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Abstract 
Spatial heterogeneity refers to the variation or differences in characteristics or 
features across different locations or areas in space. Spatial data refers to in-
formation that explicitly or indirectly belongs to a particular geographic re-
gion or location, also known as geo-spatial data or geographic information. 
Focusing on spatial heterogeneity, we present a hybrid machine learning model 
combining two competitive algorithms: the Random Forest Regressor and CNN. 
The model is fine-tuned using cross validation for hyper-parameter adjustment 
and performance evaluation, ensuring robustness and generalization. Our ap-
proach integrates Global Moran’s I for examining global autocorrelation, and 
local Moran’s I for assessing local spatial autocorrelation in the residuals. To 
validate our approach, we implemented the hybrid model on a real-world da-
taset and compared its performance with that of the traditional machine learn-
ing models. Results indicate superior performance with an R-squared of 0.90, 
outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed 
understanding of spatial variations in data considering the geographical in-
formation (Longitude & Latitude) present in the dataset. Our results, also as-
sessed using the Root Mean Squared Error (RMSE), indicated that the hybrid 
yielded lower errors, showing a deviation of 53.65% from the RF model and 
63.24% from the CNN model. Additionally, the global Moran’s I index was 
observed to be 0.10. This study underscores that the hybrid was able to pre-
dict correctly the house prices both in clusters and in dispersed areas. 
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1. Introduction 

In recent years, there has been an exponential growth in data generation, with a 
significant portion constituting geospatial data, which encompasses various sources 
like remote sensing imagery, GPS trajectories, and weather observations. Big da-
ta, including geospatial data, is characterized by its volume, velocity, and variety, 
presenting opportunities to explore real-time insights. Geospatial big data, with 
its substantial volume and potential for real-time updates, offers new avenues for 
uncovering insights about our environment [1]. Spatial data refers to informa-
tion that explicitly or indirectly pertains to a particular geographic region or lo-
cation, also known as geo-spatial data or geographic information. To fully un-
derstand spatial data, machine learning and spatial statistics need to work to-
gether. Researchers are developing ways to combine these techniques for a more 
comprehensive approach to modeling spatial phenomena [2]. Spatial attributes 
are utilized to specify the spatial position and scope of spatial entities. These 
attributes commonly include details regarding spatial coordinates, such as lon-
gitude, latitude, and elevation [3].  

One of the properties of spatial data that offer the most encouraging prospects 
for the future of spatial machine learning is spatial heterogeneity. Spatial hete-
rogeneity can be defined as the presence of variation in the relationships be-
tween dependent and independent variables across the space. According to [4], 
spatial heterogeneity is either defined as the difference in space in distribution of 
a point pattern, or difference of a qualitative or quantitative value of a surface 
pattern. Spatial heterogeneity, or geographic variation [5], matters in machine 
learning models. Ignoring it can lead to inaccurate predictions in some areas. By 
accounting for these local patterns, models can improve their overall performance 
and become more generalizable, meaning they work well on new unseen data 
from the same region. 

Machine learning (ML) is a subset of AI that teaches machines about how to 
imitate the intelligence of human behavior. The four main approaches of ML are: 
supervised learning, unsupervised learning, semi-supervised learning and rein-
forcement learning. Given the rise of extensive geospatial datasets, machine 
learning (ML) has become widely integrated across various domains within geos-
cience research. This includes applications in tasks such as land cover classifica-
tion [6], assessment of landslide susceptibility [7], investigations into climate 
change impacts, and analyses of atmospheric dynamics [8] [9]. 

Spatial methods are rooted in the principle of spatial heterogeneity, acknowl-
edging the diverse variations across geographical entities. This spatial hetero-
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geneity introduces complex patterns and distributions across space, challenging 
the assumption of uniformity and independence in traditional statistical methods. 
While the first law of geography highlights spatial dependence, spatial hetero-
geneity underscores the need to account for the varying characteristics and rela-
tionships among proximate entities, thereby shaping the spatial autocorrelation 
(SAC) observed in the dataset.  

Spatial prediction, a primary application of machine learning with geospatial 
data, involves creating a model based on training data to predict values at particu-
lar locations where information is lacking [10]. Machine Learning algorithms are 
being explored as potential alternatives for conventional geostatistical interpola-
tion methods (e.g. Ordinary Kriging, Universal kriging, Regression Kriging…) 
and spatial analysis techniques due to their advancements in computational 
power, data availability, and algorithmic innovations [11]. Recent studies by au-
thors [12] and [13] have demonstrated the advantage of machine learning mod-
els over geostatistical interpolation techniques in prediction performance. In 
[14], they introduced a framework called RFsp, which utilizes random forest for 
spatial predictions by incorporating buffer distances from observation points as 
explanatory variables. [15] used systematic approach for determining the appro-
priate range of scales, including upper and lower limits, for spatial modeling us-
ing machine learning techniques. The method is designed to enhance modeling 
accuracy and is evaluated for its effectiveness in achieving this objective. Geo-
graphical Random Forest (GRF) serves as a valuable exploratory tool for visua-
lizing the relationship between dependent and independent variables, thereby 
elucidating local variations and enhancing comprehension of the underlying 
processes contributing to observed spatial heterogeneity [16]. [17] used the ma-
chine learning algorithm Random Forests to train models using non-spatial and 
spatial cross-validation strategies to understand how spatial variable selection 
affects the predictions. In machine learning [18], modeling with geographic coor-
dinates or Euclidean distance fields can produce similar interpolations resem-
bling linear variograms with infinite ranges.  

Current research exploring the fusion of machine learning and spatial analysis 
remains relatively scarce or limited. Hybrid methodologies, notably combining 
Geographically Weighted Regression (GWR) from geostatistics and Artificial 
Neural Networks (ANN) from machine learning, have incorporated the estimation 
of residuals using ordinary kriging [19]. Both GWRK (geographically weighted 
regression kriging) and ANNK (artificial neural networks kriging) hybrid models 
are capable of integrating the spatial autocorrelation of observed variables, lead-
ing to enhanced predictive performance and reduced errors. [20] used an ap-
proach called Euclidean distance fields in machine-learning (EDM). This me-
thod provides advantages over other prediction methods that integrate spatial 
dependence and state factor models, for example, regression kriging (RK) and 
geographically weighted regression (GWR). The use of the geographically- 
weighted random forest (GW-RF) model to understand the spatial relationship 
between Type 2 Diabetes (T2D) prevalence and its risk factors, and how this va-
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ries across different geographical areas, [21] is vital for identifying regions in 
need of targeted efforts and resources to alleviate the burden of T2D. 

