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Abstract 
Pedestrian safety has recently been considered as one of the most serious is-
sues in the research of traffic safety. This study aims at analyzing the spatial 
correlation between the frequency of pedestrian crashes and various predictor 
variables based on open source point-of-interest (POI) data which can pro-
vide specific land use features and user characteristics. Spatial regression 
models were developed at Traffic Analysis Zone (TAZ) level using 10,333 pe-
destrian crash records within the Fifth Ring of Beijing in 2015. Several spatial 
econometrics approaches were used to examine the spatial autocorrelation in 
crash count per TAZ, and the spatial heterogeneity was investigated by a geo-
graphically weighted regression model. The results showed that spatial error 
model performed better than other two spatial models and a traditional ordi-
nary least squares model. Specifically, bus stops, hospitals, pharmacies, res-
taurants, and office buildings had positive impacts on pedestrian crashes, 
while hotels were negatively associated with the occurrence of pedestrian 
crashes. In addition, it was proven that there was a significant sign of locali-
zation effects for different POIs. Depending on these findings, lots of recom-
mendations and countermeasures can be proposed to better improve the traf-
fic safety for pedestrians. 
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1. Introduction 

Traffic safety has recently been considered as one of the greatest issues in urban 
management worldwide. Due to the influencing factors from different aspects, 
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traffic crashes caused a huge loss in the economy and people’s happiness. It is 
reported that around 1.35 million people die on the world’s roads each year [1]. 
Road traffic injuries are the leading killer to people of 5 - 29 years of age, who 
are almost children and young adults. Even worse, approximately 23% of global 
road traffic deaths are pedestrians, who are still undervalued in road traffic sys-
tem design in many countries. As we can see, there is a great gap between the 
current situation and safety target in the future. Pedestrians have no protection 
of vehicle body, seatbelt and so on, so they get direct strike in road accidents, 
facing more serious injury. If pedestrians were involved in accidents, the fatality 
risk increases about 3.7 times [2]. With rapid urbanization and motorization, the 
number of pedestrian crashes in China has increased a lot in the past few years. 

In order to capture contributing factors for pedestrian crashes, their locations 
are usually aggregated into different spatial units [3], such as segments, intersec-
tions, mid-blocks, corridors, zones and so on. Many studies have conducted the 
safety analysis of pedestrian crashes based on zone-level data and examined a lot 
of related features. A spatial analysis effectively allows for identifying spatial dis-
tributions and trends in a larger area, which could help establish long-term 
planning schemes to improve pedestrians’ safety. Since crash occurrences are 
not independent across space, pedestrian crash risk may vary significantly in 
different urban areas. It has been shown that spatial autocorrelation and spatial 
heterogeneity in crash data are two critical properties when developing statistical 
models for macro-level safety analysis. Fortunately, important improvements in 
analytic methods facilitate procedures of safety research on pedestrian crashes. 
Geographic information system (GIS) is powerful platform supporting lots of 
spatial regression models. GeoDa software adopted in many recent studies can 
be used to establish Bayesian models on spatial correlation. The reproducibility 
of using R language to perform spatial data analysis is unparalleled, which in-
cludes plenty of spatial packages for different purposes. 

Pedestrian crash occurrences are correlated with various kinds of attributes, 
such as land use, vehicle kilometers traveled, road features, traffic volume, so-
cio-demographic characteristics and so forth. However, the accuracy and relia-
bility of these data can hardly be assured. Besides, the unavailability is another 
concern; the sources are not open for the public by relevant authorities. Instead, 
point-of-interest (POI) data from anywhere in the world can be collected with 
help of web scraping and other open sources. Although POI data may not in-
clude traditional information used in traffic accident analysis, they can represent 
specific land use factors with precise locations, which are expected to be highly 
related to pedestrian crashes in both macro- and micro-level aspects. Addition-
ally, making good use of POI data may be effective in practice, for instance, as an 
assistance for transportation planning. 

