
Journal of Computer and Communications, 2022, 10, 33-45
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2022.102003 Feb. 25, 2022 33 Journal of Computer and Communications

Fault Prediction with Static Software Metrics in
Evolving Software: A Case Study in Apache Ant

Xue Han, Gongjun Yan

Romain College of Business, University of Southern Indiana, Evansville, USA

Abstract
Software testing is an integral part of software development. Not only that
testing exists in each software iteration cycle, but it also consumes a consi-
derable amount of resources. While resources such as machinery and man-
power are often restricted, it is crucial to decide where and how much effort
to put into testing. One way to address this problem is to identify which com-
ponents of the subject under the test are more error-prone and thus demand
more testing efforts. Recent development in machine learning techniques
shows promising potential to predict faults in different components of a soft-
ware system. This work conducts an empirical study to explore the feasibility
of using static software metrics to predict software faults. We apply four
machine learning techniques to construct fault prediction models from the
PROMISE data set and evaluate the effectiveness of using static software me-
trics to build fault prediction models in four continuous versions of Apache
Ant. The empirical results show that the combined software metrics generate
the least misclassification errors. The fault prediction results vary significant-
ly among different machine learning techniques and data set. Overall, fault
prediction models built with the support vector machine (SVM) have the low-
est misclassification errors.

Keywords
Software Engineering, Fault Prediction, Software Metrics, Machine Learning

1. Introduction

Testing is a crucial part of the software development life cycle [1]. Ultimately,
the purpose of testing is to expose all faults in the software system. A solid test-
ing strategy can provide a high level of confidence about the correctness of an
application after it has been deployed. However, software testing can be re-

How to cite this paper: Han, X. and Yan,
G.J. (2022) Fault Prediction with Static Soft-
ware Metrics in Evolving Software: A Case
Study in Apache Ant. Journal of Computer
and Communications, 10, 33-45.
https://doi.org/10.4236/jcc.2022.102003

Received: November 13, 2021
Accepted: February 22, 2022
Published: February 25, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2022.102003
https://www.scirp.org/
https://doi.org/10.4236/jcc.2022.102003
http://creativecommons.org/licenses/by/4.0/

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 34 Journal of Computer and Communications

source-demanding [2]. Detecting faults in a system randomly may not be feasible
[3] especially when dealing with large-scale projects. Practitioners (developers and
testers) want to allocate resources in the most effective ways to find faults.

Prior research [4] shows that a fault found after deployment can be 100 times
as costly to fix in an early stage. Researchers strive to find a way to help practi-
tioners to detect software faults as early as possible [5]. The decisions of when
and where to put the testing efforts are often based on developers’ experience
and expertise. This approach might not be reliable. It may not even be sustaina-
ble and consistent as developers move in and out of an organization [6]. The ex-
perience-based approach also varies a lot since practitioners have different pers-
pectives regarding how to conduct testing.

With recent advancements in applying AI technologies to software engineer-
ing problems [7], many research reports promising preliminary results using ma-
chine learning techniques to predict faults in software systems [8] [9] [10]. This
study explores what software metrics [11] are suitable for constructing fault pre-
diction models and examine how well those machine learning models perform
in predicting faults.

Unlike prior research [12] that depends on similar projects to build the predic-
tion model, this study collects training data through different versions of the same
project. Out approach outputs a much reliable representation of the application to
build fault prediction models. It is also more practical to collect training data as the
subject project evolves than to search for similar projects in the wild.

This study aims to answer the following research questions when conducting
the empirical study.
• What static software metrics can provide the best faults prediction result?
• Which machine learning models give the best fault prediction results?
• How well do prediction models perform across the continuous versions of

the subject program?
We make the following contributions in this paper.

• An empirical study in fault prediction with software metrics.
• An evaluation of four different fault prediction models.
• A publicly accessible data set.
• A publicly accessible machine learning code (in MATLAB).

This paper is organized as follows. In Section 2, we present the overall ap-
proach of the empirical study. In Section 3, we discuss the research questions
and explain the design of the experiments. In Section 4, we examine the study
results. In Section 5, we discuss the sensitivity analysis and the threat to validity.
Lastly, we conclude the empirical study in Section 6.

2. Approaches

In this section, we discuss the overall approach adopted by this empirical study.
Figure 1 shows an overview of the approach. In the pre-processing phase, we
extract and synthesize software metrics [8] [13] from the subject programs. In

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 35 Journal of Computer and Communications

the model construction phase, we build fault prediction models and conduct
sensitivity analysis to fine-tune the model hyperparameters.