Moran’s I is the most widely used measurements to account for spatial auto-
correlation. To evaluate the presence of spatial dependencies within models, the 
Moran’s I statistic was determined, and a novel weights matrix integration was 
developed to identify spatial dependency patterns within residuals [22]. The in-
vestigation of spatial heterogeneity within a machine learning algorithm is still in 
its initial phase. Spatial variations in data are driving the creation of deep ma-
chine learning models like CNNs, RNNs, … that can handle these geographical 
differences [23]. To ensure these models work well, researchers are developing 
ways to assess their performance while considering these variations [24]. This in-
cludes checking for spatial patterns in errors and ensuring the model works well 
in unseen location [25]. To the best of our Knowledge, no hybrid machine learn-
ing model based on RF and CNN has been developed to account for spatial hete-
rogeneity using Global and Local Moran’s I with the residuals of the models.  

In the following research, we will develop a hybrid model based on Random 
Forest (RF) and Convolutional Neural Network (CNN) architectures specifically 
designed for spatial data analysis. This study focuses on exploiting the capabili-
ties of a hybrid machine-learning model to capture spatial dependencies through 
the residuals without the need for explicit spatial features in the model. We pro-
pose a combination of RF, known for its effectiveness in capturing spatially de-
pendent samples, and CNN, renowned for its ability to handle complex spatial 
relationships and patterns. These two representative machine learning models will 
be integrated into a hybrid framework designed for spatial heterogeneity. 

The paper follows the subsequent structure: Section 2 mentions the literature 
review, section 3 outlines the mathematical methods employed for the models, 
Section 4 presents the experimental findings, Section 5 engages in a comprehen-
sive discussion, and Section 6 details the conclusions drawn from this study. 

2. Related Works 

[26] presented a new method, geographically weighted Extreme Learning Machine 
(GWELM), to address spatial heterogeneity within data. By adapting the Extreme 
Learning Machine and incorporating spatially varying parameters estimated 
through geographically weighted least squares, GWELM outperforms comparative 
methods in capturing spatial variations across two diverse datasets. This highlights 
the method’s efficacy in effectively addressing spatial heterogeneity.  

Heterogeneous space-time artificial neural networks (HSTANNs) were devel-
oped [27] to improve space-time series prediction by integrating spatial and 
temporal dependencies as well as heterogeneity. The method involves clustering 
the study area into homogeneous sub-areas to handle spatial heterogeneity and 
analyzing space-time autocorrelation to understand the dataset’s space-time de-
pendence structure. Experimental results indicated that HSTANNs significantly 
enhance forecasting accuracy compared to alternative methods, underscoring 
their effectiveness in capturing complex spatiotemporal patterns. 
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[28] developed a hybrid model to enhance landslide susceptibility mapping by 
integrating GeoSOM and Stacking ensemble methods. The GeoSOM method 
was utilized to address spatial heterogeneity by clustering the study area into ho-
mogeneous regions, assigning each region a cluster attribute as a model input. 
Meanwhile, the Stacking ensemble technique combined support vector machine 
(SVM), artificial neural network (ANN), and gradient-boosting decision tree 
(GBDT) methods to create a high-performance landslide model. The results dem-
onstrated that the hybrid model outperformed traditional machine learning me-
thods, achieving an AUC score 0.11 - 0.135 higher than those of individual me-
thods. 

[29] proposed a deep stacking ensemble model to improve the prediction 
performance of heart disease. This ensemble integrates two optimized and pre- 
trained hybrid deep learning models: Convolutional Neural Network (CNN)- 
Long Short-Term Memory (LSTM) (CNN-LSTM) and CNN-Gated Recurrent 
Unit (GRU). The Support Vector Machine (SVM) serves as the meta-learner mod-
el. Comparative analysis against five machine learning models and hybrid mod-
els reveals that the proposed ensemble achieves the highest performance, espe-
cially when using the full feature set. 

The study introduces GWANN [30], a geographically weighted artificial neural 
network, to derive urban CA transition rules, considering spatial heterogeneity 
and nonlinearity. Examining urban sprawl in Wuhan and Beijing from 2000 to 
2020, GWANN’s effectiveness is compared with LR, GWLR, and ANN. Results 
indicate GWANN’s superior fitting and simulation performance, emphasizing 
the importance of integrating spatial heterogeneity and nonlinearity for accurate 
transition rule establishment in urban sprawl modeling. 

To examine the impact of lockdowns on the Air Quality Index (AQI), [31] 
utilized a deep learning framework, incorporating spatial autocorrelation (SAC), 
which integrates temporal and spatial correlation, the analysis estimates lock-
down effects of −25.88 in Wuhan and −20.47 in Shanghai. These predictions 
significantly reduce prediction errors by around 47% for Wuhan and 67% for 
Shanghai, improving the reliability of AQI forecasts in both cities.  

Less research exists on the integration of machine learning and spatial analysis, 
but it presents some limitations and opportunities for further research. The in-
tegration of RF and CNN machine learning algorithms with spatial analysis 
techniques represents a novel approach to spatial heterogeneity modeling. This 
integration aims to capture the spatial patterns present in the data by leveraging 
the strengths of both models. 