This study has two main goals: one is to examine whether spatial autocorrela-
tion and spatial heterogeneity exist in pedestrian crashes within urban area of 
Beijing; the other is to find out factors contributing to the number of pedestrian 
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crashes in different regions based on POI data. Section 2 presents a review of 
previous research on crash spatial analysis, including different perspectives, me-
thods and types of traffic crashes. Section 3 narrates the data used in this study: 
pedestrian crash data and POI data are statistically described, and crash count 
for each spatial unit is visualized. Section 4 focuses on the methodology in two 
ways: ordinary least squares (OLS) regression model, spatial lag model (SLM), 
spatial error model (SEM) and spatial Durbin model (SDM) are introduced to 
deal with the spatial dependence in data, and geographically weighted regression 
(GWR) model is developed for analyzing the spatial heterogeneity. In Section 5, 
results of established models are presented, spatial characteristics are analyzed, 
and differences between different models are compared. In Section 6, conclu-
sions of this study are provided, and relative measures for safety improving are 
recommended to policy makers. 

2. Literature Review 

In order to find out the contributing factors for pedestrian crashes, a lot of ap-
proaches have been proposed. Some researchers used statistical analysis to mod-
el accident frequency [4] [5] [6]. There are also studies focusing the accident in-
jury severity [7] [8] [9] [10] [11]. However, spatial and temporal attributes of ac-
cident data are considered by many researchers all the time [12]-[17]. From a 
macro scale, accident distribution characteristics can be depicted by spatially 
clustering methods. Using time series models, we can recognize the trend and 
seasonality of accident occurrence in one certain place. 

An accident’s location is always an important factor, which can be used for 
identifying black spots. In many existing studies, kernel density estimation 
(KDE) is a very common method for identifying gatherings of traffic crashes. 
The KDE method has two branches specifically: one is the planar KDE [18] [19] 
[20]; and another is network KDE [21] [22] [23]. Planar KDE can provide a 
whole-scale view of black spots of traffic accidents. However, considering that 
traffic accidents mostly take place along roads and streets, a network KDE is 
more appropriate. Distribution of pedestrian crashes in the research area can al-
so be realized by the KDE method, which can merge single crash points into 
continuous hazardous area [24] [25]. 

Analyzing traffic accidents in the spatial scale is a type of point analysis. Spa-
tial interaction between locations has three patterns of distribution: clustered, 
regular and random [26]. Road accidents are spatially correlated. In other words, 
the distributions of road accidents are uneven in space, which leads to the black 
spots. This phenomenon has been explained by combining accident records with 
other sources of data, including land use, social-economic, demographic, traffic, 
road network, human activity, point-of-interest and so forth [27] [28] [29] [30] 
[31]. It is concluded that ratio of mixed land use area, ratio of commercial area, 
population, truck ratio, number of intersections, road density, entertainment ac-
tivity, shopping activity, bank, hospital and many other factors have a positive 

https://doi.org/10.4236/jdaip.2020.81001


Y. Y. Chen et al. 
 

 

DOI: 10.4236/jdaip.2020.81001 4 Journal of Data Analysis and Information Processing 
 

correlation with the crash number. 
Spatial dependence is prevalent in traffic crash data, which can be tested by 

two spatial statistical methods: Moran’s I and Getis-Ord Gi* [32]. In fact, Mo-
ran’s I is for global spatial autocorrelation test, while Getis-Ord Gi* is for local 
spatial autocorrelation test. Besides, spatial econometrics approaches were used 
for analyzing road accidents in a number of studies. Based on the smallest ad-
ministrative divisions, Simões used spatial autoregressive model (SAR), spatial 
error model (SEM) to analyze traffic accidents with victims in Lisbon [33]. They 
also tried different space weight matrices (Queen’s case, K Nearest Neighbor, 
Minimum Distance), but in all cases no spatial autocorrelation was detected. 
Rhee et al. made a spatial research on traffic crashes at the traffic analysis zone 
(TAZ) level [31]. The results showed SEM model outperformed both SAR model 
and ordinary least squares (OLS). They also concluded that road speed limit, 
number of residents, vehicle kilometers of travel were associated with the num-
ber of accidents. Combined crash data with POI data, Jia et al. developed two 
spatial regression models [29]. They found that the performance of spatial lag 
model (SLM) and spatial error model (SEM) were even close, and bank density 
and hospital density had significantly positive impacts on road accidents. 

