
Journal of Computer and Communications, 2021, 9, 95-109
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.93007 Mar. 30, 2021 95 Journal of Computer and Communications

Trusted Blockchain Oracle Scheme Based on
Aggregate Signature

Xiaodong Liu1, Jun Feng2

1College of Information Science and Technology, Jinan University, Guangzhou, China
2Hangzhou Institute of Quality and Technology Supervision and Testing, Hangzhou, China

Abstract
With the development of blockchain technology, more and more applications
need out-of-chain data. Thus, blockchain oracles have become an important
bridge for transferring data on and off the chain. This paper studies the
mainstream blockchain oracles scheme, summarizes the shortcomings of the
existing schemes and proposes a new blockchain oracle scheme based on BLS
(Bohen-Lynn-Shacham) aggregation signature to ensure that off-chain data
can be transferred into the blockchain in a trusted and reliable way. Specifi-
cally, the scheme uses multiple blockchain oracles to avoid the single point of
failure or even a small number of malicious oracles, and improve the credibil-
ity of data. At the same time, it not only uses BLS aggregate signature to re-
duce the storage cost and communication overhead, but also uses commit-
ment mechanisms to ensure the reliability and authenticity of the data. Be-
sides, the simulation results show that the scheme can meet the practical ap-
plication requirements.

Keywords
Blockchain, Blockchain Oracle, Aggregate Signature, BLS Signature

1. Introduction

Blockchain is a decentralized, unchangeable data ledger [1]. It stores and verifies
data through network nodes, which can solve the trust problem between unre-
lated nodes. Therefore, the blockchain will break the existing business model
and infrastructure in many fields. And its distributed, immutable, persistent and
other characteristics [2] make it have broad application prospects in the fields of
finance, logistics, digital copyright, and public services.

As a special form of data, smart contracts [3] can also be written into the

How to cite this paper: Liu, X.D. and
Feng, J. (2021) Trusted Blockchain Oracle
Scheme Based on Aggregate Signature.
Journal of Computer and Communications,
9, 95-109.
https://doi.org/10.4236/jcc.2021.93007

Received: February 8, 2021
Accepted: March 27, 2021
Published: March 30, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.93007
https://www.scirp.org/
https://doi.org/10.4236/jcc.2021.93007
http://creativecommons.org/licenses/by/4.0/

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 96 Journal of Computer and Communications

blockchain. When the pre-set conditions are met, smart contracts can be auto-
matically executed [4], ensuring that the entire process of data storage, reading,
and execution is transparent, traceable, and immutable, thus creating a new and
powerful way to establish a trust relationship between objects.

It is worth noting that the blockchain is a deterministic and closed system en-
vironment, and no uncertain factors are allowed in smart contracts. Therefore,
the blockchain cannot actively obtain off-chain data. In order to overcome the
limitations of smart contracts effectively and enable off-chain data to communi-
cate with smart contracts and transfer data, it is necessary to deploy a bridge
connecting the real world and smart contracts on the blockchain. The bridge is
called blockchain oracle [5]. The user first informs the oracle on the chain of the
external data that needs to be obtained through the network request, and then
the oracle node obtains the external data through the off-chain API, and finally,
the off-chain data will be returned to the user through the oracle. The off-chain
data acquisition process [6] of the oracle is shown in Figure 1.

The oracle can be regarded as the only interface for data interaction between
the blockchain and the external world, which is particularly important in the
construction of the blockchain ecosystem. Take the network transaction system
based on blockchain technology as an example. In order to be scalable and relia-
ble, the system not only needs to obtain data on the blockchain efficiently and
quickly, but also needs to obtain real data from off-chain or cross-chain data.

Due to the consensus algorithm of the blockchain and the use of a hash algo-
rithm based on the Merkle tree structure, the integrity of the data on the chain is
guaranteed. However, because the off-chain data is independent of the block-
chain, a specific solution is needed to ensure the reliability and consistency of
the off-chain data. In order to broaden the application scenarios of blockchain
and ensure the reliability of data on the chain, this article summarizes the ad-
vantages and disadvantages of the current mainstream blockchain oracle scheme
and proposes a new blockchain oracle based on BLS (Bohen-Lynn-Shacham)
aggregation signature. The scheme reduces the storage space of the blockchain
while ensuring the credibility of the on-chain data, and proves the practical value
of the scheme through simulation experiments.