2.1. Data Pre-Processing

We use static code analysis [14] to extract software metrics. Static software metrics
is chosen over runtime software metrics for consistency concerns. For instance, in-
strumentation and monitor tools may be used to get the runtime metrics which
may introduce high runtime overhead and disturb the execution of the subject pro-
gram [15]. Also, depending on the deployment environment (e.g., physical or vir-
tual machines running the subject program), we may get a completely different set
of metrics readings [16]. Table 1 lists the static software metrics used in the study.

Static software metrics undergo a series of pre-processing steps. First, we apply
normalization [17] to bring metrics to the same scale while maintaining relative
significance. For example, the value of the metric “Lack of Cohesion in Methods

Figure 1. Approach overview.

Table 1. Static software metrics.

METRIC DESCRIPTION OO METRIC DESCRIPTION

Files # of files WMC Weighted method count

Lines Line of code DIT Depth of inheritance tree

AVG-Len Average code length NOC The number of children for a class

Cd/Cm + WS Code non-code ratio CA Afferent coupling

Cd/Cm Code comments ratio CE Efferent coupling

Cd/File Code file ratio DAM Data access metric

Cm/File Comment file ratio MOA Measure of aggregation

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 36 Journal of Computer and Communications

(LCOM)” [13] could range from 0 to 2247 in dataset 3 before normalizing to the
range of 0 to 1. It reduces the dramatic range in the metrics value space that may
otherwise negatively affect the accuracy of the prediction models.

Not all static software metrics are suitable for constructing the fault prediction
model. Some of them may even reduce the model’s accuracy. Next, a forward
and backward feature selection [18] is applied to reduce the feature space di-
mensionality and to achieve greater generalization.

2.2. Fault Prediction Models

In the second phase, we apply both supervised and unsupervised machine learning
techniques to build fault prediction models. Decision Tree (DT) [19] is a classic
supervised learning model. The tree is constructed by a recursive binary split on
which the selected node maximizes local information gain [13]. We use Gini’s
Diversity Index [20] ()1 2igdi p i= −Σ for tree pruning. Random Forest (RF)
[21] is an ensemble method. RF combines an arbitrary number of decision trees.
The number of decision trees used for each data set is based on a sensitivity
analysis which will be discussed in Section 5. Support Vector Machine (SVM)
[22] is a linear classification model that maximizes the decision boundary. The
linear kernel is used for two-class learning. (), t

j k j kG x x x x= where xj and xk are
two observations. And an error-correcting output codes (ECOC) model for mul-
ti-class learning. K-nearest neighbor (KNN) [23] is an unsupervised learning
method. KNN assumes that if two data points are similar, they are likely to be in
the same class. We use the euclidean distance to calculate the shortest distance
between a data point and the cluster’s centroid. We conduct a sensitivity analysis
to evaluate different k values and select the k value that gives the least misclassi-
fication error [24] to construct KNN. To avoid overfitting [25], ten-fold cross-
validation [26] is applied to all four models. Since ten-fold cross-validation ran-
domly samples instances and puts them in ten folds [27], the process is repeated
ten times for each model to avoid sampling bias [28].

3. Empirical Study

In this section, we discuss details of the implementation, subjects, and data set
design.

3.1. Implementation

The experiment runs on a Mac OS X with a quad-core 2.4 GHz Intel Core-i5
CPU, 16 GB of memory, and 256 GB of SSD. We use CodeAnalyzer [29] to ex-
tract static software metrics. CodeAnalyzer is a light-weighted tool for analyzing
source code. To build fault prediction models, we use the MATLAB Statistics
Toolbox [30].

3.2. Subjects and Data Sets

Apache Ant is an open-source Java-based build tool. Tour continuous versions

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 37 Journal of Computer and Communications

(v1.4 to v1.7) of the Apache Ant is used for its popularity [31] and availability [32].
Table 2 shows the characteristics of Apache Ant. The first column (METRIC)
shows the size of the Apache Ant. The third column (RATIO) shows the propor-
tion for source code. We refer to the online repository Models In Software En-
gineering (PROMISE) [32] for Apache Ant faults data. Figure 2 shows the dis-
tribution of faults in the four versions of Apache Ant. Color schemes are used in
the bar chart to indicate different numbers of faults in a class. For example, in
the ANT-V4 data set, 78% (565) classes have zero fault and 12.5% (91) classes
have one fault.

