
 // Get remainder pixels after assigning pixels to clustering levels
 HR = DH % CL;
 if (HR == 0) CK = 0; // No resizing as DH = 0
 DH /= CL; // Get DH that is signed multiple of CL
 UW += DH; // Increase/decrease the unit width of tree
 if (Tot == 0) {
 Tot = Math.abs(HR); // Initialize Tot with HR
 } else {
 if (CK == 0) {
 Tot += Math.abs(HR); //Increment Tot by HR
 } else {
 Tot -= Math.abs(HR); //Offset Tot by reverse HR
 if (Tot > 0) {
 HR = -HR; //Reverse direction of resizing
 } else if (Tot < 0) {
 Tot = -Tot; //Make Tot positive
 }
 }
 }
 if (Tot >= CL) {
 Tot -= CL; //Subtract CL from Tot if Tot grows over it
 //Then each of clustering levels should decrement or increment one pixel,
 // that is, decrease or increase the unit width of tree drawing
 if (HR < 0) {
 UW--; // Decrement the unit width, shrinking tree.
 } else if (HR > 0) {
 UW++; // Increment the unit width, enlarging tree.
 }
 }
 if (HR == 0) HR = K; // If no resizing, restore HR value
}
// Handle vertical drawing height, which is analogous to the horizontal way.
DH = UP? I - PW : J - PH; // DH is evaluated by ?-checking UP value
if (DH * VR < 0) { // Vertical remainder pixels instead of HR
 CK = 1;
} else {
 CK = 0;
}
K = VR; // Store VR value before being changed
// Get remainder pixels after assigning pixels to clustering lines
VR = DH % CN; // Number of data points instead of CL
if (VR == 0) CK = 0;
DH /= CN; // Get DH that is the signed multiple of CN
LSP -= DH;
if (Sum == 0) { //Sum instead of Tot
 Sum = Math.abs(VR);
} else {
 if (CK == 0) {
 Sum += Math.abs(VR);
 } else {
 Sum -= Math.abs(VR);
 if (Sum > 0) {
 VR = -VR;

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 234 Journal of Data Analysis and Information Processing

 } else if (Sum < 0) {
 Sum = -Sum;
 }
 }
}
if (Sum >= CN) {
 Sum -= CN;
 if (VR < 0) {
 LSP++;
 } else if (VR > 0) {
 LSP--;
 }
}
if (VR == 0) VR = K; // If no resizing, restore VR value.

The above code draws a tree from both level-wise and line-wise directions and

conspires to form a dendrogram; that is, it is integrated by drawing horizontally
by nodes and vertically by branches. So is the tree drawing while resizing and
rescaling a dendrogram when pointing the lower right corner (grip handle) of
the window using a mouse and holding and dragging it. Implementing the code
is outlined as follows:

1) Initialize the signed difference in height/width (DH) with zero by evaluat-
ing J-PH for upright drawing or I-PW for both forward and mirrored drawing.

2) Enter into the Hierarchical Clustering mode, accumulate the amount of DH
difference and store it in the variable total (Tot).

3) When the difference becomes great enough to handle it (i.e., resizing oc-
curs), set the horizontal drawing width first. If the signed product of the differ-
ence and horizontal remainder pixels is negative, resizing to the reverse direc-
tion (i.e., shrinking), Otherwise resizing to the same direction (i.e., enlarging).

4) Calculate the amount of horizontal remainder pixels using the difference
divided by clustering levels.

5) Calculate the difference that is the signed multiple of clustering levels.
6) Calculate the signed amount of total that determines the direction of resiz-

ing but should minus the number of clustering levels if the total grows over it.
7) The negative sign of horizontal remainder pixels shrinks a tree by decre-

menting the unit width and the positive sign enlarges a tree by incrementing the
unit width. If horizontal remainder pixels are zero, restore its previous value be-
fore resizing.

8) Second, set vertical drawing height, which is analogous to the horizontal
way with vertical remainder pixels instead of HR, number of data points in-
stead of CL and Sum instead of Tot. This redundancy is omitted here to save
space.

3. Results

The implementation of the algorithm is made by using the real-world data sets
ClustView.txt (for statistical analysis) and TreeView.tre (for bioinformatics
analysis) in Table 1 and Table 2.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 235 Journal of Data Analysis and Information Processing

Table 1. A four-dimensional (4 variables) real data set of 17 real-number objects (data
points) that is used as clusterable data input for the dendrogram drawing program built
in the software ParCluster v.3.0.

Objects Variable 1 Variable 2 Variable 3 Variable 4

lau 0.38 626.5 601.3 605.3

ccu 0.18 654.0 647.1 641.8

bhu 0.07 677.2 676.5 670.5

ing 0.09 639.9 640.3 636.0

com 0.19 614.7 617.3 606.2

smm 0.12 670.2 666.0 659.3

bur 0.20 651.1 645.2 643.4

gln 0.41 645.4 645.8 644.8

pvu 0.07 683.5 682.9 674.3

sgu 0.39 648.6 647.8 643.1

abc 0.21 650.4 650.8 643.9

pas 0.24 637.0 636.9 626.5

lan 0.09 641.1 628.8 629.4

plm 0.12 638.0 627.7 628.6

tor 0.11 661.4 659.0 651.8

dow 0.22 646.4 646.2 647.0

lbu 0.33 634.1 632.0 627.8

Table 2. A real phylogenetic data set of 15 whole-number taxa (taxonomic data entries)
that is used as clusterable data input for the tree drawing program built in the software
ParCluster v.3.0.

