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Abstract 
Survival analysis is a fundamental tool in medical science for time-to-event 
data. However, its application to colony organisms like bees poses challenges 
due to their social nature. Traditional survival models may not accurately 
capture the interdependence among individuals within a colony. Frailty mod-
els, accounting for shared risks within groups, offer a promising alternative. 
This study evaluates the performance of semi-parametric shared frailty mod-
els (gamma, inverse normal, and positive stable-in comparison to the tradi-
tional Cox model using bees’ survival data). We examined the effect of miss-
pecification of the frailty distribution on regression and heterogeneity para-
meters using simulation and concluded that the heterogeneity parameter was 
more sensitive to misspecification of the frailty distribution and choice of ini-
tial parameters (cluster size and true heterogeneity parameter) compared to 
the regression parameter. From the data, parameter estimates for covariates 
were close for the four models but slightly higher for the Cox model. The 
shared gamma frailty model provided a better fit to the data in comparison 
with the other models. Therefore, when focusing on regression parameters, 
the gamma frailty model is recommended. This research underscores the 
importance of tailored survival methodologies for accurately analyzing 
time-to-event data in social organisms. 
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1. Introduction 

Honey bees, (tribe Apini), refer to a group of insects in the family Apidae (order 
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Hymenoptera) that in a broad sense includes all bees that make honey. The 
Western Honey Bee (Apis mellifera), which is domesticated for honey produc-
tion and crop pollination, is the most well-known type of honey bee. Only 
members of the genus Apis are considered true honey bees [1]. However, other 
species of bees, such as the stingless bees belonging to the genus Meliponula and 
the Indian stingless Tetragonula iridipennis have also been kept by humans to 
produce honey. 

Colony collapse disorder (CCD), originally identified in the United States in 
2006, resulted in considerable colony losses and posed severe challenges for 
agricultural pollination, a crucial service provided by the North American bee-
keeping industry. CCD can be caused by a many factors like disease, parasites 
(Varroa destructor and Tropilaelaps clareae) and possibly extensive use of 
broad-spectrum chemical pesticides. The effects of chemical pesticides on bene-
ficial and nontarget insects are well documented by [2] [3] [4] and they are one 
of the main causes of the unprecedented decline of bee pollinators globally [5]. 
The entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Me-
tarhizium anisopliae (Metschnikoff) Sorokin are created and utilized as biopesti-
cides globally. Based on their durability in the field and compatibility with the 
environment, these entomopathogens offer safer alternatives to chemical pest 
management [6]. However, it is essential to evaluate the safety of entomopatho-
gens on the survival of bees and thus the context of the data being considered in 
this study. 

Bee survival time has been modelled using Kaplan-Meier estimator [7], Gene-
ralized Linear Model (GLM) [8] and Cox proportional hazard model [9] with 
the assumption of independent and identically distributed data. These assump-
tions may not be realistic because bees are social insects and thus they live to-
gether in large, well-structured family groups such that the survival duration of a 
bee may depend on the survival duration of its nest-mates. This brings about 
heterogeneity or variability in the population which is regarded as one of the 
main factors influencing variation in biological applications. Assessing this he-
terogeneity may be challenging since it can be unobservable. This unobserved 
heterogeneity might stem from factors like genetic variations, differences in ex-
posure to environmental stressors, or other unknown or unmeasured factors. [10] 
noted that the power to detect treatment differences is reduced by heterogeneity. 
Therefore, random effects, called frailties in the context of hazard models should 
be included in the model to account for the unobserved heterogeneity in survival 
modeling of organisms that live in colonies. 

Clayton [11] initially introduced a model to account for the dependence be-
tween survival times within a cluster, although he did not employ the term 
“frailty.” Vaupel et al. [12] later coined the term “frailty” to describe this concept, 
specifically in the context of a random effects model for survival data aimed at 
tackling unobserved heterogeneity within a population. The classical widely used 
frailty model is based on a proportional hazards model conditional on the frailty. 
This loosely translates that an individual’s hazard depends additionally on an 
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unobservable variable Z that takes a constant value over time [13]. Let Z be a 
non-negative random variable, which is assumed to act multiplicatively on a 
baseline hazard function ( )0 tλ , 0t > . In the univariate case, the hazard of an 
individual with frailty Z is specified as:  

( ) ( )0\t Z Z tλ λ=  

By incorporating the frailty term into the model, we can accurately evaluate the 
effects of the covariates without underestimating or overestimating the parame-
ters [14]. 

Frailty models account for the correlation structure in the data and the frailty 
terms are introduced to model the dependence between observations. Many frailty 
distributions have been studied by various authors, including the log-normal 
and the Power Variance Function (PVF) family, which comprises Gamma, In-
verse Gaussian, Positive Stable and Compound Poisson distributions [15] [16]. 
The PVF family was considered in this study because of the tractable Laplace 
transform which simplifies the model manipulation and enables closed-form 
expressions for marginal functions [17]. The association between failure times 
was assessed using Kendall’s tau for clustered data, a non-parametric measure 
advantageous for its mathematical simplicity in the context of the PVF family’s 
Laplace transform properties. Owing to the latent nature of the frailty, it can be 
challenging to find the proper distribution of the frailty term for a given data set, 
and its misspecification can result in biased estimators, reduced efficiency, and 
misleading conclusions [18]. 