To prepare the raw training data set, we associate software metrics (features)
of the training data with faults (labels) provided in the PROMISE by the mod-
ule’s class name. With each modeling iteration, the training data set is expended
and fault prediction models are rebuilt using techniques outlined in Section 2.2.

4. Results and Discussion

In this section, we answer the following research questions and discuss the study
results.
• RQ1: What static software metrics can provide the best fault prediction result?

Table 2. Apache ant characteristics.

METRIC VALUE RATIO VALUE

Total Files 228 Code /(Comment + Whitespace) Ratio 0.81

Avg Line Length 34 Code/Whitespace Ratio 4.16

Comment Lines 25,590 Code Lines Per File 113

Total Lines 57,462 Code/Comment Ratio 1.01

Code Lines 25,838 Code/Total Lines Ratio 0.45

Whitespace Lines 6213 Comment Lines Per File 112

Figure 2. Apache ant faults distribution.

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 38 Journal of Computer and Communications

• RQ2: Which machine learning models give the best fault prediction results?
• RQ3: How well do prediction models perform across the continuous versions

of the Apache Ant?

4.1. RQ1: Software Metrics

We build models with three sets of metrics (Table 1). For each model, the de-
fault, complex, and combined metrics are used as the training data, respectively.
Table 3 shows a portion of the training data set for ANT-V1. For example, the
“Module” column shows the class name; the “Weighted Methods per Class
(WMC)” column is the sum of the complexities of all class methods; the “Bug”
column shows the number of faults in the class. Figure 3 shows the performance
of fault prediction models with all three sets of metrics. Their performance va-
ries among different data sets. For example, the complex metrics outperform the

Table 3. ANT-V1.

Module WMC DIT NOC CBO Cd/WS Cd/File Cm/File Bug

Ant Class Loader 17 2 0 9 1.02 236 231 2

Build Event 11 2 0 7 3.79 53 97 0

Constants 0 1 0 0 3 3 1 0

Main 14 1 0 7 5.32 367 178 1

Project Helper 17 1 0 19 4.63 482 141 3

Zip 22 4 1 15 4.17 192 126 3

Figure 3. Software Metrics Performance. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4.

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 39 Journal of Computer and Communications

default metrics in ANT-V1 with DT but fall short in ANT-V2 compared to de-
fault metrics. On average, models built with combined metrics has the lowest
misclassification error (0.2).

4.2. RQ2: Fault Prediction Model Performance

To answer RQ2, we compare the performance of models built with individual
Apache Ant versions in Figure 4. The performance of fault prediction models
varies across Apache Ant versions. For example, RF has a misclassification error
of 0.09 in ANT-V2 compared to a misclassification error of 0.254 in ANT-V3.
Overall, SVM has the least misclassification error (0.148) followed by RF (0.192),
KNN (0.203), and DT (0.259). Figure 4 shows models trained with ANT-V2
have the best performance with an average misclassification error of 0.103 com-
pared to ANT-V1 (0.227), ANT-V3 (0.248), and ANT-V4 (0.225). It is our ob-
servation that for linearly separable spaces, KNN is preferred for its interpreta-
bility. KNN does require a larger data set for it to work accurately.

4.3. RQ3: Cross Program Training and Fault Prediction

To answer RQ3, we examine whether training data from other project versions
can improve fault prediction performance. To prepare the expended data set,
we construct a new data set with all previous training data sets. For example,
ANT-DS-2 contains data for ANT-DS-1 plus ANT-V2; and ANT-DS-3 contains
data for ANT-DS-2 plus ANT-V3. Figure 5 illustrates the performance of each
fault prediction model with the expanded data set. Overall, the model prediction
misclassification error is equivalent to the regular data set (MCexpanded = 0.206 v.s.
MCregular = 0.2). The misclassification error of models built with expanded data
set outperform the regular data set in ANT-DS-3 (MCexpanded = 0.198 v.s. MCregular
= 0.248), ANT-DS-4 (MCexpanded = 0.209 v.s. MCregular = 0.225) and underperform
the regular data set in ANT-DS-2 (MCexpanded = 0.214 v.s. MCregular = 0.103). The
results imply in cases when training data for a subject is unavailable, we may

Figure 4. Fault prediction models performance.

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 40 Journal of Computer and Communications

Figure 5. Fault prediction with expanded data set.

utilize training data of a different version of the same subject.

5. Discussions

In this section, we discuss the sensitivity analysis and the threats to validity of
the empirical study.