The organization of this paper is as follows: Chapter 2 introduces the current
mainstream blockchain oracle scheme, and summarizes its advantages and dis-
advantages; Chapter 3 introduces the theoretical basis of BLS aggregation signa-
ture; Chapter 4 proposes a new blockchain oracle scheme based on BLS aggrega-
tion signature, and discusses the security and correctness of the scheme; Chapter 5

Figure 1. Blockchain oracles framework.

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 97 Journal of Computer and Communications

conducted experiments on the program, and verified the feasibility of the pro-
gram through comparison; Chapter 6 summarizes the work of this article and
proposes the next research plan.

2. Related Work

The current mainstream blockchain oracle on-chain mechanism [7] is divided
into three categories, namely software-based, hardware-based and voting-based
oracles. Among them, software-based oracles include Provable [5], TLS-N [8],
etc.; hardware-based oracles include Town Crier [9], etc.; voting-based oracles
include ChainLink [5], Augur [10], ASTRAEA [11], etc.

Provable [5] is an oracle scheme that provides centralized data transmission
services for Ethereum, which provides a security guarantee for the data trans-
mission layer of smart contracts. Provable obtains external data from the API or
data source specified by the user’s smart contract and can prove that the data
provided to the smart contract is the correct data obtained from the specified
API or data source at a specific point in time, ensuring verifiability and availabil-
ity of out-of-chain data. However, it is only applicable to unsupported TLS ver-
sions (1.1 or lower), and can only be used in Ethereum, which is costly and relies
on a single data source.

TLS-N [8] is the first oracle scheme based on content extraction signatures. It
uses the privacy protection function of Transport Layer Security (TLS) to gener-
ate non-interactive session proof based on blockchain smart contracts that can
be effectively verified by third parties. TLS-N provides a practical and decentra-
lized blockchain oracle, which enhances the auditability and reliability of web
content. When generating a certificate, part of the TLS session (such as pass-
words, cookies) can be hidden to protect privacy, while verifying the rest of the
content. TLS-N is compatible with TLS 1.3, but the TLS-N scheme increases
communication overhead and the deployability is poor, which requires some
improvements to TLS. It can be understood from previous deployments that the
standardization and adoption process of TLS is very slow, so it will take longer
time to improve the TLS standard.

Town Crier [9] is a verifiable data supply oracle system based on the Trusted
Execution Environment (TEE), using trusted hardware (Intel SGX, Intel Soft-
ware Guard Extensions) and HTTPS designed a trusted hardware hybrid proto-
col based on blockchain to solve the limitation of HTTPS lack of digital signa-
ture. Among them, Intel SGX’s Enclave can encrypt and decrypt data requests
from smart contracts or external data from data sources, and securely manage
sensitive information. However, Town Crier requires hardware support, highly
depends on the trusted execution environment, which is subject to security vul-
nerabilities attacks against Intel CPU and SGX, such as Foreshadow [12] and
Spectre [12].

ChainLink [5] is the first decentralized oracle solution on Ethereum. It com-
bines smart contracts on the chain with distributed data sources off the chain

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 98 Journal of Computer and Communications

and securely pushes data between smart contracts and APIs through a reputa-
tion mechanism and an aggregation model. However, the aggregation cost of
distributed data sources is high and the scalability is poor.

Augur [10] is a decentralized and low-cost prediction market platform oracle
built on Ethereum. The prediction market is open to the general public, where
users vote on information from the outside world. And their voting rights are
allocated to different token holders, and the prediction results need to be agreed
by a majority of users. Augur’s incentive structure is designed to encourage users
to remain honest and report accurate results to maximize their profits. However,
Augur’s consensus mechanism design leads to low prediction efficiency, predic-
tion accuracy is restricted by the scale of the platform, and its uneven distribu-
tion of tokens damages the credibility of prediction results.

In general, the current mainstream oracle implementation schemes have the
following problems: 1) Single data source. Users need to specify a single data
source to obtain external data. If the data source itself is fake or maliciously
tampered with, the data returned by the oracle is also wrong; 2) Poor deploy-
ment. The solution depends on hardware security or needs to make substantial
changes to existing mainstream protocols; 3) High complexity of the scheme. It
leads to uneven distribution of incentive mechanism or affects the final result; 4)
Limited application scope. The current blockchain can guarantee the integrity of
on-chain data. However, it cannot effectively guarantee the consistency of the
off-chain data [13]. Besides, although the oracle can help the blockchain to ob-
tain external data, it is still difficult to guarantee the reliability of external data
sources [14], and if a single predictor is used, it will lead to centralization, lead-
ing to the risk of corruption, malicious and incorrect data generation.