Frailty models, more specifically shared frailty models, have been commonly 
used in different studies to accommodate familial or, more generally, clustered 
survival data. Some of the studies include research by [19] [20] [21]. The objective 
of this study was therefore to assess the performance of different semi-parametric 
shared frailty models in the analysis of the bees’ survival data. Specifically, the 
gamma, inverse Gaussian, and positive stable models are explored as frailty dis-
tributions. We also examined the effect of frailty distribution misspecification on 
regression and heterogeneity parameters estimate through a simulation study.  

2. The Semi-Parametric Shared Frailty Model 

Maximization of the partial likelihood is used to fit semiparametric hazard mod-
els without frailty terms [22]. The contribution of the unobserved frailty com-
ponents, however, has to be taken into consideration for semiparametric frailty 
models. 

Suppose there are S groups with in  individuals within the ith group ( 1, ,i S=  ) 
in a survival study. Let ijT  denote the survival time and ijδ  denote the cen-
soring indicator for the jth individual ( 1, , ij n=  ) in the ith group. ijδ  takes a 
value of 0 if ijT  has not been observed and 1 when it is observed. Let ijX  a 

1p× , denote observable covariate vector for the jth individual in the ith group. 
The hazard rate function for the jth individual in the ith group at time t in the 
semi-parametric shared frailty model:  
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( ) ( ) ( )T
0| expij i ijt X t Z Xλ λ β=  

where iZ  is the “frailty” or unobserved random effect of the ith group, β  is a 
vector of unknown regression coefficients and ( )0 tλ  is an unspecified baseline 
hazard function. 1, , SZ Z  are assumed to be independent and have a common 
probability density function (pdf) ( )f z , such that ( ) 1iE Z =  for identifiabili-
ty. As addressed by [23], the above model characterizes two sources of variation: 
the group variation described by iZ , and the individual variation characterized 
by ( ) ( )T

0 exp ijt Xλ β . 
Individuals in the ith group are assumed to be conditionally independent, giv-

en both the observed covariates and the group-specific frailty, ensuring that the 
analysis accounts for both measurable risk factors and unobserved group-specific 
effects on survival times. The joint survival distribution of failure times is there-
fore given by: 1 2, , ,

ii i inT T T  conditional on 1, ,
ii inX X  is: 
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0
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f f z z

∞ −= ∫  is the Laplace transform of the pdf of the frailty 
( )f z  and ( ) ( )0 00

d
t

t u uλΛ = ∫ . 

2.1. Frailty Distributions: The Power Variance Function (PVF)  
Family 

A more general family of infinitely divisible PVF distributions is the power va-
riance function (PVF) family, with the Laplace transform described by [23] [34]:  

 ( ) ( ); , , exp sign 1
m

L c y m m
c

γα α
γ

     = − −   +    
 (2) 

where ( )sign m  is the sign of m, and 1m > −  and 0m ≠ . Particular cases in-
clude: The gamma frailty ( 0m →  with 0m < ); inverse Gaussian distribution  

( 1
2

m = − ); compound poisson DISTRIBUTION ( 0m > ) and the positive stable 

distribution ( 0γ → ). 

The log-normal distribution has often been used for frailty models, although it 
is not part of the PVF family.  

1) Gamma Frailty As gamma distributions have a simple Laplace transform 
and thus simple expressions of likelihood functions, they are frequently used to 
model frailty. The pdf of Gamma distribution is:  

( ) ( )
1e , , 0, 0,

zzf z z
α α θθ θ α

α

− −

= > >
Γ

 

where ( )αΓ  is the gamma function, θ is a rate parameter in the inverse scale, 

https://doi.org/10.4236/jdaip.2024.122015


P. Isiaho et al. 
 

 

DOI: 10.4236/jdaip.2024.122015 271 Journal of Data Analysis and Information Processing 
 

and α is a shape parameter. For the identifiability problem, to restrict α θ= , we 
take ( ) 1Z =E . This leads to:  

( ) ( )
1e , 0, 0

zzf z z
θ θ θθ θ

θ

− −

= > >
Γ

 

Then, the corresponding Laplace transform is:  

( ) ( ) 11u u θθ −= +  

2) Positive stable frailty 
The positive stable model is an appealing alternative when the data is not 

well-fitted by the gamma frailty specification [23]. In contrast to the gamma 
model, which exhibits time-invariant predictive hazard ratios [25], this model’s 
predictive hazard ratio drops to 1 with time [26]. The pdf of positive stable dis-
tribution is given by:  

( ) ( ) ( ) ( )
1

11 sin
!

k

k

k
f z z k

z k
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π

Γ
−

π
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where 0 1α< < , 0z > , and 0θ > . α and θ are unknown parameters. 
The mean of this positive stable distribution is infinite, therefore making its 

variance undetermined. To address the identifiability problem on the parameters 
we restrict α θ= . Then, the pdf becomes:  

( ) ( ) ( )( ) ( )1
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where 0 1θ< < , 0z > . The corresponding Laplace transform is:  

( ) ( )exps sθ= −  

3) Power Variance Function frailty 
The PVF distribution was proposed by [27] and [24]. Gamma, Inverse Gaus-

sian, and Positive Stable distributions are its special cases, making it a 
three-parameter family. We denote the PVF distribution by PVF ( ); ;α δ θ . Ac-
cording to [24] the pdf is given as:  

( ) ( ) ( ) ( ) ( )
1

11exp sin
!

k

k

k
f z z z k

z k
α αα

θ δθ α δ α α
∞

−

=

π
π

Γ +
= − − + −∑  

when 0 1α< < , 0δ > , and 0θ ≥ . 
We set 1 αδ θ −=  corresponding to ( ) 1 1Z αδθ −= =E  for identifiability. 