There are also a group of studies using conditional autoregressive (CAR) to 
analyze crashes from different perspectives. Kaplan and Prato focused on the 
frequency and severity of bicycle accidents occurred on the Copenhagen Region 
[34]. The findings illustrated that the number of crashes and the increase in the 
average bicycle daily traffic have a non-linear relation. Xie et al. developed a 
multivariate CAR model to model crash counts by injury severity in considera-
tion of spatial autocorrelation [27]. The results showed that their model was able 
to capture the spatial autocorrelation among different crash types. Saha et al. 
developed two CAR models to investigate the influencing factors on the bicycle 
crash frequency at the census block group level [28]. The results revealed that 
the Besag’s model performed better than Leroux’s model, and 21 variables were 
identified to be significant in the crash model, including population, age, daily 
vehicle miles travelled, road density and so on. Based on the 263 TAZs in 
Shanghai urban are, Wang et al. examined impact of different categories of fac-
tors on the traffic crash frequency [35]. Their Bayesian CAR model demonstrat-
ed that higher population, road density, length of arterials, trip frequency and 
shorter intersection spacing are associated with the greater number of crashes. 

Spatial heterogeneity of traffic accidents has been pursued by researchers in 
recent years. Based on the crash data in the Hillsborough, Florida, Xu and 
Huang developed the random parameter negative binomial (RPNB) model and 
the semi-parametric geographically weighted Poisson regression (S-GWPR) 
model to capture the spatially varying relationship [36]. Both of two models 
performed well, but the S-GWPR method was proven to be more suitable for re-
gional crash modelling. Based on the geographic database of 126 traffic zones, 
Gomes et al. developed a Geographically Weighted Negative Binomial Regres-
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sion (GWNBR) model to examine the constant overdispersion for all the traffic 
zones and the variable for each spatial unit [37]. The results showed that 
GWNBR model was more appropriate for capturing the spatial heterogeneity of 
accident occurrences than the GWPR model. In the study of Bao et al., the rela-
tionship between twitter-based human activity variables and crash counts in ur-
ban areas were mainly considered [30]. They found that human activity has a 
significant effect on the crash frequency in their analysis. 

Since the high severity of crashes involved pedestrians, there are a good num-
ber of spatial modelling for this crash type. Siddiqui et al. used a Bayesian Pois-
son-lognormal model to examine the impact of different variables on the pede-
strian crash frequency in consideration of spatial correlation [12]. They found 
that roadway characteristics, demographics, socio-economic and neighbor-
hood-related variables are statistically significant. The results also indicated that 
modelling pedestrian crashes should account for the spatial correlation for spa-
tially aggregated data. In the study of Cai et al., spatial spillover effects were con-
sidered in the dual-state models [38]. They used zero-inflated negative binomial 
and hurdle negative binomial models to analyze the pedestrian crash frequency 
for TAZs. The model results emphasized the impact of traffic, roadway, so-
cio-demographic and neighboring TAZs on the occurrence of pedestrian crash-
es. Conditional autoregressive models were also adopted in the macro-level spa-
tial analysis of pedestrian crashes. In order to investigate the association between 
explanatory variables and the number of pedestrian crashes, Wang et al. devel-
oped a Bayesian CAR model with seven different spatial weight features to cha-
racterize the spatial dependence [16]. The Bayesian Poisson-lognormal (PLN) 
models with conditional autoregressive (CAR) prior were established in the 
study of Guo et al. to examine the influence of multiple factors on the pedestrian 
crash occurrences [39]. The model results reflected that the greater global inte-
gration was positively related to the higher frequency of pedestrian crashes, and 
the irregular road network was much safer than the grid pattern. 

3. Data 

This study analyzed 686 TAZs within 668.55 km2 urban area of Beijing’s Fifth 
Ring. Provided by Beijing Traffic Management Bureau, the traffic crash data 
have 10333 pedestrian crash records in the whole year of 2015 in Beijing. R pro-
gramming language, including various contributed packages, was used to inte-
grate different types of data. Figure 1 shows the distribution of pedestrian 
crashes by the TAZ level. Here we can find an interesting pattern that accidents 
are not gathered in the center of city area (within the Second Ring). However, 
there is more pedestrian crash occurrence in relatively outlying areas. Beijing is a 
very ancient city, and it has been taken as the capital city by many dynasties. In 
the center of Beijing, there are a lot of places of interest and government’s office 
buildings, and the traffic management is very strict there, which means pede-
strians and vehicles are more safely separated. Throughout the TAZs in the re-
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search area, Figure 2 shows the frequency of different numbers of pedestrian 
crashes. The number of TAZs without any accidents is the most, accounting for 
12.5%. With the number of pedestrian crashes increasing, the corresponding 
frequency is decreasing, meaning there are a few TAZs in unexpectedly higher  

 

 
Figure 1. Pedestrian crash count per TAZ in Beijing. 