In response to the above problems, this paper combines the mainstream
blockchain oracle scheme and proposes an automated, lightweight and accurate
blockchain oracle scheme. The solution uses multiple blockchain oracles to
avoid single points of failure or even a small number of malicious oracles. The
use of BLS aggregated signature reduces block space overhead and communica-
tion load. Besides, the method of using commitments to reveal ensures the au-
thenticity of the off-chain data and improves the scalability and reliability based
on the blockchain system.

3. Theoretical Basis
3.1. Bilinear Mapping

Let 1 2, , TG G G each be a multiplicative cyclic group with a large prime number
p. Let 1 2: Te G G G× → be a map with the following properties:

1) Bilinear: For all 1 2,U G V G∈ ∈ and * , pa b Z∈ , there is always
() (), , abe aU bV e U V= .
2) Non-degeneracy: There exists 1 2,U G V G∈ ∈ , such that (), 1e U V ≠ , in

other words, the map does not send all pairs into the identity in TG .
3) Computability: For all 1 2,U G V G∈ ∈ , the polynomial-time algorithm

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 99 Journal of Computer and Communications

calculation can be found.

3.2. BLS Signature Algorithm and Aggregate Signature Algorithm

BLS signature algorithm [15] [16] is a digital signature algorithm constructed on
the basis of bilinear mapping, which is mainly divided into four parts: initializa-
tion, key generation, signature and verification. BLS aggregate signature algo-
rithm [17] also mainly consists of four parts: initialization, key generation, ag-
gregate signature and aggregate signature verification. Its algorithm initialization
and key generation are the same as BLS signature algorithm.

1) Initialization
Let 1 2, , TG G G each be a multiplicative cyclic group with a large prime num-

ber p, the generators are 1g and 2g respectively. The bilinear pairing is given
by 1 2: Te G G G× → . Define cryptographic hash functions { }*

2: 0,1H G→ . The
publish system parameters are params = ()1 2 1 2, , , , , , , .TG G G e g g p H

2) Key generation
Choose a random number px Z∈ and calculate 1 1

xv g G= ∈ , the private key
is marked as sk x= , and the public key is marked as pk v= .

3) Signature
A given private key sk is used to generate signatures on the received message

M, the signature () 2
skH M Gσ = ∈ . ()H M represents the process of hashing

the message M. In order to fight against forgery of signatures, the hash function
input data contains the public key pk.

4) Verification
Given the public key pk, enter the message M and the signature σ to deter-

mine () ()()1, ,e g e pk H Mσ = whether it is true.
Proof: The proof process is shown in formula (1).

() ()() ()() ()()11 1, ,, ,sk ske g e g eH M g MH e pk H Mσ = = = (1)

5) Aggregate signature
For the aggregated set of users, each user is given an index i, from 1 to

k U= , and each user iu U∈ generates a signature iσ for different message

{ }*0,1iM ∈ . Calculate
1

k

i
i

σ σ
=

=∏ and the aggregate signature is σ .

6) Aggregate signature verification
Give the aggregate signature 2Gσ ∈ of the aggregate users’ set U, the origi-

nal message { }*0,1iM ∈ and the public key ipk of all users iu U∈ . Verify

the aggregate signature σ to make the formula () ()()1
1

,,
k

i i
i

e g e pk H Mσ
=

=∏

holds.
Proof: The proof process is shown in formula (2).

() () ()()
()() ()()

1 1 1
1 1

1 1
1

, , ,

,,

i

i

sk
i

s

k k

i
i i
k k

i ii
i i

k

H M

g

e g e g e g

e H e pkM H M

σ σ
= =

= =

= =

= =

∏ ∏

∏ ∏
 (2)

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 100 Journal of Computer and Communications

4. Scheme Design

To improve the reliability of external data on the chain and prevent a single
point of failure, the scheme uses multiple oracles. The basic framework of the
blockchain oracle scheme is shown in Figure 2. When smart contracts need to
obtain important external data, such as asset prices in financial derivatives,
currency exchange rates for real-time transactions, the flight arrival time for
flight delay insurance, and important game results, obtaining data from mul-
tiple data sources can improve the accuracy and credibility of the data, but
some data sources may be malicious. The existing aggregate signature algo-
rithm cannot exclude malicious signatures. The program will filter the re-
quested data through the commit-reveal method, exclude malicious data
sources, and improve the verification efficiency. Finally, the data on the chain
is aggregated and signed, which reduces the amount of data on the chain and
saves costs. Each oracle can obtain the external data required by the user’s
smart contract from each external API. The oracle can take the form of sub-
scription or split reward to encourage the external API to return the correct
message.