Therefore, the Laplace transform is given as:  

( ) ( ){ }exp 1 1s s αθ θ α = − +
 

  

This reduces to the Laplace transform of the gamma frailty If 0α →  and 
when 1 2α = , it reduces to the Laplace transform of inverse Gaussian frailty. 
This suggests that the PVF contains many other fascinating frailty models as 
special cases. Use of the PVF frailty model in actual practice is therefore desira-
ble. 
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2.2. Estimation of Parameters 

The development of R packages for the PVF distribution family has been some-
what limited. Notably, the “frailtySurv [28] [29]” and “parfm [30]” packages in-
clude most of these distributions, with the former utilizing a pseudo full likelih-
ood approach and the latter offering fully parametric models. To enhance this 
suite, the “frailtyEM” package has been introduced, employing the Expecta-
tion-Maximization (EM) algorithm to fit semiparametric shared frailty models, 
thus providing comprehensive support for various data scenarios within the PVF 
distribution family. 

The EM algorithm was suggested by [31] and is frequently applied when there 
is unobserved data. The application of the EM algorithm to analyze the survival 
of bees using frailty models was used because of its ability to handle unobserved 
heterogeneity, manage incomplete data, offer flexibility in model specification, 
provide computational efficiency, improve estimation accuracy, and exhibit ro-
bustness to model assumptions. 

The EM algorithm iterates between two steps: The Expectation step and the 
Maximization step. The expectation step determines the expected values of the 
unobserved frailties conditional on the observed data and the current parameter 
estimates. The expected values from the E-step are taken into account as the ac-
tual information in the maximization step, and new estimates of the parameters 
of interest are then derived by maximizing the likelihood given the expected 
values. 

The EM algorithm for Semiparametric frailty models is described by [32]. We 
first consider the complete data log-likelihood with the frailties assumed to be 
observed randomly variables. The full data log-likelihood follows from the joint 
density of y and z, with y containing the observed times ijt  (the minimum be-
tween the failure and right-censoring time) and the censoring indicators ijδ . 
With ( )0λ ⋅  the unspecified baseline hazard function and observing the iz s′  
we have: 

 ( ) ( )( ) ( )0 ,1 0 ,2, , ,full full fulll l lθ β λ β θΛ = ⋅ +  (3) 

with: 

 ( )( ) ( ) ( )( ) ( ) ( )T T
,1 0 0 0

1 1
, log exp exp

ns i

full ij ij i ij ij i ij
i j

l t z x t z xλ β δ λ β β
= =

 ⋅ = − Λ ∑∑  (4) 

as the log-likelihood of y conditional on the frailties, which is used to estimate β 
and 0λ . And;  

 ( ) ( ),2
1
log

s

full i
i

l g zθ
=

= ∑  (5) 

is used to estimate θ. The full data log-likelihood is then solved using the EM al-
gorithm. 

Log-likelihood, theoretically, can be used to compare various frailty distribu-
tions like the power variance function (PVF) family. Frailties are latent, making 
it difficult to predict them because the data is usually insufficient to allow for the 

https://doi.org/10.4236/jdaip.2024.122015


P. Isiaho et al. 
 

 

DOI: 10.4236/jdaip.2024.122015 273 Journal of Data Analysis and Information Processing 
 

construction of a well-informed judgment. Within the PVF, the model with the 
highest log-likelihood is selected. 

3. Application to Bees Data 
3.1. Available Data 

This study utilized secondary data from a study that was conducted to assess the 
effect of entomopathogenic fungi (biopesticides) on the African stingless bee 
(Meliponula ferruginea Cockrell) and the Western honey bee (Apis mellifera L.) 
[33]. The study included six entomopathogenic fungi namely five isolates of 
Metarhizium anisopliae (ICIPE 7, ICIPE 20, ICIPE 62, ICIPE 69, and ICIPE 78), 
and one isolate of Beauveria bassiana (ICIPE 284) plus control consisting of un-
exposed bees. The study was conducted to evaluate the safety of entomopatho-
genic fungi which are globally being used as biopesticides for pest control as an 
alternative to harmful chemicals. The rationale for the study is that conidia of 
entomopathogenic fungi applied on flowering plants could be unsafe for forager 
bees hence the need to assess the nontarget effect of biopesticides on honey bees 
and stingless bees. In the study, young bees of the same age were exposed to 1 × 
108 conidia/ml using a micro-spray tower before placing them in cages to moni-
tor survival under laboratory conditions. The bees were randomly allocated to 
111 cages (clusters) with 25 or 30 bees per cage depending on the availability of 
the bees. The bees were monitored every 24 hours over 10 days. The 10-day limit 
was set because literature indicates that the confinement of small groups of bees 
secluded from their queen under artificial conditions renders them stressful. Be-
sides, the biopesticides are only active from 3 days up to 14 days. The outcome 
of interest was the time to death, which was recorded for each bee in the cages 
(clusters). The survival data were collected by monitoring the bees every 24 
hours over the 10-day period. Bees were considered dead if they exhibited no 
movement when prodded with a fine brush. If a bee was still alive at the end of 
the 10-day period, it was censored from the analysis. Out of a total of 3080 ob-
servations, 2443 (79.8%) were censored. More details on study methodology can 
be found in [33]. 