BEGIN TREES;

TRANSLATE

1 'Pi3b-ST-Sh',

2 'Pi3c-ST-Sh',

3 'Pi3a-SP.ST-DC',

4 'Pi3d-ST-Ke',

5 'Pi2B-ST-KE',

6 'PI-IIb-ARPI-SL',

7 'PI-II-NA',

8 'PI-II-NS',

9 'PI-II-NT',

10 'PI-IIb-NC',

11 'PI-II-CA',

12 'PI-IIb-CA',

13 'PI-II-ST',

14 'PI-II-SA',

15 'PI-II-SL';

UTREE * PHYLIP_1=(14,15,(13,(((6,(5,(4,(3,(1,2))))),(10,(7,(8,9)))),(11,12))));

ENDBLOCK;

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 236 Journal of Data Analysis and Information Processing

With the hierarchical data ClustView.txt, the algorithm is implemented as the
most-used hierarchical clustering through the options of being normalized and
average linkage (UPGMA). It outputs the dynamically clustering results by
drawing each of successive dendrograms as pixels are rearranged. For such a
hierarchical cluster analysis, the default forward views (free-style with the small-
er, medium and larger sizes and scales as well as colored labels, etc.) are pro-
duced respectively. They are exhibited in Figures 1-3 for demonstration of a re-
sizable, rescalable and free-style data clustering visualization. With the phyloge-
netic data TreeView.tre, the algorithm is implemented as the typically-used
phylogenetic or phylogenomic tree drawing. For such a phylogenetic or evolu-
tionary analysis, the default view (forward), mirror view (backward), and
upright view (upward with upright and italic labels) are produced respectively.
They are exhibited in Figures 4-7 for demonstration of a resizable, rescalable
and free-style tree drawing visualization (Figure 8, Figure 9).

All of the outputs are generated from the dendrogram drawing program built
in the software ParCluster v.3.0 and are illustrated as below.

Figure 1. A clustering plot drawn to the right with the small-sized, scaled and
styled view using the real data set ClustView.txt (17 data points of 4 dimensions).

Figure 2. The consecutive clustering plot drawn to the right with the me-
dium-sized, rescaled and restyled view using the real data set ClustView.txt.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 237 Journal of Data Analysis and Information Processing

Figure 3. The successive clustering plot drawn to the right with the
large-sized, rescaled and restyled view using the real data set ClustView.txt.

Figure 4. A clustering plot drawn to the right with the node-marked, resized,
rescaled and restyled view using the real data set ClustView.txt.

Figure 5. A clustering plot drawn to the upright with the labeled ticks, oblique
font, resized, rescaled and restyled view using the real data set ClustView.txt.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 238 Journal of Data Analysis and Information Processing

Figure 6. A clustering dendrogram drawn to the right with the default fore-
ground, background and label (item entry name) color using the real phyloge-
netic data TreeView.tre (15 taxa).

Figure 7. The consecutive clustering dendrogram drawn to the left with the
free-style mirrored view and colored labels using the real data TreeView.tre.

Figure 8. The consecutive clustering dendrogram drawn to the upright with
the free-style bottom-up/upward orientation using the real data TreeView.tre.

Figure 9. The successive clustering dendrogram drawn to the upright with the
free-style italic and colored labels using the real data TreeView.tre.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 239 Journal of Data Analysis and Information Processing

4. Conclusions and Discussion

One of the requirements for data science at the big data era is capable of show-
casing the computing results of both static and dynamic data but most of the
peer programs fail to possess such features. Therefore the better algorithmic so-
lution as above described is in great demand and it performs well to meet the
needs of dynamic outcome presentation. With this algorithm, it is possible to
generate the dynamic representation of hierarchical clustering results, which
makes a smoothly changeable visualization of hierarchical cluster analysis. In
addition, a free-style resultant vision is helpful to users, and together they are
integrated as a much better view from the varying perspectives than other pro-
grams. This includes drawing to the right (forward view), to the left (mirrored
view), and to the upright (upward view). The core code given also is very concise
compared to the R- and Python-based programs. It is shared for drawing and
has no extra code to cost when drawing orientation is switched. The algorithm
can be generalized to use in any image drawing beyond tree drawing, particular-
ly for the mode of remainder pixels rearranging in resizing and rescaling a pic-
ture. The workings behind the algorithm are analogous when extended to the
otherwise drawings using the remainder pixels incremented or decremented.
This makes possible the seamless pixel rearrangements to resize, rescale and res-
tyle any imaging. The algorithm can also be applied to the dynamic data visuali-
zation from data input all the way through graphical output of the analytical
outcome. The data can be of any type and category but is required to be cluster-
able such as unsupervised data or classifiable such as supervised data. Aside
from the phylogenetic data, the phylogenomic or bioinformatics data such as
DNA banding data, gene (family) clusterings, gene or protein homologs, ge-
nomic microarray data, etc can also be used for this purpose in the algorithm.