This paper proposes a blockchain oracle scheme based on BLS aggregated
signatures. The scheme is a completely deterministic signature algorithm, which
is divided into five stages. The first stage is the initialization stage. After the
oracle receives the data request, it initializes the parameters of the BLS aggrega-
tion signature. The second stage is the signature collection stage, where the
oracle smart contract obtains the signature of each oracle’s requesting data. The
third stage is the commit-reveal stage. After the oracle smart contract obtains the
commitment of each oracle for the requested data, the oracle smart contract
sends a request to each oracle to obtain the plaintext of the requested data. The
fourth stage is the verification stage. After the oracle smart contract verifies the
validity of the signature, it screens the request data obtained from multiple
oracles, and finally obtains consistent request data. The fifth stage is the aggrega-
tion signature stage. The oracle smart contract performs aggregation signature
on the consistency request data. The sixth stage is the incentive stage. The oracle
that submits the consistency request data in the fifth stage is rewarded. The pro-
gram parameters are shown in Table 1.

Figure 2. Distributed oracles and data sources.

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 101 Journal of Computer and Communications

Table 1. Parameters of scheme.

Parameter Definition

iO The i-th oracle

ipk The public key of the i-th oracle

isk The private key of the i-th oracle

im The query result returned by the i-th oracle

iσ The signature of the i-th oracle

iID The identification of the i-th oracle

R The set of 2f + 1 messages received from the oracle smart contract

m The request returned to the user’s smart contract

kD The set of identical results that is greater than or equal to f + 1

σ The aggregate signature of all iσ in kD

I The set of all iσ in kD

4.1. The Specific Scheme

There are a total of n (3 1n f≥ +) oracle nodes in this scheme, and only f oracle
nodes are allowed to be malicious. The malicious nodes may have dishonest be-
haviors, such as invalid signatures or submitting wrong request data.

Step 1. Initialization
After the oracle smart contract receives the data request from the user’s smart

contract, it sends the data request to each oracle, where 1 2, , TG G G are the mul-
tiplicative cyclic groups with the order of a large prime number p, the generators
are 1g and 2g respectively, and each oracle set the private key i psk ∈ , cal-
culate the public key 1 1

isk
ipk g G= ∈ , and send the public key back to the oracle

smart contract.
Step 2. Signature collection
The oracle smart contract is sent to each oracle for query requirements. The

oracle requests data from the external API and the external API returns the
query data mi to the oracle. After the oracle splices mi and pki, the oracle gene-
rates a signature () 2|| isk

i i iH m pk Gσ = ∈ and sends { }, ,i i i ic ID pkσ= to the
oracle smart contract.

Step 3. Commit—Reveal
Assume that C is the set of information { }, ,i i i ic ID pkσ= collected by the

oracle smart contract. When C contains 2f + 1 pieces of information
{ }, ,i i i ic ID pkσ= , the smart contract generates a set { }iR ID C= ∈ broadcasts

the oracles in R to return the plaintext of the query data, and the oracles that re-
ceive the broadcast R return { }, ,i i i id ID mσ= .

Step 4. Validation
The oracle smart contract verifies the validity of the signature iσ returned by

each oracle iO . If the signature is valid, the oracle smart contract will be classi-

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 102 Journal of Computer and Communications

fied into different sets iD according to the category of mi, until the set kD has
f + 1 or more than f + 1 identical external data m, and the consistent data m is
obtained.

Step 5. Aggregate signature

The oracle smart contract performs aggregation signature
1

k

i
i

σ σ
=

= ∑ on kD

with f + 1 or more of the same external data m, sorts out the set { }i kI ID D= ∈

of iID in kD , and returns the result { }, ,res m Iσ= to the user smart con-
tract.