3.2. Exploratory Data Analysis 

Figure 1 shows the Kaplan-Meier estimates of the overall population (black) 
compared to each cluster (gray). It was evident that each cluster differed from 
each other and the overall survival curve. However, the cluster-specific survival 
curves are not controlled for potential variations in the covariate distribution 
across clusters, and hence the need to account for the unobserved variation.  

3.3. Parameter Estimates Comparison 

The parameter estimates for the Cox model and the Gamma, Positive stable, and 
Inverse Gaussian frailty models are given in Table 1. The Hazard Ratio (HR) for 
all the covariates was close for the four models but slightly higher for the Cox  
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Table 1. Hazard ratio (exp(coef)) and standard error estimates (SE) from the Cox model, the gamma, positive stable, and inverse 
Gaussian frailty models.     

Factor 
Cox Model Gamma Positive stable Inverse Gaussian 

exp (coef) SE exp(coef) SE exp(coef) SE exp(coef) SE 

Bees’ species vs Apis         

Meliponula 0.55* 0.08 0.54* 0.10 0.52* 0.09 0.55* 0.10 

Treatment vs control         

ICIPE 20 2.64* 0.17 2.58* 0.19 2.53* 0.19 2.57* 0.19 

ICIPE 284 1.43 0.19 1.42 0.21 1.44 0.20 1.42 0.21 

ICIPE 62 1.82* 0.18 1.82* 0.20 1.81* 0.19 1.82* 0.20 

ICIPE 69 2.45* 0.17 2.46* 0.19 2.47* 0.18 2.47* 0.19 

ICIPE 7 2.66* 0.17 2.62* 0.19 2.62* 0.18 2.62* 0.19 

ICIPE 78 1.83* 0.18 1.83* 0.20 1.71* 0.20 1.83* 0.20 

*Significant estimate (p < 0.001).  
 

 
Figure 1. Kaplan Meier estimates corresponding to each cluster (grey) and the overall es-
timate (black). 
 
model. The similarities between the Cox model and shared frailty models could 
be explained by the fact that the frailty variance for the frailty models was quite 
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low, that is, 0.067 and 0.065 for gamma and inverse Gaussian frailty models re-
spectively as shown in Table 2. The variance for the positive stable distribution 
is undefined. However, it is easy to obtain Kendall’s τ, and in this case, it is lower 
than in the gamma frailty model. The positive stable frailty predicts marginal 
model with proportional hazards where the marginal hazard ratios are an atte-
nuated version of the conditional hazard ratios shown in the output. Although 
the frailty variance was small, the differences in mortality rates between clusters 
were statistically significant (Commenges-Andersen test for heterogeneity, p < 
0.05 and likelihood ratio test, p < 0.05) for all frailty models. 

Sensitivity Analysis 
We conducted a sensitivity analysis to assess the robustness of the parameter es-
timates. It’s worth noting that the frailtyEM package does not have a direct func-
tion for sensitivity analysis. Therefore, we manually conducted the sensitivity 
analysis, which included two components: bias analysis and variance analysis.  

1) Bias Analysis  
For the bias analysis, we perturbed the parameter estimates by adding random 

noise to the original estimates. We then re-estimated the models multiple times 
and calculated the average bias across simulations. The perturbation was based 
on the standard errors of the parameter estimates. The average bias across simu-
lations is presented in Table 3. 

2) Variance Analysis 
 
Table 2. Frailty summary of gamma, positive stable and inverse gaussian frailty models; theta is the heterogeneity parameter, LRT 
is the Likelihood ratio test, and ca test is the Commenges-Andersen test.  

 Gamma Positive Stable Inverse Gaussian 

 Estimate 95% C.I Estimate 95% C.I Estimate 95% C.I 

Var(Z) 0.067 [0.006, 0.158] — — 0.065 [0.006, 0.160] 

Kendall’s τ 0.032 [0.03, 0.073] 0.021 [0.062, 1.000] 0.030 [0.003, 0.065] 

theta 14.963 [6.330, 159.564] 45.783 [15.246, 3835.841] 15.317 [6.235, 169.560] 

LRT 0.0132  0.0226  0.0137  

ca test 0.026  0.026  0.026  

 
Table 3. Average bias in parameter estimates. 

Factor Cox Model Gamma Positive Stable Inverse Gaussian 

Meliponula −0.001 0.002 0.001 0.000 

ICIPE 20 −0.003 0.001 0.001 −0.001 

ICIPE 284 −0.001 0.000 0.000 0.001 

ICIPE 62 0.000 −0.001 −0.001 0.000 

ICIPE 69 −0.001 −0.001 0.001 0.000 

ICIPE 7 −0.001 −0.001 0.000 0.000 

ICIPE 78 0.001 −0.002 0.002 0.000 
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For the variance analysis, we resampled the parameter estimates and calcu-
lated the variability across simulations. The average variance across simulations 
is presented in Table 4. 