 

 
Figure 2. The frequency of different numbers of pedestrian crash per TAZ. 
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risk for pedestrians. The largest volume of accidents in one single TAZ reaches 
65. The pedestrian crash number per TAZ varies a lot spatially, which will be 
analyzed in later sections. 

As mentioned above, many studies have combined accident data with tradi-
tional traffic flow data and land use data to perform the spatial safety analysis. 
However, owing to the unavailability of these data at the TAZ level, we mainly 
focused on the POI data in this study. POI data are obtained from Google Ap-
plication Programming Interface (API) through web scraping. After data tidying 
and categorizing, eleven kinds of POI were chosen, including bus stops, parking 
lots, hospitals, pharmacies, schools, hotels, supermarkets, banks, restaurants, 
parks and office buildings. Virtually, POI data are a special kind of land use data 
with concrete location attributes, which can be used to reflect the relationship 
between pedestrian crashes and user characteristics. Table 1 shows the statistical 
description of these POI data. Noticeably, mean values of crashes and POIs vary 
significantly, which indicates that the spatial distribution of data is exceptionally 
unbalanced at the spatial level. 

4. Methodology 

In this study, pedestrian crash data were analyzed from two aspects: spatial au-
tocorrelation and spatial heterogeneity. According to Tobler’s first law of geo-
graphy, near things are more correlated than distant things [40]. In other words, 
locations of traffic accidents are probably autocorrelated at the spatial level, es-
pecially for different areas within a city. A group of spatial econometrics ap-
proaches can be used to take the spatial autocorrelation into consideration, 
based on the traditional regression models. Spatial heterogeneity is the variation 
of relationship between variables due to variation of geographical positions. This  

 
Table 1. POI data description at TAZ level. 

Variable Min. 1st Quartile Median Mean 3rd Quartile Max. 

Number of crashes 0.00 2.00 6.00 8.24 12.00 65.00 

Number of 
bus stops 

0.00 6.00 14.00 14.85 22.00 76.00 

Number of parking lots 0.00 0.00 1.00 2.40 3.00 30.00 

Number of hospitals 0.00 1.00 2.00 3.37 5.00 26.00 

Number of pharmacies 0.00 1.00 2.00 2.30 3.00 11.00 

Number of schools 0.00 1.00 3.00 4.39 6.00 30.00 

Number of hotels 0.00 1.00 3.00 4.78 7.00 59.00 

Number of supermarkets 0.00 4.00 10.00 14.51 20.00 104.00 

Number of banks 0.00 0.00 4.00 7.05 11.00 65.00 

Number of restaurants 0.00 5.00 14.00 18.74 28.00 123.00 

Number of parks 0.00 0.00 0.00 0.40 0.00 13.00 

Number of office buildings 0.00 0.00 1.00 2.66 4.00 31.00 

https://doi.org/10.4236/jdaip.2020.81001


Y. Y. Chen et al. 
 

 

DOI: 10.4236/jdaip.2020.81001 8 Journal of Data Analysis and Information Processing 
 

issue can be solved by the Geographically Weighted Regression (GWR) [41]. 

4.1. Spatial Autoregression 

In spatial analysis of traffic crashes, spatial dependence occurs when accidents of 
neighboring areas are correlated to each other. With this phenomenon existing, 
pedestrian crash data are not supposed to be directly analyzed by regular regres-
sion models, such as ordinary least squares (OLS). OLS is a type of linear regres-
sion model for estimating unknown parameters, which can be expressed in a 
vector form as 

y X β ε= +                           (1) 

( )2~ 0, nN Iε σ
 

where y is the dependent variable of crash count, X represents explanatory va-
riables and β is a vector of coefficients of explanatory variables. ε is an error 
term, which is subject to normal distribution. 