Step 6. Incentive
The smart contract rewards oracles in the I with valid signatures and correct

request data.
The main flow diagram of the scheme is shown in Figure 3.

4.2. Security Analysis

In order to analyze and define security [18], suppose there is an adversary 𝒜𝒜
who wants to forge a BLS aggregate signature. The security of the BLS aggre-
gated signature scheme is equivalent to that there is no opponent 𝒜𝒜 who can
forge aggregated signatures within a certain game range. The existence of forgery
means that attacker 𝒜𝒜 attempts to forge an aggregated signature on a message of
his choice through a group of users. In the aggregated key selection security
model, adversary 𝒜𝒜 is given the ability to challenge the public key and select
other public keys. His goal is to forge the existence of the collective signature.
The adversary also gains access to the signing oracle of the challenge key. The
specific process is shown in Table 2. His advantage Adv AggSig 𝒜𝒜 is defined as
his probability of winning in the game.

Note that the scheme does not impact the security of the signature scheme. In
other words, the security of the signature is equal to the security of the used sig-
nature scheme [19].

Adversary 𝒜𝒜 has the ability to generate keys in the key selection model, and
there is a potential multi-signature attack [20]. If the messages in the scheme are
all M, the hash values are all () 2h H M G= ∈ , and the aggregated signature is
vulnerable to rogue key [21] attacks. 𝒜𝒜 rogue key attack is an attack that uses
special parameters to make the aggregated signature offset valid parameters

Figure 3. Schematic diagram of the main flow.

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 103 Journal of Computer and Communications

Table 2. Aggregation signature forgery attack model.

Aggregation signature forgery attack

1. Initialization. The aggregate signature forger 𝒜𝒜 obtains a randomly generated public key pk1.

2. Queries. Proceeding adaptively, 𝒜𝒜 requests signatures with pk1 on messages of his choice.

3. Response. Finally, 𝒜𝒜 outputs k − 1 additional public keys pk2, …, pkk. Here k is a game
parameter, at most N. These keys and the initial key pk1 will be included in the aggregate
signature forged by 𝒜𝒜. 𝒜𝒜 also outputs messages m1, …, mk, and finally, 𝒜𝒜 generates an aggregate
signature σ that is signed by k users on their corresponding messages.

4. If the aggregate signature σ is an effective aggregation of messages m1, …, mk under the keys
pk1, …, pkk, and σ is nontrivial, i.e., that is, 𝒜𝒜 did not request a signature on M1 under pk1, the
forger wins. The probability is over the coin tosses of the key-generation algorithm and of 𝒜𝒜.

during the aggregation process. Assuming that the public key of the honest user
I is 1

1 1
xpk g= , the malicious user II chooses 2 px ∈ and constructs the public

key 2 1
2 1 1

x xpk g g −= . For any M, the malicious user II can calculate the aggregate
signature () 2x

A H Mσ = and declare that it is the valid aggregate signature of
users I and II.

Proof The proof process is shown in formula (3) [21].

()() ()()
()()

()()
()

1 2 1

1 2 1

2

1 1 1

1 1 1

1

1

, ,

,

,

,

x x x

x x x

x

A

e g H M e g g H M

e g g g H M

e g H M

e g σ

−

−

⋅

=

=

=

 (3)

In the scheme proposed in this paper, each oracle sets its own private key, and
no private key is transmitted during the interaction. Due to the difficulty of
CDH, adversary 𝒜𝒜 cannot derive the corresponding private key from the public
key. In addition, since the hash value calculated by each oracle contains the pub-
lic key pki, each hash value is different, so rogue key attacks cannot be carried
out during the aggregation of signatures.

4.3. Scheme Discussion
4.3.1. Reliability of Requested Data
The request data returned to the user’s smart contract is always reliable. There
are a total of ()3 1n n f≥ + oracles in the scheme, allowing f oracles to be dis-
honest, so at least 2f + 1 oracles are honest. Among the 2f + 1 oracles received in
the commit phase, at least f + 1 oracles are honest, which is larger than f dishon-
est oracles, and the number of honest oracles is always greater than the number
of dishonest oracles. The reveal stage can always ensure that there are greater
than or equal to f + 1 oracles that return the same correct answer. Therefore, the
reliability of the data requested on the chain is ensured.