The sensitivity analysis indicates that the parameter estimates obtained from 
the Cox and frailty models are robust to perturbations in the input data. The av-
erage bias and variance across simulations are small, indicating that the esti-
mates are unbiased and consistent. 

3.4. Comparing the Performance of the Fitted Semi-Parametric  
Frailty Models 

3.4.1. Visualization of the Marginal and Conditional Cumulative Hazard  
from Different Frailty Distributions 

Predicted cumulative hazard curves of two selected individuals, one from the 
Apis species and another from the Meliponula species, subjected to ICIPE 20 
treatment are displayed in Figure 2. The marginal cumulative hazard of the 
gamma and inverse gaussian frailty models appeared as a “dragged down” ver-
sion of their conditional cumulative hazards. As described in [34], this is a 
well-known effect observed in frailty models. If the frailty variance is larger, this 
selection effect is stronger. Particularly, depending on the variance of the frailty, 
the marginal hazard may seem to increase, peak, and then decrease beyond a 
certain time, even if the conditional hazard is increasing. 

This is however different for the positive stable frailty model. Unlike other 
distributions, which imply non-proportional risks at the marginal level, the posi-
tive stable distribution implies proportional hazards both unconditionally and 
conditionally on frailty. Therefore, this is the only distribution in which the 
frailty effect does not obscure the potential violation of the proportional hazards. 
On average, individuals with higher hazards die earlier than those with lower 
hazards. This is particularly true for all frailty distributions. 

3.4.2. Visualization of the Conditional and Marginal Hazard Ratios from  
Different Distributions 

Figure 3 shows the predicted hazard ratio curves of two selected individuals, one 
from the Apis Species and another from the Meliponula species, both subjected 
to ICIPE 20 treatment. 
 
Table 4. Average variance in parameter estimates. 

Factor Cox Model Gamma Positive Stable Inverse Gaussian 

Meliponula 0.0001 0.0003 0.0002 0.0002 

ICIPE 20 0.0002 0.0001 0.0002 0.0002 

ICIPE 284 0.0001 0.0001 0.0001 0.0002 

ICIPE 62 0.0001 0.0002 0.0002 0.0002 

ICIPE 69 0.0001 0.0002 0.0001 0.0002 

ICIPE 7 0.0001 0.0002 0.0001 0.0001 

ICIPE 78 0.0002 0.0002 0.0002 0.0002 
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Figure 2. Predicted conditional and marginal cumulative hazard for (a) Gamma, (b) Positive stable, and (c) Inverse gaussian 
frailty models for Apis species and Meliponula species treated with ICIPE 20 entomopathogenic fungi. 

 
The gamma and inverse gaussian frailty models shrink the hazard ratio to-

wards 1. However it can be seen that this effect is slightly more pronounced for 
the gamma frailty model. The positive stable frailty model exhibits constant “av-
erage” shrinkage. This is because unlike the PVF distributions, it predicts both 
the marginal and conditional models with proportional hazards. The marginal 
hazard ratios are an attenuated version of the conditional hazard ratios shown in 
the output. This type of behavior from the positive stable is often seen as a 
strength of the model [23]. 

3.4.3. Profile Log Likelihood 
The results in Table 5 show the heterogeneity parameter θ was significant in all 
three frailty models. Despite the estimates of θ being somewhat small, it sug-
gested the failure times within the cages were significantly correlated, that is, θ > 
0. The gamma frailty model had the highest log-likelihood and hence was the 
best-fitting model among the three. 
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Figure 3. Predicted conditional and marginal hazard ratio for (a) Gamma, (b) Positive stable, and (c) Inverse Gaussian frailty 
models for Apis species and Meliponula species treated with ICIPE 20 entomopathogenic fungi. 
 

Table 5. Profile log-likelihood for Gamma, Positive stable and Inverse Gaussian Frailty models. 

 Association parameter P-value No-frailty Log-likelihood Log-likelihood 

Gamma 0.067 0.0132 −5007.947 −5005.483 

Positive Stable 0.021 0.0226 −5007.947 −5005.942 

Inverse Gaussian 0.065 0.0137 −5007.947 −5005.511 

4. Simulation Study 

A simulation study was performed to investigate the effect of frailty distribution 
misspecification on the regression coefficient and heterogeneity parameters. The 
bias and mean squared error (MSE) of the regression parameter (treatment log 
hazard, β̂ ) and the heterogeneity parameter (θ) estimates around the true ini-
tial values were estimated. 

We varied the total sample size (N = 100, 400), the number of individuals in 
each cluster (ni =10, 20) and heterogeneity parameter (θ = 0.2, 2) to examine the 
effect of changing the variance of the frailty distributions. Frailties were gener-
ated from four distributions: gamma, log-normal, inverse Gaussian and positive 
stable densities. The log-normal distribution which according to [15] is ex-
pressed as: 

( ) ( )2

22

log1 exp
22

z
f z

z

µ
σσ

 −
= − 

 
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To ensure a log-normal distribution with mean 1 and variance θ, we set 
( )log 1 2µ θ= − +  and 2 1σ θ= + . The mean and variance are expressed as: 

( ) ( )21exp 1
2

E Z σ µ = − = 
 

 

( ) ( ) ( )2 2

2

exp 2 exp
Var Z

σ σ
θ

σ

−
= =  

To allow for comparability, the mean and variance were fixed to 1 and θ re-
spectively for the four distributions. 