3. Material and Methods  
3.1. Dataset and Tools 

The study utilizes a publicly available spatial dataset sourced from Kaggle, fo-
cusing on California housing prices. Originally used by Dr. Kelley Pace and Dr. 
Ronald Barry, this dataset served as the foundation for constructing spatial au-
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to-regressive models based on 1990 California Census data. It is commonly used 
for spatial autocorrelation analysis:  
https://www.kaggle.com/datasets/camnugent/california-housing-prices. And it 
encompasses details regarding district demographics such as income, population, 
and households, alongside spatial coordinates (latitude, longitude), and a com-
prehensive description of each district’s residential properties including the 
number of rooms, bedrooms, house value, and proximity to the ocean. With a 
substantial dataset comprising 20,640 observations of housing prices and 10 fea-
tures, in those 10 features, 9 features represent input features and the feature 
median_house_value is the target/response variable, each observation represents 
a distinct block in California. The attributes of the dataset are elaborated in Ta-
ble 1, demonstrating a sample of the dataset. Furthermore, Figure 1 illustrates 
the distribution of each variable, providing insights into their spread. Meanwhile, 
Figure 2 illustrates the dispersion of median home values across California con-
cerning both population density and geographical location. Notably, it reveals a 
clear trend where houses closer to the ocean tend to exhibit higher median val-
ues. It is common for houses situated near bodies of water or in high population 
density to command higher prices compared to those located further inland. 
Consequently, incorporating spatial information becomes essential in accurately 
predicting housing prices. 
 

 

Figure 1. Data distribution. 
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Table 1. Description of variables for California housing prices. 

Variable Definition 

longitude Longitude of the house. 

latitude Latitude of the house 

housing_median_age Median age of a house within a bloc 

total_rooms Total number of rooms within a housing bloc 

total_bedrooms Total number of bedrooms within a housing bloc 

population Total number of people living within a bloc 

households Total number of households within a bloc 

median_income Median income for households within a block of houses 

median_house_value Median house value for households within a block 

ocean_proximity Location of the house in relation to the ocean 
 

 

Figure 2. The spread of housing prices among the population in California.  
 

For the accomplishment of this work the Python 3.11.7 open-source software 
was utilized, along with various powerful Package and libraries like Scikit-learn 
1.3.2, Pandas, Numpy, Matplotlib, Scipy 1.11.4, TensorFlow 2.15.0 and Keras for 
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the Convolutional Neural Network, and geopandas 0.14.2 and PySal 24.01 for 
the spatial operations and analysis. This combination of tools and libraries al-
lowed for a robust and comprehensive approach to data analysis, modeling and 
spatial analysis in the context of this work. 

From the above histograms and bar graph of the different features, we can 
observe that certain features exhibit a skewness towards higher values, with the 
Median House Value being notably concentrated towards the higher end of the 
range. This suggest that there may be a prevalence of higher house values within 
the dataset, with fewer observations having lower values, and features are distri-
buted on very different scales. 

3.2. Data Preprocessing 

Data preprocessing plays a crucial role in the data mining process as it involves 
tasks such as cleaning, transforming, and integrating data to prepare it for analysis. 
Real-world data often presents challenges such as irregular formats, missing 
values, outliers, errors, noise, etc. These issues may arise from factors such as 
human error during data collection, limitations of measurement tools, system 
malfunctions, or inherent variability in the real-world phenomena. The spatial 
dataset contains 20,640 instances for different districts in California and 10 
attributes which are: longitude, latitude, housing_median_age, total_rooms, to-
tal_bedrooms, population, households, median_income, median_house_value 
and ocean_proximity. The “ocean_proximity” attribute is categorical which we 
converted to numeric type using one-hot encoding method due to the small num-
ber of categories. The variable “total_bedrooms” contains some missing values 
which were replaced with the median value of the variable. This preprocessing 
step was necessary because many machine learning models cannot handle data-
sets with missing values. The target attribute is the “median_house_value” which 
ranges from 14,999 to 500,001 expressed in US dollars.  

3.2.1. Standardization 
Standardization, often referred to as z-score normalization, is a statistical me-
thod utilized to adjust a dataset’s distribution such that it possesses a mean of 0 
and a standard deviation of 1. This alteration facilitates the comparison of data 
points across various scales, proving especially beneficial in both machine learn-
ing and statistical investigations. Mathematically, it can be written as:  

 s
xx µ
σ
−

=  (1) 

where sx  is the standardized value, x is the original value, µ  is the mean of 
the dataset and σ  is the standard deviation of the dataset. 

In this study, the standardization process was implemented using the Stan-
dardScaler method from the scikit-learn library. 

3.2.2. Data Training and Testing Process 
In machine learning (ML), training and testing are crucial stages that enable al-
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gorithms to discover insights from available data, generate predictions, and re-
fine their performance gradually. The spatial dataset was splitted into a 70/30 ra-
tio, 70% used to train the different models and 30% used to evaluate the genera-
lization and capabilities of the models on unseen data. This is illustrated in Ta-
ble 2.  

3.3. Machine Learning Models 

Machine Learning ranges a wide scope of research areas, encompassing a multi-
tude of algorithms. This paper implements the following machine learning mod-
els: Random Forest (RF), Convolutional Neural Network (CNN) and the hybrid 
model. 

3.3.1. Random Forest (RF) 
In problems involving regression, Random Forest is a group of individual deci-
sion trees, each using a subset of features, that generally contribute their predic-
tions to create a final output of the response variable through averaging [32]. 
Random Forest models can also capture non-linear relationships and complex 
interactions between input variables and the response variable. In spatial data-
sets, where connections maybe intricate and straightforward relationships are 
not present, the ability to capture complex patterns becomes particularly essen-
tial. In this study, the utilization of Random Forest (RF) is chosen due to its overall 
precision and proven effectiveness across a wide range of geoscientific challenges 
[33]. 

Let { }1 2, , , mX x x x=   be the inputs and { }1 2, , , mY y y y=   be the corres-
ponding outputs.  

The mathematical expression of the Random Forest Regressor is as follows:  

 ( ) ( )
1

1ˆ
D

D
rf d

d
Y x L x

D =

= ∑  (2) 

where:  
• ( )ˆ D

rfy x  represents the output for input x using an ensemble of D decision 
trees.  

• D is the number of decision trees in the Random Forest.  
• 1

D
d=∑  denotes the sum running from 1d =  to D.  

• ( )dL x  is the output of the dth decision tree for the input x.  

3.3.2. Feature Selection 
The integration of random forest regressors (RF) and convolutional neural net-
works (CNN) in this study involves feature selection. Feature selection allows for 
the identification of the best subset of features that are important for a given op-
eration. Feature selection allows us to find the best subset of features that are  

 
Table 2. The split description. 

Initial dataset size Training set Testing set 

20,640 14,448 6192 
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important for an operation. It also helps avoid over fitting and improve model 
performance. Furthermore, it enables us to achieve more profound understanding 
of the fundamental mechanisms that led to the data. The advantages of this inte-
gration include improved predictive performance, robustness to noise and outliers, 
and the ability to capture complex spatial patterns and relationships in the data.  