In a time-series context, the OLS estimator remains consistent even when a 
lagged dependent variable is present, as long as the error term does not show 
serial correlation. While the estimator may be biased in small samples, it can still 
be used for asymptotic inference. In a spatial context, this rule does not hold, ir-
respective of the properties of the error term. In spatial analysis of traffic crashes, 
pure OLS can be used to find out the variables significant to the crash count of 
each TAZ, without considering any spatial relations of different areas. However, 
spatial autocorrelation in the crash data cannot be reflected just by the OLS. In 
order to deal with this issue, many transportation departments used OLS with a 
spatial weight matrix to model the number of crashes or the crash rate in a vast 
spatial scale over long time periods. To be more specific, several spatial econo-
metrics approaches can be used for analyzing spatial autocorrelation in crash 
data on the basis of OLS results [42]. The spatial lag model (SLM) can be given 
by 

y Wy Xρ β ε= + +                        (2) 

( )2~ 0, nN Iε σ
 

where y is the dependent variable, a vector (n × 1) of pedestrian crashes in one 
year. W is a n × n spatial weight matrix, representing spatial relations between 
spatial units. ρ is a spatial autoregressive coefficient. X is a n × k matrix of ex-
planatory variables, and β is a k × 1 vector of parameters reflecting the impact of 
explanatory variables on the y. ε is a n × 1 vector, defining unobserved error 
terms that are independent and identically distributed. 

Use of spatial error model (SEM) may be motivated by omitted variable bias. 
SEM is a regression model with spatial autocorrelation in the residuals defined 
by 

y X β µ= +                           (3) 

Wµ λ µ ε= +                          (4) 
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( )2~ 0, nN Iε σ
 

where y is the dependent variable, X represents explanatory variables, and β is a 
vector of coefficients of X. W is a known spatial contiguity matrix. The parame-
ter λ is a coefficient on the autocorrelated residuals μ, and ε is an error term. 

The spatial Durbin model (SDM) adds spatial lag of both the dependent vari-
able and explanatory variables into a traditional linear model, which can be ex-
pressed by 

1 2y Wy X WXρ β β ε= + + +                    (5) 

( )2~ 0, nN Iε σ
 

where y is a n × 1 vector of the dependent variable, X is the corresponding n × k 
matrix which contains the observed explanatory variables, and β1 is a n × 1 vec-
tor of associated parameters of X. W is a n × n spatial contiguity matrix, and ρ is 
the coefficient of spatial lag of the dependent variable. The matrix product WX is 
indicated for a spatial lag of the explanatory variables, and β2 is a k × 1 vector of 
associated parameters. 

In the SLM, the number of pedestrian crashes in a specific area is subject to 
spill-over effects from the number in adjacent regions. The spill-over effect can 
be realized by spatial weight matrix W in the Equation (2). Similarly, the SEM 
model assumes that the error in one region depends on the errors from neigh-
boring regions by W in the Equation (4). In this study, queen’s case [43] is used 
to define the spatial weight matrix. The Queen’s case defines that regions sharing 
a common edge or common vertex are considered contiguous, and then the 
corresponding element of the spatial weight matrix Wij is 1 but 0 otherwise. The 
spdep package in R was used for this analysis. 

4.2. Spatial Heterogeneity 

A key assumption that we have made in the models thus far is that the structure 
of the model remains constant over the study area (no local variations in the pa-
rameter estimates). However, spatial heterogeneity may exist across the spatial 
distribution of traffic crashes. Accounting for this, a GWR model mentioned 
before can be used to examine the potential spatial heterogeneity in parameter 
estimates. GWR permits the parameter estimates vary locally, similar to a para-
meter drifts for time series model. GWR rewrites the linear model in a slightly 
different form, which can be expressed as 

i i iy X β ε= +                          (6) 

where i is the TAZ at which the local parameters are to be estimated. Here, coef-
ficient βi is allowed to be different between different TAZs. Parameters are 
solved using a weighting scheme, which can be defined by 

( ) 1T T
i i iX W X X W Yβ

−
=                      (7) 

where Wi, the weight matrix, is denoted as 
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where the allocated weight wij for j observation at TAZ i is calculated with a 
Gaussian function in this study, which can be expressed as 

2

e
ijd

h
ijw

 

−

 
 =                           (9) 

where dij is the distance between the location of observation i and location j, and 
the parameter h is the bandwidth. 