In all settings, the treatment effect parameter was set to ( )log 0.5β− = , so 
that the treatment group’s risk rate is twice as high as the risk rate for individuals 
in the control group. Half of the individuals in each cluster were assigned to 
treatment and the censoring rate was 40%. For each parameter setting 1000 da-
tasets were generated where N was the fixed sample size. The simulated data 
were fitted with frailty models. The spread and the bias around were determined 
using the mean squared error (MSE). The bias and mean squared error are re-
spectively defined as:  

( ) 1Bias β β β= −  

and  

( ) ( ) ( )2 ˆMSE Bias Varβ β β= +  

where 1β  is the true value of log hazard treatment effect and ˆ 1000i
iβ β= ∑  

is the mean of ˆ i'sβ  estimated in the ith simulation. 
Similarly, the bias and mean squared error (MSE) for the heterogeneity para-

meter were obtained as above replacing accordingly. 
Statistical analysis was conducted using R version 4.1.3. The semi-parametric 

Cox marginal and frailty models were fitted using emfrail procedure in frail-
tyEM package [35]. Statistical tests were performed at a 5% level of significance. 

4.1. Simulation Results for Comparing the Performance of  
Different Frailty Models 

The results of the simulations are summarized in Table 6. The results show that 
the models performed well in estimating the regression parameter. This suggests 
that the choice of frailty distribution does not have an effect on the regression 
parameter. 

For the heterogeneity parameter θ, it was observed that the bias range for the 
gamma frailty model was between 0.4349 and 1.3651 and between 0.0809 and 
6.2323 for the inverse gaussian frailty model. For a 10-cluster scenario, the bias 
decreased with increasing size of true θ. Similarly, this trend was observed with 5 
clusters scenario. Furthermore, for a particular true θ, the bias increased when 
the number of clusters decreased from 10 to 5. The mean squared error (MSE) 
was increased with an increase in the magnitude of true θ and a decrease in the 
number of clusters for the gamma frailty model. For the inverse gaussian frailty  
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Table 6. Simulation results for estimated regression coefficient (β) and heterogeneity parameter (θ) from correctly specified 
gamma, inverse gaussian and positive stable frailty models. i = number of clusters and ni = cluster size.  

 i = 20, ni = 5 i = 10, ni = 10 i = 20, ni = 20 i = 10, ni = 40 

 0.2θ =  2θ =  0.2θ =  2θ =  0.2θ =  2θ =  0.2θ =  2θ =  

Gamma 

β  

Bias 0.0033 0.0033 0.0404 0.0404 0.0129 0.0129 0.0111 0.0111 

MSE 0.0902 0.0902 0.0848 0.0848 0.0197 0.0197 0.0205 0.0205 

θ  

Bias 0.1769 0.1275 0.1779 0.1415 0.1855 1.7174 0.1885 0.8544 

MSE 0.0342 1.6929 0.0351 2.2926 0.0348 8.4969 2.3108 0.0359 

Inverse Gaussian 

β  

Bias 0.0033 0.0033 0.0404 0.0404 0.0129 0.0129 0.0111 0.0111 

MSE 0.0902 0.0902 0.0848 0.0848 0.0197 0.0197 0.0205 0.0205 

θ  

Bias 0.5301 1.2699 0.4349 1.3651 0.6250 1.1749 0.5082 1.2918 

MSE 0.6603 1.9919 0.3618 2.0361 0.5285 1.5184 0.3200 1.7306 

Positive Stable 

β  

Bias 0.0124 0.0124 0.0359 0.0359 0.0055 0.0055 0.0076 0.0076 

MSE 0.0742 0.0742 0.0863 0.0863 0.0256 0.0256 0.0369 0.0369 

 
model, the mean squared error (MSE) was decreased with an increase in the 
magnitude of true θ and a decrease in the number of clusters. 

The simulation results demonstrated that increasing the cluster size and de-
creasing the number of clusters did not affect the MSEs of the estimates of the 
treatment effect and the frailty variance. The results also showed that when the 
frailty distribution is inverse gaussian as opposed to the gamma frailty distribu-
tion, the biases in the estimations of the frailty variance are slightly larger. 

By increasing the number of clusters from 5 and 10 to 20 and 40, while keep-
ing the number of individuals in each cluster at 10 and 20, we were able to inves-
tigate the effectiveness of clusters and their influence on the estimations. The 
simulation’s results demonstrated that MSEs for both estimates slightly de-
creased when compared to the original simulation’s outcomes, as expected. 

4.2. Effect of Frailty Misspecification on Regression Coefficient  
and Heterogeneity Parameter 

Gamma models are selected primarily on theoretical and computational tracta-
bility rather than biological validity. Because cluster effects can have different 
distributions, it is crucial to assess how well a gamma frailty model performs. 
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A gamma frailty model was fitted to clustered data generated by log-normal, 
inverse gaussian, and positive stable distributions to evaluate the influence and 
sensitivity to misspecification of the frailty distribution on regression coefficient 
and heterogeneity parameter. It was important to examine the performance of a 
gamma frailty model when the cluster effects have other distributions. Table 7 
shows the results of misspecification. Generally, the mean squared error (MSE) 
increased as the variance of the frailty increased. As the sample size increased, 
the MSE decreased in all settings (that is, when N = 100 and N = 400). 