In our research study, we opted for the Mean Decrease in Accuracy (MDA). 
MDA is a metric utilized in ensemble learning, notably in decision tree-based 
models like Random Forest, to assess the significance of individual features in 
prediction accuracy. It evaluates how each feature contributes to making accu-
rate predictions. The MDA index relies on the permutation of out-of-bag (OOB) 
samples to determine the significance of a variable. OOB samples consist of ob-
servations that are not employed in constructing the current tree. They serve 
dual purpose of estimating prediction error and assessing the importance of va-
riables [34]. 

Let imF  represents the feature importance score for each feature, X the orig-
inal input dataset with features and ( )imF X  the vector of feature importance 
scores for all the features in X. For each feature ix , calculate the Mean Decrease 
in Accuracy (MDA) as follows:  

 ( ) ( ) ( )( )
1

1
i i

N

im i x x
t

F x EP t E t
N =

= −∑  (3) 

where:  
• ( )im iF x  is the feature importance score for feature ix .  
• N is the number of trees in the Random Forest.  
• ( )

ixE t  represents out-of-bag error on tree t before permuting values of ix .  
• ( )

ixEP t  indicates out-of-bag error on tree t after permutation.  
After the computation, we maintained features with non-zero imF  scores or 

those with the highest scores based on the difference between the score values. 
Let X ′  represent the new dataset which contains only the features with non- 

zero importance scores. The mathematical expression is as follows:  

 ( ){ }| 0i im iX x X F x′ = ∈ ≠  (4) 

where:  
• X ′  represents the new dataset with features of non-zero importance 

scores.  
• ix  is a feature in the original dataset X.  
• ( )im iF x  represents the importance score for feature ix .  

3.3.3. Convolutional Neural Network 
A Convolutional Neural Network (CNN) tailored for spatial tabular data is a 
deep learning model designed to process structured datasets containing spatial 
or geographic information in tabular format. Unlike traditional CNNs, which 
primarily operate on grid-like structures such as images, a CNN for spatial tabu-
lar data may incorporate convolutional layers to extract spatial patterns and re-
lationships from tabular datasets, while also leveraging fully connected layers to 
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process the tabular data [35]. Its normal structure is a stack of convolutional 
pooling layers followed by totally connected layers [36]. CNN is commonly formed 
of three types of layers (or components): convolution, pooling and fully connected 
layers. CNNs are particularly strong for extracting hierarchical spatial features. 
They can automatically learn and capture relevant patterns and relationships 
within the spatial structure of a dataset. 

3.3.4. Converting the Matrix of Selected Features to a Tensor 
Let X ′  with dimensions n m×  be the selected-features matrix dataset:  

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

m

m

m

n n n nm

x x x x
x x x x

X x x x x

x x x x

′ ′ ′ ′ 
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 ′ ′ ′ ′ ′=
 
 
 ′ ′ ′ ′ 







    



 (5) 

where:  
• n represents the number of rows.  
• m represents the number of columns.  
In order to convert X ′  into a 3D tensor, we can include an additional di-

mension of size 1 which represents the number of channels since we are working 
with tabular data in this case. So, the resulting tensor will have dimensions of 

1n m× × .  
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where:  
• n: represents the height or number of rows in the spatial grid.  
• m: denotes the width or number of columns in the spatial grid.  
• 1: denotes the number of channels.  

3.3.5. Training the CNN with the Selected Features 
One approach to integrate Random Forests (RF) with Convolutional Neural 
Networks (CNNs) involves utilizing the RF for feature selection. The RF can iden-
tify the most relevant features from the original data. Subsequently, these se-
lected features can be used as input for a CNN model. This approach potentially 
improves the efficiency and effectiveness of the CNN. By focusing on the most 
informative features, the CNN might require less training data and reduce the 
risk of overfitting. 

Let X  of size n m c× ×  represents the input tensor, where n and m are the 
spatial dimensions within the tensor structure, and c is the number of channels. 
Here, we used the matrix of selected-features from RF represented by X  (after 
converting to a tensor) to train the Convolutional Neural Network (CNN). The 
mathematical expression of the convolutional layer is as follows:  

 , 1, , , ,
j

l j l i n l i j l j
i S

Y X w bσ −
∈

 
= × +  

 
∑  (7) 

where:  
• ,l jY  is the output of the jth neuron in the lth layer.  
• 1,l iX −  refers to the input tensor of the ith neuron in the lth layer.  
• , ,l i jw  represents the weights associated with the connections between the ith 

neuron in the (l − 1)th layer and the jth neuron in the lth layer. And n is the 
mode-n product.  

• ,l jb  represents the bias associated with the jth neuron in the lth layer.  
• jS  represents the set of indices i corresponding to the neurons in the (l − 

1)th layer that are connected to the jth neuron in the lth layer.  
The expression 1, , ,l i n l i jX w− ×  is the mode-n product, which is an essential 

process in tensor algebra and its functions are used in multi-linear algebra and 
tensor factorization. Moreover, the mode-n product of a tensor and a matrix is 
executed along a specified mode or dimension of the tensor. The activation 
function ReLU is calculated as follows:  

 ( ),max 0, l jYσ =  (8) 

The mathematical formula of the Max Pooling layer is as follows: 

 ( ), ,max
jl j i R l jMP Y∈=  (9) 

where:  
• ,l jM  denotes the output value of the jth neuron in the pooling layer.  
• max

ji R∈  is the maximum operation over a specific region of indices jR .  
The mathematical formula of the fully connected layer will be:  
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 1 ,l l l l jZ W MP b−= ⋅ +  (10) 

 ( )l lA Zσ=  (11) 

where:  
• lZ  is the output of the fully connected layer.  
• lA  denotes the activation values of the neurons in the fully connected layer.  
• 1lMP−  is the output of the max pooling operation at layer 1l − .  
• lW  denotes the weight matrix associated with the connections between the 

previous layer ( 1lMP− ) and the current layer ( lZ )  
Let us assume that the last fully connected layer is denoted as LA , where L 

represents the total number of layers in the network.  
The final output of the CNN will be:  

 ( )cnn LY linear Z=  (12) 

where: 

LZ  represents the input to the activation function of the last fully connected 
layer. 

cnnY  is the final output of the CNN. 
In the illustrated CNN architecture (Figure 3), the initial layer corresponds to 

the input vector space, representing the input data. This architecture comprises 
two hidden layers, each utilizing convolutional and pooling operations to extract 
spatial features from the input data. Finally, the linear output layer transforms 
the features learned by the convolutional layers into a final prediction using ac-
tivation functions.  