5.1. Sensitivity Analysis

One challenge of using machine learning techniques is that we need to find
proper values for the hyperparameters. To get a better fault prediction results,
we try out different values to fine-tune the model. For example, Figure 6 shows
the influence on the number of random trees used in RF. For KNN, a different
number of neighbors (Figure 7) were selected to minimize the classification er-
rors. Empirical data indicates for Apache Ant the best number of neighbors fall
between 13 and 16.

5.2. Internal Validity

A threat to internal validity for this study is the possible faults in the implemen-
tation of our approach and the tools that we use to perform the evaluation. We
control this threat by extensively testing our tools and verifying their results
against a small program for which we can manually determine the correctness of
the results. Another threat involves the selection of hyperparameters [33] used in
machine learning techniques. We use the recommended settings for each mod-
eling technique and conduct a sensitivity analysis to fine-tune the parameters.
The accuracy of each fault prediction model may also be different with a different
implementation. For example, the RF may report a different misclassification rate
in scikit-learn [34] and weka [8] [35]. We choose the statistics and machine learn-
ing toolbox in MATLAB for its simplicity to use and its popularity (MATLAB has

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 41 Journal of Computer and Communications

Figure 6. Number of RF Trees. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4.

been widely used in both industry and academia).

5.3. External Validity

The primary threat to external validity for this study involves the representa-
tiveness of the selected subjects and modeling techniques. Other subjects may
exhibit different characteristics and lead to other conclusions [36]. We reduce
this threat by studying multiple versions of the subject program. In addition, we
apply four different modeling techniques on seven data sets to generalize con-
clusions.

5.4. Construct Validity

The primary threat to construct validity involves the dataset and software me-
trics used in the study. To mitigate this threat, we use data sets that are publicly
available, well understood, and widely used [32]. We have also applied well-
known software metrics in the data set that is straightforward to compute and is
less error-prone.

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 42 Journal of Computer and Communications

Figure 7. Number of Neighbors. (a) ANT-V1; (b) ANT-V2; (c) ANT-V3; (d) ANT-V4.

5.5. Limitations

The first limitation of this work is that our approach requires the source code to
get the training data. In some cases, especially for a legacy program, the source
code may not always be available [2]. Second, when preparing for the training
data, it is not fully automated. Our approach first extracts static metrics from the
source code, and then we manually combine the PROMISE labels (faults) to get
the training data set. One solution is to automate the fault prediction model
construction as part of the continuous integration (CI) [37]. We can leverage the
fault information from the issue tracker to automatically append the labels to the
training data set.

6. Conclusion

We conduct an empirical study to examine the effectiveness of building fault
prediction models with static software metrics. We examine the effectiveness of
metrics to build fault prediction models. We study four different types of fault

https://doi.org/10.4236/jcc.2022.102003

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 43 Journal of Computer and Communications

prediction models with four continuous versions of the Apache Ant. We eva-
luate the performance of fault prediction models across multiple Apache Ant
versions. Our results suggest the fault prediction models built with combined
software metrics have the lowest overall misclassification error (0.2). Among all
fault prediction models, SVM has the least misclassification error (0.148). Lastly,
our results show the fault prediction models built with the expanded data set are
equally powerful. In cases when training data for a subject is unavailable, we may
utilize training data of a different version of the same subject.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Ammann, P. and Offutt, J. (2016) Introduction to Software Testing. Cambridge Uni-

versity Press, Cambridge. https://doi.org/10.1017/9781316771273

[2] Han, X., Carroll, D. and Yu, T. (2019) Reproducing Performance Bug Reports in
Server Applications: The Researchers’ Experiences. Journal of Systems and Software,
156, 268-282. https://doi.org/10.1016/j.jss.2019.06.100

[3] Sen, K., Marinov, D. and Agha, G. (2005) Cute: A Concolic Unit Testing Engine for
C. ACM SIGSOFT Software Engineering Notes, 30, 263-272.
https://doi.org/10.1145/1095430.1081750

[4] Dawson, M., Burrell, D.N., Rahim, E. and Brewster, S. (2010) Integrating Software
Assurance into the Software Development Life Cycle (SDLC). Journal of Informa-
tion Systems Technology and Planning, 3, 49-53.

[5] Boberg, J. (2008) Early Fault Detection with Model-Based Testing. Proceedings of
the 7th ACM SIGPLAN workshop on ERLANG, Victoria, 27 September 2008, 9-20.
https://doi.org/10.1145/1411273.1411276

[6] Dore, T.L. (2004) The Relationships between Job Characteristics, Job Satisfaction,
and Turnover Intention among Software Developers. Argosy University/Orange
County, Atlanta.