 
Table 7. Simulation results for estimated regression coefficient (β) and heterogeneity parameter (θ) from misspecified gamma 
frailty model. i = number of clusters and ni = cluster size.     

 i = 20, ni = 5 i = 10, ni = 10 i = 20, ni = 20 i = 10, ni = 40 

 0.2θ =  2θ =  0.2θ =  2θ =  0.2θ =  2θ =  0.2θ =  2θ =  

Gamma   

β  

Bias 0.0033 0.0033 0.0404 0.0404 0.0129 0.0129 0.0111 0.0111 

MSE 0.0902 0.0902 0.0848 0.0848 0.0197 0.0197 0.0205 0.0205 

θ  

Bias 0.1769 0.1275 0.1779 0.1415 0.1855 1.7174 0.1885 0.8544 

MSE 0.0342 1.6929 0.0351 2.2926 0.0348 8.4969 2.3108 0.0359 

Log-normal  

β  

Bias 0.0010 0.0133 0.0011 0.0367 0.0031 0.0032 0.0053 0.0075 

MSE 0.0724 0.0743 0.0827 0.0869 0.0184 0.0229 0.0185 0.0191 

θ  

Bias 0.5301 1.2699 0.4349 1.3651 0.6250 1.1749 0.5082 1.2918 

MSE 0.6603 1.9919 0.3618 2.0361 0.5285 1.5184 0.3200 1.7306 

Inverse-Gaussian  

β  

Bias 0.0106 0.0084 0.0205 0.0173 0.0165 0.0159 0.0207 0.0132 

MSE 0.0862 0.0870 0.1046 0.0977 0.0218 0.0214 0.0234 0.0218 

θ         

Bias 1.1179 1.7214 1.030 1.7889 1.7383 1.7197 1.235 1.7964 

MSE 2.4764 3.0827 1.8606 3.2559 4.3447 2.9825 1.8648 3.2369 

Positive Stable  

β  

Bias 0.0113 0.0113 0.0227 0.0227 0.0070 0.0075 0.0335 0.0335 

MSE 0.0758 0.0758 0.1236 0.1236 0.0192 0.0191 0.0226 0.0226 

θ  

Bias 0.5327 2.233 0.5966 2.3966 1.7174 7.6200 3.9390 5.7390 

MSE 3.0017 8.1595 3.2610 8.6488 8.4969 79.1822 23.1695 40.5900 
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Except for the positive stable frailty model, the MSE of θ is at the same level as 
that of other misspecified frailties, where the true frailty model is a gamma dis-
tribution. However, the distinction between the MSEs provided by the true 
gamma and other misspecified frailty models gets more pronounced as the frail-
ty variance theta increases. 

4.2.1. Regression Coefficient 
The bias from this misspecified model and the correctly specified model did not 
vary substantially suggesting the robustness of the gamma frailty with respect to 
log-normal, inverse gaussian and positive stable distributions (Table 5). 

Within a certain cluster scenario, i.e. either 5, 10, 20, or 40, the bias signifi-
cantly increased with an increase in the size of the true θ. On the other hand for 
a particular θ, the bias increased by a small margin when the clusters increased 
from 5 to 10 and 20 to 40. This implied that the regression coefficient was not 
greatly affected by cluster size. We also note that under the misspecified models, 
the MSE tended to be slightly smaller than the correctly specified model.  

4.2.2. Heterogeneity Parameter 
Sensitivity to misspecification of the frailty distribution was evaluated about the 
estimated heterogeneity parameter. Moderate to high bias was observed for each 
of the assumed true θ. The bias was much higher for the misspecified models 
compared to the correctly specified frailty model. An increase in bias was ob-
served when the true θ increased across the clusters. These findings demonstrate 
that the misspecified gamma frailty model did not accurately predict the under-
lying true heterogeneity parameter. 

5. Discussion 

The data utilised in this study had high percentage of right censored subjects 
because of some justifiable practical constraints namely the subjects (bees) were 
observed for a limit of 10 days because studies have shown that confinement of a 
small group of honey bees secluded from their queen under controlled condi-
tions renders them stressful and consequently more vulnerable to Beauveria bas-
siana and Metarhizium anisopliae ([36] as cited [33]). Further, virulent fungi 
isolates belonging to Beauveria bassiana and Metarhizium anisopliae species 
have shown their pathogenicity in less than 10 days (median lethal time < 10 
days) after inoculation or exposure to study organisms under laboratory condi-
tions [37] [38]. Therefore, we ordinarily incorporated the right censoring in the 
analysis as all surviving subjects practically reached the end of the study. 