3.3.6. The Hybrid Model 
Hybrid machine learning models, integrating components from diverse model 
types or learning algorithms, have become widely embraced for tackling com-
plicated challenges and enhancing overall effectiveness. They have emerged in 
response to the growing complexities of real-world challenges, aiming to en-
hance performance. With ongoing technological advancements, the field of hy-
brid machine learning models is witnessing further innovation and refinement. 
According to [37], a hybrid model is an approach that involves utilizing the 
probabilities generated by one machine learning model as input for another ma-
chine learning model, aiming to achieve better-optimized results based on both 
machine learning procedures, which are considered for the implementations. 

In this part, we will combine the selected features trX , the predictions of RF 
( ( )ˆ D

rfY x ) and CNN ( cnnY ) to create the hybrid model. These combined features 
serve as richer input data for Adaboost, potentially enhancing its ability to cap-
ture complex patterns and improve overall performance, as shown in Figure 4. 

In order to increase the performance of our hybrid model, we will use the 
Adaboost ensemble algorithm. Adaboost, or Adaptive Boosting, builds a model 
and gives equal weights to all the data points. It then assigns higher weights to 
points that are wrongly classified. Adaboost improves the performance of the 
model by combining several weak learners’ accuracies [38]. 

https://doi.org/10.4236/jdaip.2024.123018


A. K. Barry et al. 
 

 

DOI: 10.4236/jdaip.2024.123018 332 Journal of Data Analysis and Information Processing 
 

 

Figure 3. The CNN architecture. 
 

 

Figure 4. Flow diagram of the proposed hybrid ensemble model. 
 

Let trX  represents the set of selected features by the RF from a training data-
set with n samples and m features, denoted as: ( ) ( ) ( )1 1 2 2, , , , , ,n nx y x y x y , 
where ix  represents the feature values and iy  the corresponding outputs. 

Let ( )ˆ D
rfY x  be the output of the Random Forest Regressor, and let cnnY  be 

the output of the convolutional Neural network (CNN). Then, the combined 
features F can be represented as the concatenation of the selected features trX , 
the predictions of RF ( ( )ˆ D

rfY x ), and the predictions of CNN ( cnnY ). Mathemati-
cally, this can be written as: 

 ( )ˆ D
tr rf cnnF X Y x Y = + +   (13) 

Let us define by   the loss function:  

 ( ),i Hy Y  (14) 

Given: iy  the ground true labels and HY  the predictive model, in this case 
our hybrid model; 

The goal is to have a minimal value for the loss function: 

 ( ),i H i Hy Y y Y= −  (15) 
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Initialize weights 
1

iw
N

= , 1,2, ,i N=  , where N represents the number of 

samples. 
For 1,2,t =   to T: 
Fit a weak learner ( )tl x  to the combined features F. 
T denotes the number of iterations or the total number of weak learners 

trained during the ensemble learning process. 

 ( ),t tl H F F=  (16) 

where:  
• tl  represent a weak learner;  
• H is the base learning algorithm;  
• F is the combined features;  
• tF  is a distribution of F or a subset of training samples.  
Calculate the error ter  

 
( ) ( )1

1

N t
i i ti

N
i

i
t

i

w y l x
er

w
=

=

−
=
∑

∑
 (17) 

where:  
• ter  is the error of the tth weak learner.  
• N represents the total number of samples.  
• iw  represents the weight associated with the ith sample. These weights are 

updated at each iteration of the AdaBoost algorithm.  
• iy  denotes the true label of the ith sample.  
• ( )t il x  is the prediction of the tth weak learner for the ith sample.  
Set the performance of stump  

 11 ln
2

t
t

t

er
er

λ
 −

=  
 

 (18) 

where:  
• tλ  represents the performance coefficient associated with the tth weak 

learner.  
• ter  is the error rate of the tth weak learner, which is calculated in Equation 

17.  
Update the weights  

 ( )( )( )1 expt t
i i t i tw w y l xλ+ = ⋅ − ⋅ −  (19) 

where: 
( )( )( )t i ty l xλ− ⋅ −  increases the weights for samples with larger errors and 

decreases for those with smaller errors. 
Normalize iw  to sum to one  

 ( )

1

1
1

1
t

t i
N

jj

i t

ww
w

+

+
=

+ =
∑

 (20) 

where:  
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( )1t
iw +  denotes the weight assigned to the sample i after an update has been 

applied in iteration 1t + , N the number of samples.  

 ( ) ( ) ( )1t t t tl x l x l xλ−= + ⋅  (21) 

where:  
• ( )1tl x−  is the ensemble model built up to the (t − 1)th iteration.  
• ( )tl x  is the updated ensemble model after incorporating the tth weak 

learner’s contribution.  
The final ensemble prediction is computed by combining the predictions of all 

weak learners weighted by their corresponding coefficients tλ , as shown in the 
formula (22).  

 ( )
1

T

t t
i

Y l xλ
=

= ⋅∑H  (22) 

where:  
• YH  is the prediction of the hybrid model.  
• tλ  is the performance of the stump.  
• ( )tl x  represents the weaker learner.  

3.4. Cross-Validation 

Cross validation is a strategy used in machine learning to estimate the perfor-
mance of a model on unseen data. It requires splitting the provided data into 
multiple folds or subsets, using one of these folds as a validation set, and training 
the model on the lasting folds. Cross-validation has the computational advantage 
that it avoids fitting a model too closely to the particularities of a dataset (over-
fitting) [39]. There exist multiple types of cross-validation but in this study we 
are going to use the k-fold cross-validation. K-fold cross validation is a method 
used to assess predictive models. It involves splitting the dataset into k subsets or 
folds. The model is then trained and tested k times, with each fold serving as the 
validation set in turn. The performance metrics are collected from each fold and 
averaged to gauge how well the model generalizes [40]. Mathematically, this can 
be represented as:  

 ( ) ( )( )1 ˆ,i k ik y p x
k −= ∑   (23) 

where: 
  is the average loss across k folds, k represents the number of folds in the 

cross-validation process,   represents the loss function for the ith fold, 
( )ˆ k ip x−  denotes the predicted value by the model trained on all data points ex-

cept those in the kth fold, and iy  represents the true labels. 