[7] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., Nagappan, N., Nu-
shi, B. and Zimmermann, T. (2019) Software Engineering for Machine Learning: A
Case Study. 2019 IEEE/ACM 41st International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), Montreal, 25-31 May 2019, 291-
300. https://doi.org/10.1109/ICSE-SEIP.2019.00042

[8] Yu, T., Wen, W., Han, X. and Hayes, J.H. (2016) Predicting Testability of Concur-
rent Programs. 2016 IEEE International Conference on Software Testing, Verifica-
tion and Validation (ICST), 11-15 April 2016, Chicago, 168-179.
https://doi.org/10.1109/ICST.2016.39

[9] Rathore, S.S. and Kumar, S. (2017) An Empirical Study of Some Software Fault Pre-
diction Techniques for the Number of Faults Prediction. Soft Computing, 21, 7417-
7434. https://doi.org/10.1007/s00500-016-2284-x

[10] Yu, T., Wen, W., Han, X. and Hayes, J.H. (2018) Conpredictor: Concurrency Defect
Prediction in Real-World Applications. IEEE Transactions on Software Engineer-
ing, 45, 558-575. https://doi.org/10.1109/TSE.2018.2791521

[11] Schach, S.R. (2007) Object-Oriented and Classical Software Engineering. Vol. 6,

https://doi.org/10.4236/jcc.2022.102003
https://doi.org/10.1017/9781316771273
https://doi.org/10.1016/j.jss.2019.06.100
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1145/1411273.1411276
https://doi.org/10.1109/ICSE-SEIP.2019.00042
https://doi.org/10.1109/ICST.2016.39
https://doi.org/10.1007/s00500-016-2284-x
https://doi.org/10.1109/TSE.2018.2791521

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 44 Journal of Computer and Communications

McGraw-Hill, New York.

[12] Chidamber, S.R. and Kemerer, C.F. (1994) A Metrics Suite for Object Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[13] Aggarwal, K., Singh, Y., Kaur, A. and Malhotra, R. (2006) Empirical Study of Ob-
ject-Oriented Metrics. Journal of Object Technology, 5, 149-173.

[14] Bardas, A.G. (2010) Static Code Analysis. Romanian Economic Business Review, 4,
99-107.

[15] Uh, G.-R., Cohn, R., Yadavalli, B., Peri, R. and Ayyagari, R. (2006) Analyzing Dy-
namic Binary Instrumentation Overhead. WBIA Workshop at ASPLOS, Citeseer.

[16] Potdar, A.M., Narayan, D., Kengond, S. and Mulla, M.M. (2020) Performance Evalua-
tion of Docker Container and Virtual Machine. Procedia Computer Science, 171,
1419-1428. https://doi.org/10.1016/j.procs.2020.04.152

[17] Zheng, A. and Casari, A. (2018) Feature Engineering for Machine Learning: Prin-
ciples and techniques for Data Scientists. O’Reilly Media, Inc., Sebastopol.

[18] Chandrashekar, G. and Sahin, F. (2014) A Survey on Feature Selection Methods.
Computers & Electrical Engineering, 40, 16-28.
https://doi.org/10.1016/j.compeleceng.2013.11.024

[19] Brijain, M., Patel, R., Kushik, M. and Rana, K. (2014) A Survey on Decision Tree
Algorithm for Classification. International Journal of Engineering Development and
Research, 2, 1-5.

[20] Jost, L. (2006) Entropy and Diversity. Oikos, 113, 363-375.
https://doi.org/10.1111/j.2006.0030-1299.14714.x

[21] Biau, G. and Scornet, E. (2016) A Random Forest Guided Tour. Test, 25, 197-227.
https://doi.org/10.1007/s11749-016-0481-7

[22] Noble, W.S. (2006) What Is a Support Vector Machine? Nature Biotechnology, 24,
1565-1567. https://doi.org/10.1038/nbt1206-1565

[23] L. E. Peterson (2009) K-Nearest Neighbor. Scholarpedia, 4, 1883.
https://doi.org/10.4249/scholarpedia.1883

[24] Moisen, G.G. (2008) Classification and Regression Trees. In: Jørgensen, S.E. and Fath,
B.D., Eds., Encyclopedia of Ecology, Vol. 1, Oxford, Elsevier, 582-588.
https://doi.org/10.1016/B978-008045405-4.00149-X

[25] Hawkins, D.M. (2004) The Problem of Overfitting. Journal of Chemical Informa-
tion and Computer Sciences, 44, 1-12. https://doi.org/10.1021/ci0342472