It has been explained by a number of researchers that GWR model is affected 
more by the bandwidth than the kernel function [30] [31] [44]. The bandwidth 
is selected by minimization of root mean square error (RMSE). The GWR was 
established here using the spgwr package in R. Moran’s I was used to test if 
model’s residuals are spatially clustered [45]. Values of I range from −1 to 1 in 
general. If values are bigger than 0, they indicate positive spatial autocorrelation, 
while values below 0 indicate negative spatial autocorrelation. Exact 0 values of I 
indicate model’s residuals are randomly distributed. The Corrected Akaiki In-
formation Criterion (AICc) was used to compare the performance of models 
[30] [31] [46]. The model of best fitting can be selected by the lowest AICc. 

5. Results 
5.1. Spatial Econometrics Analysis Results 

Firstly, an OLS model was established to examine points of interest whether they 
are significant to the number of pedestrian crashes in each TAZ. Results are 
shown in Table 2. Without considering spatial effects, pedestrian crash number 
of each TAZ is associated with the density of bus stops, hospitals, pharmacies, 
hotels, restaurants, office buildings, while parking lots, schools, supermarkets, 
banks, parks are not significant to crash count in the model. 

These POIs that do not pass the significance level in OLS were removed in the 
further analysis. The results of model performance of SLM, SEM and SDM are 
shown in the Table 3. The OLS was also re-established using six variables men-
tioned before in order to compare with those models having considered the spa-
tial autocorrelation. Almost all remained variables are statistically significant 
above 90% in four models. The coefficients of these variables are given in the 
Table 3, with their standard error in parenthesis. The number of observations is 
686, which links to 686 TAZs including their data. The ρ coefficient is positive 
and highly significant in both SLM and SDM, indicating strong spatial autocor-
relation in the dependent variable. And the λ coefficient is positive and highly 
significant, indicating strong spatial dependence in the errors. The Moran’s I sta-
tistic shows a significant amount of spatial autocorrelation in the residuals. How-
ever, Moran’s I statistic indicates that the residuals are no longer spatially  
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Table 2. Results for an OLS model based on all POI data. 

Variable Estimate Std. Error t value Pr (>|t|) 

(Intercept) 1.723*** 0.530 3.250** 0.001*** 

Bus stops 0.175*** 0.034 5.134*** 0.000*** 

Parking lots −0.033 0.127 −0.259 0.796 

Hospitals 0.184* 0.096 1.917* 0.056* 

Pharmacies 0.751*** 0.191 3.934*** 0.000*** 

Schools 0.003 0.088 0.035 0.972 

Hotels −0.196*** 0.071 −2.760*** 0.006*** 

Supermarkets 0.008 0.026 0.319 0.750 

Banks 0.045 0.069 0.649 0.517 

Restaurants 0.081*** 0.030 2.693*** 0.007*** 

Parks 0.001 0.309 0.002 0.999 

Office buildings 0.238* 0.123 1.941* 0.053* 

Degrees of freedom  674   

Residual standard error  7.443   

Adjusted R-squared  0.269   

F-statistic  23.88   

p-value  0.000   

*represents the significance level of 10%, **represents the significance level of 5%, and ***represents the 
significance level of 1%. 

 
clustered in SLM, SEM and SDM respectively. Log likelihood and Akaiki infor-
mation criterion (AIC) are chosen to compare the model performance. The low-
er the log likelihood and AIC, the better the model fit. From Table 3, three spa-
tial regression models are better fit than OLS for both log likelihood and AIC. 
However, the performance of each spatial regression model is just close. Consi-
dering only log likelihood, SDM results in a slightly better fit, while SEM results 
in the best fit for AIC evaluation. 

As results presented in Table 3, bus stop density, hospital density, pharmacy 
density, restaurant density and office building density are found to be positively 
associated with the increase of pedestrian crashes, while hotel density has a neg-
ative correlation with pedestrian crashes. It would not be hard to understand 
that a pedestrian crash has a larger chance to occur at areas with more bus stops. 
Since people usually go to or leave bus stops by foot, it is more common for pe-
destrians getting involved in a crash around bus stops. In addition, because of 
buses entering and exiting bus stops, the complexity of traffic flow may be 
another contributor for pedestrian-involved risky scenarios. Thus, setting up 
more efficient traffic facilities for pedestrians’ access to bus stops should be rec-
ommended, and warning sign for road drivers near bus stops are also necessary. 
One explanation for higher occurrence of pedestrian crashes in areas having more  
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Table 3. Results for spatial models based on selected POI data. 