3.5. Spatial Auto-Correlation 

Spatial autocorrelation refers to the correlation between data points that arises 
exclusively from their proximity in space. Positive spatial auto-correlation ma-
nifests when similar values cluster together, while negative spatial auto-correlation 
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manifests when dissimilar values are closer together. There is no spatial auto- 
correlation when the values of a variable are randomly distributed across space, 
with no observable pattern of similarity or dissimilarity between neighboring 
geographic units. In this paper, we utilized both Global and Local Moran’s I sta-
tistics to investigate spatial auto-correlation in our dataset. Global Moran’s I 
provide an overall assessment of spatial auto-correlation across the entire study 
area, indicating whether similar values cluster together or are dispersed, it ranges 
from −1 (showing perfect dispersion) to 1 (showing perfect clustering), with 
values close to zero suggesting no spatial auto-correlation [41]. Conversely, Lo-
cal Moran’s I allows for the identification of spatial clusters and outliers by eva-
luating auto-correlation at the local level. 

3.6. Models Evaluation 

Model evaluation is important to assess the efficacy of a model during initial re-
search steps, and it also plays a role in model monitoring. The evaluation metrics 
used in this research study are the Mean absolute Error (MAE), Root Mean 
Squared Error (RMSE) and the coefficient of determination (R2). These will be 
examined in detail below: 

Mean Absolute Error 
The mean absolute error serves as a statistical metric for measuring the aver-

age absolute differences between predicted and actual values, providing a simple 
way of assessing the accuracy of a predictive model. The MAE is presented in the 
same units as the data facilitating straightforward interpretation. A lower MAE 
indicates a closer alignment between the model’s predictions and the actual val-
ues, signifying better predictive accuracy [42]. Mathematically, it can be calcu-
lated as follows:  

 
1

1 ˆMAE
n

i i
i

y y
n =

= −∑  (24) 

where: 
n denotes the total number of data points, iy  represents the observed (actual) 

value, ˆiy  is the predicted value. 
Root Mean Squared Error 
The RMSE represents the normal distribution of prediction errors. These er-

rors, also called residuals demonstrate the distance of the observations from the 
regression line, and RMSE works as measure of how those residuals are spread 
or dispersed [43]. Equation (25) describes the error function as presented below:  

 ( )2

1

1 ˆRMSE
n

i i
i

y y
n =

= −∑  (25) 

where: 
n denotes the total number of data points, iy  represents the actual value, ˆiy  

is the predicted value. The final loss is determined by computing the squared 
differences between them and subsequently summing these squared values. 
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When measuring the accuracy, the square root is taken over this summation. 
R-squared 
R-squared, denoted as (R2), is a frequently used statistical measure. It quantifies 

the proportion of variability in the dependent variable (y) that can be attributed 
to the independent variable (x) in regression models. When R2 values fall within 
the range of 0 to 1, it signifies that they span from 0% to 100% of the variation in 
the vertical axis, contingent on the values observed on the horizontal axis [44]. 
Equation (26) represents that measure:  

 ( )
( )

2
2

1
2

1

ˆ
1 i

i

n
i i

n
i

y y
R

y y
=

=

−
= −

−
∑
∑

 (26) 

where:  
• R2 is the coefficient of determination.  
• ( )2

1
ˆn

i ii y y
=

−∑  represents the sum of squared residuals, which referred to 
the summation of the squared variances between the observed values ( iy ) and 
the predicted values ( ˆiy ).  

• ( )2
1

n
ii y y

=
−∑  denotes the total sum of squares, which is the sum of squared 

variances between the observed values ( iy ) and the mean of these observed val-
ues, symbolized as ( y ).  

4. Experimental Results 
4.1. Feature Selection Results 

The result obtained from feature importance analysis using the Random Forest 
algorithm provides valuable insights into the significance of different features in 
the dataset. Figure 5 shows the result of the Feature Selection. We noticed that 
the score of the housing_median_age is far different from the first four features’ 
scores so we considered these four features. In this case, it’s important to observe 
that the “median_income” feature emerges as the most important one, which 
makes sense as areas where rich people live tend to have more expensive houses. 
Following “median_income”, the “ocean_proximity” feature is ranked second in 
importance. This ranking implies that the price of a house depends on its geo-
graphical position relative to the ocean. The third-ranking feature is “longitude”, 
suggesting that the location in terms of east-west position also plays a significant 
role in determining house prices. Finally, the fourth most important feature is 
“latitude”, indicating that the north-south position of a house also influences its 
price.  

4.2. Machine Learning Model Results 

Before constructing the Hybrid model, we conducted thorough hyper parameter 
tuning for both the Random Forest (RF) and the Convolutional Neural Network 
(CNN) models. Table 3 shows the best hyper-parameters for each model. For 
the RF model, we employed a randomized search approach due to the large 
search space to optimize parameters such as the number of trees, minimum  
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Figure 5. Feature Importance by RF.  
 

Table 3. Best Hyper-parameters. 

Model Hyperparameters 

Random Forest (RF) 

Number of Estimators: 400 

Minimum Samples Split: 5 

Minimum Samples Leaf: 1 

Maximum Features: “sqrt” 

Maximum Depth: 30 

Bootstrap: True 

Convolutional Neural  
Network (CNN) 

Optimizer: Adam 

Learning Rate: 0.001 

Epochs: 50 

Dropout Rate: 0.5 

Dense Units: 256 

Dense Layers: 2 

Convolutional Layers: 1 

Convolutional Kernel Size: 5 

Convolutional Filters: 128 

Batch Size: 64 

Activation Function: ReLU 

Hybrid Model 

Base Estimator Maximum Depth: 7 

Learning Rate: 0.01 

Number of Estimators: 200 
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samples split, minimum samples leaf, maximum features, maximum depth, and 
bootstrap. By enabling bootstrapping (True), random samples are drawn with 
replacement from the training set, fostering diversity and controlling overfitting. 
Overall, these hyperparameters are chosen to balance model complexity and 
performance, aiming to achieve a robust and well-generalized Random Forest 
model. 