[26] Lee, T., Nam, J., Han, D., Kim, S. and In, H.P. (2011) Micro Interaction Metrics for
Defect Prediction. Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, Szeged, 5-9
September 2011, 311-321. https://doi.org/10.1145/2025113.2025156

[27] Alpaydin, E. (2020) Introduction to Machine Learning. MIT Press, Cambridge.
https://doi.org/10.7551/mitpress/13811.001.0001

[28] Zadrozny, B. (2004) Learning and Evaluating Classifiers under Sample Selection Bi-
as. Proceedings of the 21st International Conference on Machine Learning, Banff,
4-8 July 2004, 114. https://doi.org/10.1145/1015330.1015425

[29] Code Analyzer (2013). https://sourceforge.net/projects/codeanalyze-gpl/

[30] (2013) MATLAB and Statistics Toolbox Release. The MathWorks, Inc., Natick.

[31] Nistor, A., Song, L., Marinov, D. and Lu, S. (2013) Toddler: Detecting Performance
Problems via Similar Memory-Access Patterns. 2013 35th International Conference

https://doi.org/10.4236/jcc.2022.102003
https://doi.org/10.1109/32.295895
https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1111/j.2006.0030-1299.14714.x
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1016/B978-008045405-4.00149-X
https://doi.org/10.1021/ci0342472
https://doi.org/10.1145/2025113.2025156
https://doi.org/10.7551/mitpress/13811.001.0001
https://doi.org/10.1145/1015330.1015425
https://sourceforge.net/projects/codeanalyze-gpl/

X. Han, G. J. Yan

DOI: 10.4236/jcc.2022.102003 45 Journal of Computer and Communications

on Software Engineerin (ICSE), San Francisc, 18-26 May 2013, 562-571.
https://doi.org/10.1109/ICSE.2013.6606602

[32] Sayyad Shirabad, J. and Menzies, T. (2005) The PROMISE Repository of Software
Engineering Databases. School of Information Technology and Engineering, Uni-
versity of Ottawa, Ottawa.

[33] Probst, P., Boulesteix, A.-L. and Bischl, B. (2019) Tunability: Importance of Hyper-
parameters of Machine Learning Algorithms. The Journal of Machine Learning Re-
search, 20, 1934-1965.

[34] Han, X., Yu, T. and Pradel, M. (2021) Confprof: White-Box Performance Profiling
of Configuration Options. Proceedings of the ACM/SPEC International Conference
on Performance Engineering, Virtual, 19-23 April 2021, 1-8.
https://doi.org/10.1145/3427921.3450255

[35] Han, X., Yu, T. and Lo, D. (2018) Perflearner: Learning from Bug Reports to Un-
derstand and Generate Performance Test Frames. 2018 33rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), Montpellier, 3-7
September 2018, 17-28. https://doi.org/10.1145/3238147.3238204

[36] Sjøberg, D.I., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg,
N.-K. and Rekdal, A.C. (2005) A Survey of Controlled Experiments in Software En-
gineering. IEEE Transactions on Software Engineering, 31, 733-753.
https://doi.org/10.1109/TSE.2005.97

[37] Fitzgerald, B. and Stol, K.-J. (2017) Continuous Software Engineering: A Roadmap
and Agenda. Journal of Systems and Software, 123, 176-189.
https://doi.org/10.1016/j.jss.2015.06.063

https://doi.org/10.4236/jcc.2022.102003
https://doi.org/10.1109/ICSE.2013.6606602
https://doi.org/10.1145/3427921.3450255
https://doi.org/10.1145/3238147.3238204
https://doi.org/10.1109/TSE.2005.97
https://doi.org/10.1016/j.jss.2015.06.063

	Fault Prediction with Static Software Metrics in Evolving Software: A Case Study in Apache Ant
	Abstract
	Keywords
	1. Introduction
	2. Approaches
	2.1. Data Pre-Processing
	2.2. Fault Prediction Models

	3. Empirical Study
	3.1. Implementation
	3.2. Subjects and Data Sets

	4. Results and Discussion
	4.1. RQ1: Software Metrics
	4.2. RQ2: Fault Prediction Model Performance
	4.3. RQ3: Cross Program Training and Fault Prediction

	5. Discussions
	5.1. Sensitivity Analysis
	5.2. Internal Validity
	5.3. External Validity
	5.4. Construct Validity
	5.5. Limitations

	6. Conclusion
	Conflicts of Interest
	References