Dependent variable 
Models 

OLS SLM SEM SDM 

(Intercept) 
1.715 

(0.513)*** 
−1.082 

(0.576)*** 
1.608 

(0.619)*** 
0.348 

(0.886) 

Bus stops 
0.177 

(0.033)*** 
0.167 

(0.031)*** 
0.162 

(0.031)*** 
0.159 

(0.031)*** 

Hospitals 
0.193 

(0.093)** 
0.156 

(0.088)* 
0.175 

(0.086)** 
0.199 

(0.087)** 

Hotels 
−0.188 

(0.069)*** 
−0.174 

(0.065)*** 
−0.128 

(0.070)* 
−0.107 
(0.072) 

Pharmacies 
0.776 

(0.179)*** 
0.803 

(0.169)*** 
0.704 

(0.173)*** 
0.659 

(0.176)*** 

Restaurants 
0.088 

(0.026)*** 
0.077 

(0.025)*** 
0.095 

(0.026)*** 
0.095 

(0.026)*** 

Office buildings 
0.271 

(0.093)*** 
0.245 

(0.088)*** 
0.295 

(0.091)*** 
0.308 

(0.093)*** 

Number of observations 686 686 686 686 

Spatial lag coefficient (ρ) - 0.374 - 0.423 

Spatial error coefficient (λ) - - 0.433 - 

Moran’s I residuals 0.212*** 0.016 −0.019 −0.018 

Moran’s Std. Deviate 10.035 0.890 −0.827 −0.759 

Log likelihood −2344.674 −2315.373 −2310.678 −2307.939 

AIC 4705.348 4648.746 4639.355 4645.877 

Standard errors are in parenthesis. *represents the significance level of 10%, **represents the significance 
level of 5%, and ***represents the significance level of 1%. 

 
restaurants is that traffic situation around there is largely influenced by the 
temporary parking, which can cause distractions to both drivers and pedestrians. 
Besides, waiting time is uncertain, and people walk to restaurants for meals in 
groups oftentimes. In terms of that, parking services around food courts should 
be well arranged to make a comfortable walking environment for passersby. It 
can be speculated that hospitals and pharmacies have the similar trend of pede-
strian crashes. Vehicles usually would be parked only for a short time, so traffic 
there is much busier. Roads and streets close to these POIs may need more traf-
fic regulations. The areas with more office buildings may have larger use of 
commercial lands. There are lots of commuters travelling between homes and 
working places during peak hours. Some of them may use conventional public 
transit, and others may drive their private cars. The traffic there can be relatively 
mixed and hard to predict. More efforts are needed to separate private car 
commuters and public transit commuters for traffic safety and efficiency. How-
ever, a lower occurrence is found in these TAZs with more hotels. It can be ex-
plained by assuming that people reaching and leaving hotels by picking-up ve-
hicles mostly, so the traffic around hotels is relatively simple. In other words, 
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hotels can hardly be directly attractive for pure pedestrians, but can be for trav-
elers using other kinds of traffic modes. Therefore, the chance of occurrence of 
pedestrian crashes would be relatively low. 

5.2. Geographically Weighted Regression (GWR) Results 

The results of the GWR model for pedestrian crashes are presented in Table 4. 
The bandwidth is 5.114, which was selected by the minimum value of RMSE 
with a Gaussian kernel. The model’s R2 and corrected AIC are 0.369 and 
4662.596 respectively, indicating the model is well fitted. Because GWR esti-
mates individual regression equations for all 686 TAZs, the minimum, first 
quarter, median, third quarter, maximum and global of the regression coeffi-
cients for each independent variable are listed in the table. 