From the statistical analysis results, parameter estimates (hazard ratio) for all 
the covariates were close for the three frailty models (gamma, inverse gaussian, 
and positive stable frailty models) but slightly higher for the marginal Cox PH 
model. This small difference was attributed to the fact that the cluster random 
effect though significant was very small (that is 0.067 for gamma. 0.065 for in-
verse gaussian and 0.021 Kendall’s τ for positive stable frailty model). For the 
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positive stable distribution, the variance is not defined but Kendall’s τ is easily 
obtained [35]. The frailty variance was notably small. However, both the one-sided 
likelihood ratio test and the Commenges-Andersen test for heterogeneity indi-
cated a significant difference in mortality rates among clusters, even after ad-
justing for covariates. This finding was further supported by the confidence in-
terval for the frailty variance, which excluded zero. This subtle effect is ecologi-
cally important, highlighting how minor stressors can impact bee health and 
ecosystem stability. Our findings underscore the complexity of bee-environment 
interactions and the need for ongoing research into bee conservation. 

The positive stable model offers the advantage of being able to fit both pro-
portional hazards models and Weibull models. Because of its ability to fit pro-
portional hazards models implies that if the conditional model exhibits propor-
tional hazards so does the marginal distribution. This aspect becomes particu-
larly advantageous when viewing the model as a random effects model. From a 
theoretical standpoint, stable distributions are highly desirable as they consis-
tently adhere to proportional hazards for the covariates. However, it is unfortu-
nate that the fit of these distributions is unsatisfactory in several applications 
[15]. The stable model tends to be the most reasonable choice for regression 
models. On the other hand, the gamma and more general PVF models may yield 
peculiar outcomes when evaluating the effect of covariates. This implies that the 
influence of non-proportional hazards can sometimes overshadow the degree of 
dependence, making it crucial to interpret the results with caution. 

Furthermore, alternative frailty models can be compared based on their 
log-likelihoods to pick a well-fitting frailty distribution from a larger class of 
frailty distributions. However, since the frailties are latent, choosing which frail-
ty distribution is most appropriate requires an assessment of the frailty distribu-
tion on the data at hand. The gamma frailty model, which can be estimated by 
the base R survival package, is the most straightforward and well-understood 
frailty model [35]. From our data, the gamma frailty model had the highest 
log-likelihood, hence it was the best-fitting model. Other studies where the 
gamma frailty model performed well include a study done by Gachau [39] and 
Adham and AlAhmadi [40]. 

A simulated study further investigated the effect of misspecification of the 
frailty distribution on the prediction of the heterogeneity parameters and regres-
sion coefficients. We considered the true frailty distribution from gamma dis-
tribution, inverse Gaussian distribution and positive stable distribution. We fo-
cused only on the gamma distribution as the assumed frailty distribution par-
tially because it had the highest log-likelihood and also because it is the distribu-
tion that is most frequently used in practice and its closed form of the marginal 
likelihood can be obtained under the Cox proportional hazard shared frailty 
models. Our simulation results showed that the bias of the treatment log hazard 
was comparatively small and similar to that of the correctly specified model. 
This showed that, despite the fact that different frailty distributions can result in 
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distinctly different correlation structures, misspecification of the frailty distribu-
tion did not significantly alter the regression coefficient estimate. [41] and [42] 
found by simulation that regression coefficient estimates were hardly influenced 
by frailty misspecification. They assumed inverse Gaussian their true frailty dis-
tribution. This shows that even when the random effects interpretation is unap-
pealing, the gamma frailty approach is a reasonable choice in terms of perfor-
mance. 

In comparison to the correctly specified model, the bias was more pro-
nounced for large heterogeneity parameter θ values. This was slightly affected by 
the number of clusters taken into account. The statistical simulation studies 
showed that when the true frailty is inverse Gaussian or log-normal frailty, the 
gamma frailty working model provides a satisfactory prediction of θ in terms of 
the MSE. When the true frailty distribution is the positive stable, it can be chal-
lenging to use a gamma frailty working model to predict specific frailties utiliz-
ing shared frailty models. These findings are in line with the research by [39]. 

The gamma distribution is the most widely used frailty distribution for Cox 
proportional hazard shared frailty models, and most statistical software utilizes it 
as its default frailty distribution for fitting the models. In the Cox proportional 
hazard shared frailty models, using a gamma frailty distribution can result in a 
reliable frailty prediction. However, if a working gamma frailty distribution is 
utilized when the underlying real frailty distribution is an extreme distribution, 
such as the positive stable frailty, the prediction on frailty terms should be bi-
ased. 

6. Conclusions 

The parameter estimates from the frailty models gamma, inverse Gaussian, and 
positive stable considered in this study were almost indistinguishable from those 
estimated from a Cox PH model. There was sufficient evidence to suggest hete-
rogeneity between the clusters in frailty models and conclude that events were 
dependent within clusters and independent across clusters. Therefore, the frailty 
models were the most appropriate for statistical inference for these data. 

The estimate of the regression coefficient (treatment effect) was only slightly 
biased when a gamma frailty model is assumed, while the underlying true frailty 
distribution is log-normal, inverse gaussian, and positive stable. 

From the simulation study, we concluded that the heterogeneity parameter 
was more sensitive to frailty distribution misspecification compared to the re-
gression parameter estimate. In this regard, when the regression parameters are 
of primary interest, the gamma frailty model can be an effective option in real 
data analysis. However, the frailty variable is not observable, so the distributional 
assumption cannot be evaluated to see if it holds true. 

Availability of Data and R Code 

The data file and R code used for this study can be found at Bee survival.  
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