Similarly, for the CNN model, we utilized a randomized search over prede-
fined parameter grid due to the large search space to find the optimal configura-
tion of convolutional layers, pooling layers, learning rates, dropout rates, dense 
units, and other relevant parameters. The Adam optimizer is chosen for its adap-
tive learning rate and momentum properties, which can lead to faster conver-
gence and better performance. As a whole, the chosen hyperparameters reflect a 
thoughtful approach to designing the CNN architecture, balancing between 
model complexity, training stability, and generalization performance. 

Next, the hybrid ensemble model (Adaboost) was created using the selected 
features and the predictions from RF and CNN as additional features, then, since 
the search space is not large compared to RF and CNN, we employed a grid 
search to optimize parameters such as max_depth, learning_rate, and the num-
ber_of_estimators for the hybrid ensemble model. These parameter selections 
aim to find an equilibrium between model intricacy and its ability to accurately 
forecast outcomes, ensuring a well-balanced trade-off between complexity and 
performance.  

Table 4 presents a comparison of the performance results among Random 
Forest (RF), Convolutional Neural network (CNN), and the proposed hybrid 
model, based on the RMSE, MAE, and R2 scores.  

The hybrid model’s superior performance in this study derives from several 
factors. Firstly, upon comparing metrics like mean absolute error (MAE), root 
mean squared error (RMSE), and coefficient of determination (R2) in Table 4, 
it’s evident that the hybrid model outperforms both the random forest (RF) and 
convolutional neural network (CNN) models in all aspects. This implies that the 
hybrid model achieves greater accuracy and predictive capacity. Additionally, 
the assessment of global spatial autocorrelation in Table 6 using Moran’s I on 
residuals shows that the hybrid model displays a lower Moran’s I value com-
pared to both RF and CNN models, indicating reduced spatial autocorrelation in 
prediction errors, and suggesting that the hybrid model effectively captures spa-
tial dependencies in the data, leading to more accurate spatial predictions. Over-
all, integrating features and methodologies from both RF and CNN models en-
hances the hybrid approach’s performance and spatial prediction capabilities. 

 
Table 4. Results of different models on the testing set. 

Models MAE RMSE R2 

RF 0.25945 0.40136 0.83557 

CNN 0.36000 0.50608 0.73858 

Hybrid 0.18600 0.24112 0.90058 
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4.3. K-Fold Cross-Validation Results 

To underscore the significance of our proposed model, we conducted a 5-fold 
cross-validation analysis using all models on the spatial dataset in use. Table 5 
presents the RMSE performance metrics obtained from cross-validation process 
for each model, alongside their respective test errors. Upon examining the spatial 
data, it becomes clear that the hybrid model consistently achieves the lowest RMSE 
values across all folds and demonstrates the lowest test error, which represents 
the average RMSE across all folds within the model. These results strongly sug-
gest that the hybrid model is the most accurate for the given task. Additionally, 
the RF model displays commendable performance, exhibiting lower RMSE val-
ues compared to the CNN model. Therefore, the CNN model shows moderately 
higher RMSE values, indicating relatively lower accuracy in predicting the house 
prices.  

4.4. Spatial Auto-Correlation Results 

In our spatial auto-correlation assessment, we employed the libpysal library in 
Python, utilizing its KNN function to compute the spatial weights based on the 
k-nearest neighbors approach. This analysis was conducted on a GeoDataFrame 
gdf_train comprising spatial observations, with k values ranging from 1 to 5 be-
ing evaluated. For each k value, we computed the spatial lag, representing the 
weighted average of neighboring values for a given variable. Subsequently, we 
assessed the spatial autocorrelation of residuals from the hybrid model by calcu-
lating the Pearson correlation coefficient, indicating strong spatial autocorrelation 
capture. Our analysis identified k = 5 as the optimal value, effectively representing 
spatial relationships within the dataset. Table 6 presents the outcomes of the 
Global Moran’s I statistic for the residuals across various models.  

The Global Moran’s I value serves as an indicator of spatial autocorrelation, 
showing both the extent of spatial clustering or similarity and the presence of 
dissimilarities within the residuals. For the CNN model, a Moran’s I value of 
0.48 suggests a notably strong positive spatial autocorrelation pattern. Conversely, 
the RF model exhibits a lower Moran’s I value of 0.12, indicating a relatively 
weaker spatial autocorrelation contrasted to the CNN model. Notably, the hybr-
id model displays the lowest Moran’s I value of 0.10, suggesting minimal spatial 
autocorrelation among the models examined. Overall, the comparison of Mo-
ran’s I values underscores a reduction in spatial autocorrelation with the resi-
duals, highlighting the influence of model performance on capturing spatial au-
tocorrelation.  

 
Table 5. 5-fold cross validation results. 

Models 
RMSE scores across outer folds for various models 

Test Error 
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

RF 0.40653 0.42186 0.40352 0.42007 0.41772 0.40136 
CNN 0.52449 0.53675 0.53037 0.50402 0.50808 0.50608 

Hybrid 0.18889 0.18788 0.17808 0.18807 0.18857 0.18600 
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Table 6. Assessment of global spatial autocorrelation. 

Models Moran’s I on residuals 

RF 0.12 

CNN 0.48 

Hybrid 0.10 

 
Additionally, the study examined Local Moran’s I values to further under-

stand spatial autocorrelation patterns at a more localized level. Positive values 
indicate clusters of high or low residuals surrounded by similar values, suggest-
ing spatial homogeneity. Conversely, negative values indicate clusters of high re-
siduals surrounded by low residuals (or vice versa), highlighting spatial discon-
tinuities or areas of spatial heterogeneity within the dataset. The Local Moran 
map for the CNN model Figure 6 reveals significant spatial heterogeneity in re-
sidual values across the study area. The map displays a diverse range of colors, 
each representing varying intensities of residuals. Blue and purple areas indicate 
localized clusters of low residuals, while brown and orange areas signify localized 
clusters with higher residuals. Additionally, the presence of yellow areas denotes 
regions with substantially higher residuals. Overall, the map underscores the com-
plex and varied nature of residual values observed across the study area, empha-
sizing the spatial heterogeneity and variability inherent in the CNN model’s pre-
dictions.  