4.3.2. Validity of Aggregate Signature
The aggregated signature is aggregated from the signatures of the oracles that are
honest and return the correct data. When the aggregated signature is to be veri-

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 104 Journal of Computer and Communications

fied, the public key of each oracle can be found according to the identity set
{ }i kI ID D= ∈ , calculated ()||i ih H m pk= , and substituted into the formula

() ()()1
1

,,
k

i
i

e g e pk H Mσ
=

=∏ to judge whether the aggregated signature σ is

valid. The public keys in all identity sets are needed for verification. Assuming
there are n oracles in identity set I, n + 1 pairing operations are required, but the
aggregate signature only occupies 160 bits in the block, saving the block space.

4.3.3. Correctness of Motivation
The scheme effectively prevents free-riding attacks and ensures that dishonest
oracles cannot get rewards. The commit-reveal stage effectively prevents free-riding
attacks. A free-riding attack [5] refers to an attack in which a malicious oracle
machine directly copies request data obtained by other oracles without spend-
ing additional costs to obtain request data and obtain rewards. In this scheme,
the oracle does not summit mi in the commitment phase, but submits

{ }, ,i i i ic ID pkσ= , ensuring the confidentiality of mi. After the oracle smart
contract needs to verify the validity of the signature in the verification phase, the
oracle will be classified according to the difference of mi in the revealing phase.
If the signature is invalid, the oracle is considered dishonest, and the dishonest
oracle will not appear in the reward set Dk. The commit-reveal stage ensures that
the dishonest oracle is not rewarded and the accuracy of the incentive is guaran-
teed.

5. Experimental Analysis

The experimental test runs in the Ubuntu 18.04 environment, and the specific
configuration is Intel(R) Core(TM) i5-4210M CPU @ 2.60 GHz, 4 GB memory.

In order to verify the practical value of the scheme in this paper, the experi-
ment mainly tests the performance of BLS aggregated signatures and the per-
formance of multiple oracles. The experiment compares different signature
schemes and tests the gas consumed by different signature schemes. After the
smart contract is compiled on Remix, it is deployed on the Geth node of the
Ethereum private chain for testing. Besides, gas is the count of the internal
workload of the Ethereum virtual machine. All transactions, execution of smart
contracts, or data storage all need to consume gas. The currency used by Ethe-
reum is ETH, and the unit of gas is wei, 1 ETH = 1018 wei.

Figure 4 shows the average time consumption of each phase of the BLS sig-
nature. It can be concluded that the verification phase of the BLS signature con-
sumes the most time, followed by the signature phase, and the least
time-consuming phase is the aggregation signature. The signature phase in-
cludes the initialization of the signature algorithm and the completion of the
signing of the message.

The total time of a BLS signature corresponds to the main time of actual op-
eration of a blockchain oracle. Since in practical applications, the number of
oracles is directly proportional to the amount of incentives, in order to balance

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 105 Journal of Computer and Communications

Figure 4. BLS signature average time for each phase.

Table 3. The elapsed time for each phase of BLS aggregate signature.

Number of oracles 10 20 30 40 50

Signing time (ms) 18.4 48.4 61.8 76.8 90

Validating signature time (ms) 42.1 85 131.2 176 219.2

Aggregate signatures time (ms) 14 29.8 49.5 70.4 84.5

Total signature time (ms) 74.5 163.2 242.5 323.2 393.7

costs and ensure data reliability, the scheme needs to select an appropriate
number of oracles according to the actual situation. When the number of oracles
is equal to fifty times, the total time is 393.7 milliseconds, which proves that the
scheme has relatively high feasibility. Refer to Table 3 for detailed data on the
time-consuming of each stage and total time-consuming of the BLS aggregation
signature.

Figure 5 shows that the gas consumed by each scheme increases with the in-
crease of the number of oracles, and the two show a certain linear relationship.
Among them, BGLS is a BLS aggregation signature scheme with the lowest cost,
but it cannot detect malicious oracles. BGR is a trapdoor permutation-based ag-
gregate signature scheme proposed by Brogle et al. [22], which can be regarded
as an aggregation variant of RSA. The disadvantage of BGR is that the aggre-
gated signatures are created in sequence, which makes this scheme not suitable
for application scenarios with multiple oracles. The solution in this paper is a
fault-tolerant BLS aggregation signature. It is necessary to verify each BLS sig-
nature one by one before aggregation. The increase in the number of oracles will
increase the number of finite field multiplications and pairing operations of two
points, so the consumption of gas will be more than the BLS aggregation signa-
ture scheme. TLS-N can generate non-interactive session proofs based on
blockchain smart contracts that can be effectively verified by a third party, effec-
tively ensuring the correctness of the data on the chain, which consumes the