Based on the visualization of GWR results, it can be confirmed that different 
independent variables affect different regions within Beijing in obviously differ-
ent ways. In order to improve pedestrian safety, suggestions ought to be pro-
posed for those locations with risk higher than the average. Depending on six 
different POIs, the estimated coefficients for each TAZ are shown in the Figure 
2. It is evident to see that different points of interest have different patterns of 
effect on each TAZ. For example, bus stops are more sensitive in south-eastern 
regions comparing to north-western regions. Pedestrians crashes occurring in 
northern regions are more affected by hospitals comparing to these in southern 
regions. What’s more, office buildings have stronger effect on both western and 
north-western regions than on other regions within fifth ring of Beijing. More 
susceptible are south-eastern and north-western regions for hotels, eastern and 
western regions for pharmacies and south and north-eastern regions for restau-
rants. 

 
Table 4. Results for GWR model based on selected POI data. 

Dependent variable Min. 1st Qu. Median 3rd Qu. Max. Global 

X. Intercept. −1.468 1.427 1.905 2.160 2.702 1.715 

Bus stops −0.002 0.142 0.186 0.237 0.305 0.177 

Hospitals −0.535 0.033 0.179 0.278 0.438 0.193 

Hotels −0.480 −0.220 −0.167 −0.116 0.174 −0.188 

Pharmacies −0.070 0.587 0.837 1.083 1.368 0.776 

Restaurants 0.023 0.058 0.076 0.095 0.238 0.088 

Office buildings −0.084 0.147 0.273 0.391 0.751 0.271 

Bandwidth   5.114    

Moran’s I residuals   0.147    

Moran’s I Std. Deviate   7.018    

R2   0.369    

AICc   4662.596    
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Considering the different effects of independent variables on the each TAZ, 
some localized strategies could be proposed to improve the traffic safety for pe-
destrians. For instance, TAZs in the northeast of Beijing should make a safer en-
vironment of pedestrians taking buses. Northern areas may need more traffic 
management around hospitals to better protect pedestrians. These recommen-
dations require many practical experiences and need to be adjusted, and they are 
worthy of taking into account in urban management plans. 

6. Conclusions 

This study mainly used several spatial regression models to estimate the correla-
tion between various points of interest and pedestrian crashes. Firstly, a tradi-
tional OLS model was built to remove those independent variables not statisti-
cally significant to the pedestrian crash count for each TAZ. Then three spatial 
models, SLM, SEM and SDM, were established to examine if the spatial autocor-
relation exists in the pedestrian crash data comparing to the OLS model. Ac-
cording to values of AICc, SEM model outperformed other two spatial models as 
well as the OLS model. Additionally, a GWR model with Gussian kernel was de-
veloped to examine the spatial heterogeneity of different explanatory variables 
on different locations within Beijing urban area. Visualization of GWR results 
helped us better understand the effect of different POIs on each TAZ (see Figure 
3). 

Eleven kinds of POI were tested in OLS, while only six of them were signifi-
cant to the pedestrian crash count of TAZs, including bus stops, hospitals, ho-
tels, pharmacies, restaurants, and office buildings. All these POIs were proven to 
have a positive correlation with the number of pedestrian crashes for each TAZ 
except hotels. With spatial dependence into consideration, the results of spatial 
model SLM, SEM and SDM demonstrated that these six POIs are still credibly 
correlated with the occurrence of pedestrian crashes, while only the significance 
level varies a little. The GWR model revealed that the effect of different POIs on 
each TAZ is generally different. For example, the occurrence of pedestrian 
crashes in northern urban areas of Beijing is more subject to hospitals than in 
the south, while bus stops have a stronger effect on the south-eastern regions 
than the north-western regions. 

Practical implications could be proposed for relevant transport departments 
based on the analysis in this study. The spatial scale used here is TAZ level, 
which is also adopted in many transportation planning. Besides, the POI data 
were proven to be adaptable and effective for spatially analyzing pedestrian 
crashes. Although only eleven categories of POI data were considered in our 
study, it can be increased through stronger web scraping techniques and various 
map application programming interfaces (APIs). It is meaningful to conduct 
spatial regression analysis on the correlation between different POIs and pede-
strian crashes. However, to many planning agencies, these approaches for traffic 
safety analysis are still at early stages. It requires more theoretical innovations,  
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Figure 3. Visualization of GWR model results. 
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practical implementations and advanced computer technologies in order to bet-
ter integrate traffic safety analysis into planning and ultimately realize a safer 
city for all our citizens. It is recommended that further study will be able to 
identify the optimum spatial scale for analyzing the characteristics of pedestrian 
crashes and proposing more meaningful improvements. 
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