With additional algorithm built in the software ParCluster v.3.0, it is possible
to save and store the dynamic representation of hierarchical clustering results
wherever appropriate. The saved work can be a picture in any of the common
formats such as jpeg, tiff and png. This way has a great advantage over other
peer applications for a picture saved that has the highest view or publication
quality, provided that the right size, scale and style are well adjusted for a de-
mand. This is just the work to do by the algorithm discussed, which is able to
make a perfect adjustment for whatever an image quality required by resizing,
rescaling and restyling a dendrogram. The information about image size and
scale (width x height) can be displayed according to adjustment at the upper-left
corner of the window. There is no need for such a quality picture saved to be di-
gitally enlarged or shrunken for a required quality, say, for publication, since it
has the preset view quality of the right size, scale and style.

For usage of the dendrogram drawing program built in the software ParClus-
ter v.3.0, the software is available upon request at rli@alumni.lsu.edu. It is the
best window to showcase the algorithm with resizable, rescalable and free-style
graphical visualization of hierarchical cluster analysis.

https://doi.org/10.4236/jdaip.2020.84013

R. Li

DOI: 10.4236/jdaip.2020.84013 240 Journal of Data Analysis and Information Processing

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this pa-
per.

References
[1] Falcaro, M. and Pickles, A. (2010) Riskplot: A Graphical Aid to Investigate the Ef-

fect of Multiple Categorical Risk Factors. STATA Journal, 10, 61-68.
https://doi.org/10.1177/1536867X1001000107

[2] Jobb, G., von Haeseler, A. and Strimmer, K. (2004) TREEFINDER: A Powerful
Graphical Analysis Environment for Molecular Phylogenetics. BMC Evolutionary
Biology, 4, 18. https://doi.org/10.1186/1471-2148-4-18

[3] Kumar, S., Tamura, K. and Nei, M. (1994) MEGA: Molecular Evolutionary Genetics
Analysis Software for Microcomputers. Bioinformatics, 10, 189-191.
https://doi.org/10.1093/bioinformatics/10.2.189

[4] Kumar, S., Nei, M., Dudley, J.T. and Tamura, K. (2008) MEGA: A Biologist-Centric
Software for Evolutionary Analysis of DNA and Protein Sequences. Briefings in
Bioinformatics, 9, 299-306. https://doi.org/10.1093/bib/bbn017

[5] Olsen, G.J., Matsuda, H., Hagstrom, R. and Overbeek, R. (1994) fastDNAml: A Tool
for Construction of Phylogenetic Trees of DNA Sequences Using Maximum Like-
lihood. Bioinformatics, 10, 41-48.
https://doi.org/10.1093/bioinformatics/10.1.41

[6] Page, R.D. (1996) TreeView: An Application to Display Phylogenetic Trees on Per-
sonal Computers. Bioinformatics, 12, 357-358.
https://doi.org/10.1093/bioinformatics/12.4.357

[7] Page, R.D. (2003) Visualizing Phylogenetic Trees Using TreeView. Current proto-
cols in Human Genetics, 10, 6.2.1-6.2.15.

[8] Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for
Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.

[9] Seo, J. and Shneiderman, B. (2003) Understanding Hierarchical Clustering Results by
Interactive Exploration of Dendrograms: A Case Study with Genomic Microarray
Data. IEEE Computer, 35, 1-15.

[10] Zmasek, C.M. and Eddy, S.R. (2001) ATV: Display and Manipulation of Annotated
Phylogenetic Trees. Bioinformatics, 17, 383-384.
https://doi.org/10.1093/bioinformatics/17.4.383

[11] Li, R., Li, X. and Wang, G. (2015) Improved and Novel Cluster Analysis for Bioin-
formatics, Computational Biology and All Other Data. Proceedings of the 16th In-
ternational Conference on Bioinformatics & Computational Biology, Las Vegas,
131-139.

[12] Li, W. (1981) Simple Method for Constructing Phylogenetic Trees from Distance
Matrices. Proceedings of the National Academy of Sciences of the United States of
America, 78, 1085-1089. https://doi.org/10.1073/pnas.78.2.1085

https://doi.org/10.4236/jdaip.2020.84013
https://doi.org/10.1177/1536867X1001000107
https://doi.org/10.1186/1471-2148-4-18
https://doi.org/10.1093/bioinformatics/10.2.189
https://doi.org/10.1093/bib/bbn017
https://doi.org/10.1093/bioinformatics/10.1.41
https://doi.org/10.1093/bioinformatics/12.4.357
https://doi.org/10.1093/bioinformatics/17.4.383
https://doi.org/10.1073/pnas.78.2.1085

	Resizable, Rescalable and Free-Style Visualization of Hierarchical Clustering and Bioinformatics Analysis
	Abstract
	Keywords
	1. Introduction
	2. Methods
	3. Results
	4. Conclusions and Discussion
	Conflicts of Interest
	References