Similarly, Figure 7 demonstrates significant spatial heterogeneity in residual 
values across the study area, showcasing a diverse color range indicating varia-
bility in intensities. Blue and purple areas suggest localized clusters of low resi-
duals, while orange and yellow areas denote clusters with higher residuals. Addi-
tionally, brown areas indicate dispersed regions with near-zero residuals. This 
variability underscores the complex nature of residual values across the area, re-
flecting both spatial homogeneity and distinct patterns. Finally, The Local Mo-
ran map for the hybrid model Figure 8 provides insights into the spatial distribu-
tion in residual values across the study area. The hybrid map demonstrates a 
wider range of colors and intensities, indicating a finer resolution in capturing 
subtle spatial variations compared to RF and CNN. Purple and navy blue areas 
highlight localized clusters of low residuals, while green and light green areas 
denote clusters with slightly higher values. The presence of yellow areas indicates 
regions with significantly higher residuals. This diverse range of colors unders-
cores the complex and varied nature of residual values observed across the study 
area, emphasizing the overall spatial heterogeneity inherent in the hybrid mod-
el’s predictions. Among the three models, the hybrid model appears to capture 
spatial heterogeneity more effectively. This inference is drawn from the distribu-
tion of Local Moran’s I values, where the hybrid model demonstrates a balanced 
mix of positive and negative values, indicating the presence of both spatial clus-
ters of similar and dissimilar values. However, the hybrid model offers a com-
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prehensive approach to understanding spatial heterogeneity. This integration 
allows the hybrid model to effectively capture diverse spatial patterns and de-
pendencies, making it a superior model in characterizing the complex spatial 
structure of the dataset. 

 

 

Figure 6. CNN model. 
 

 

Figure 7. RF model. 
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Figure 8. Hybrid model. 
 
The analysis indicates that the models have effectively captured the spatial 

characteristics, as reflected in the robust performance assessment based on 
RMSE for the hybrid model and the fair performance for the remaining two 
models. These findings are consistent with our initial hypotheses, illustrating the 
capability of a particular ML model to handle spatial heterogeneity without the 
need for explicit spatial features in the learning phase. Furthermore, it unders-
cores the model’s aptitude for capturing spatial relationships and enhancing 
predictive accuracy, thus enriching our comprehension of spatial heterogeneity. 

5. Discussion 

Our study presents a novel approach to spatial heterogeneity detection using 
machine learning (ML) techniques without the need for explicit spatial features 
during the learning phase. By combining Random Forest (RF) and Convolution-
al Neural Network (CNN) models into a hybrid model, we aimed to achieve su-
perior performance in capturing spatial patterns and dependencies. The perfor-
mance evaluation as depicted in Table 4 reveals that the hybrid model outper-
formed both RF and CNN models in terms of MAE, RMSE and R2 scores. Nota-
bly, the hybrid model achieved a remarkable R2 score of 0.90058, indicating its 
ability to capture 0.90% of the variance between predicted and actual values. 
These results underscore the robustness and efficacy of our hybrid approach in 
accurately modeling housing prices. This study aligns with [45] [46]. Cross- 
validation results (Table 5) further validate the superiority of the hybrid model, 
as it consistently demonstrated the lowest RMSE values across all folds. This 
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consistency highlights the hybrid model’s accuracy and reliability in capturing 
spatial dependencies within the dataset. The analysis of spatial autocorrelation 
patterns using Global Moran’s I statistics and Local Moran’s I values revealed 
insightful findings. While the RF model exhibited a lower Global Moran’s I value 
compare to CNN, the hybrid model demonstrated the lowest Global Moran’s I 
value, indicating minimal spatial autocorrelation among the models examined. 
Common spatial autocorrelation analysis has been done in [47] but the hybrid 
approach and spatial autocorrelation based on models’ residuals are more em-
phasis in our study. Combining predictions from multiple models, such as RF 
and CNN, using ensemble techniques to leverage the strengths of different mod-
els can help mitigate the effects of spatial heterogeneity, thus reducing prediction 
bias. Additionally, evaluating the spatial autocorrelation of model residuals using 
techniques like Global Moran’s I or local Moran’s I to identify any remaining 
spatial patterns or dependencies in model predictions that may require further 
attention. 

In summary, our study demonstrated the effectiveness of our hybrid model in 
capturing spatial heterogeneity without the need for explicit spatial features. By 
integrating RF and CNN strengths, the hybrid model offers a comprehensive 
approach to understanding spatial patterns and dependencies. These findings 
contribute to advancing spatial modeling methodologies and hold significant 
implications for various applications, including urban planning and environ-
mental management. Future research could explore additional ML algorithms 
and spatial modeling techniques to further enhance predictive accuracy and un-
cover deeper insights into spatial phenomena. Additionally, further investigation 
could consider applying our method with other ensemble techniques and spatial 
autocorrelation analyses to comprehensively explore the issue of spatial hetero-
geneity and its implications. 

6. Conclusion 

The current study presents a fresh approach to identifying spatial heterogeneity 
using machine learning (ML) methodologies, notably without requiring explicit 
spatial features during the learning phase. The proposed hybrid model combines 
two competitive models, Random Forest (RF) and Convolutional Neural Net-
work (CNN), to achieve high accuracy and effectiveness. Both RF and CNN in-
dividually exhibit robust performance in discerning spatial relationships. How-
ever, their combination within the hybrid model resulted in a notable enhance-
ment, marking a substantial 0.90% increase in accuracy. This improvement is cre-
dited to the application of boosting techniques, particularly, the Adaboost algo-
rithm, which effectively rectifies errors inherent in each individual model. Note-
worthy is that both individual models and the hybrid model proficiently cap-
tured significant spatial details, encompassing spatial dependencies as quantified 
by Global and Local Moran indices. Although showing lower R2 values relative 
to the hybrid model, the separate models successfully encapsulated a substantial 
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portion of spatial information. In contrast, the hybrid model characterized by its 
high R2 value, emerged as the superior model in capturing the spatial hetero-
geneity inherent within the dataset. 
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