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 106 Journal of Computer and Communications

most gas. The data measured by the smart contract is platform-independent. It
can be compiled once and can be executed in various systems. Due to the com-
puter’s scheduling, a certain degree of error will be caused, but the overall gas
consumption is basically the same. The gas consumed by the scheme in this pa-
per is between BGR and TLS-N, but BGR needs to create signatures in order
[23], which is not suitable for application in multi-oracles scenarios. Although
TLS-N can provide verifiable proof of the data on the chain, it consumes much
more gas than the scheme in this article. Therefore, according to the gas con-
sumed by each scheme, the fault-tolerant BLS aggregation signature blockchain
oracle scheme proposed in this paper has practical value.

It can be seen from Table 4 that the size of the BLS aggregation signature
BGLS is fixed, and the size of the aggregation signature is equal to 160 bits,
which has nothing to do with the number of oracles. Compared with Elliptic
Curve Digital Signature Algorithm (ECDSA) signatures that cannot aggregate the
signatures of the same message, BLS signature aggregation can aggregate the sig-
natures of the same message and occupies a small space, and it is a completely de-
terministic signature algorithm. Because the BLS signature space is small, the gas
consumed for storing BLS signatures is less than the gas consumed for storing

Figure 5. Gas consumption of different schemes.

Table 4. Comparison of BLS with other signatures.

 RSA BLS ECDSA

Aggregation feature Yes Yes No

Aggregate signature BGR BGLS /

Aggregate signature space (bit) 2048 160 /

Transaction cost (wei) 63,122 50,022 50,023

Storage cost (wei) 512,311 244,317 245,123

Verification cost (wei) 100,075 260,000 10,085

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 107 Journal of Computer and Communications

RSA signatures. But in terms of signature verification, the gas consumed to veri-
fy RSA signatures is less than that of BLS signatures, and the gas consumed to
verify ECDSA signatures is lower. This is mainly because the cost of restoring
the ECDSA public key is lower and related operations have been encapsulated
into functions on Ethereum. However, since Ethereum recently accepted the
improvement proposal (EIP 1108 [23]), this may significantly reduce the oper-
ating costs of BLS and BGLS. In summary, the blockchain oracle scheme that
uses BLS signatures to aggregate signatures has certain advantages. Its aggregate
signature space is small, which can save block space and reduce communication
between blocks. In the future, the gas consumption of BLS and BGLS operations
on Ethereum will be reduced.

6. Conclusions

In order to realize a large-scale blockchain-based network transaction system with
scalability and reliability, the blockchain must be inseparable from off-chain data
in specific application scenarios. The paper proposes a novel blockchain oracle
scheme, which reduces the block space overhead and blockchain network load
under the condition that the aggregated signature takes up a small space and less
interaction, and ensures the consistency of the data on the chain and off the
chain. In addition, the scheme can avoid single points of failure or even a small
number of malicious oracles, ensuring the consistency of data on and off the
chain. The experiment results show that the scheme has high practical value.

The blockchain oracle can solve the problem of blockchain access to external
data. It does not destroy the decentralization of the main chain. Therefore, under
the premise of privacy security, it guarantees the strong correlation of the data
on the chain and off the chain, and ensures the credibility and authenticity of
external data sources.

Future research work mainly includes the following three aspects:
1) We will improve the BLS aggregated signature scheme or find other aggre-

gated signature schemes to improve the security of aggregated signatures while
reducing the complexity of operations.

2) We will combine the threshold scheme to optimize the BLS signature, to
further simplify the interaction between the oracle and the smart contract.

3) According to the difference and importance of the data source, we will study
the blockchain oracle schemes with different fine-grained trust mechanisms.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A. and Felten, E.W. (2015)

SoK: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. 2015
IEEE Symposium on Security and Privacy, San Jose, 17-21 May 2015, 104-121.

https://doi.org/10.4236/jcc.2021.93007

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 108 Journal of Computer and Communications

https://doi.org/10.1109/SP.2015.14

[2] Monrat, A.A., Schelén, O. and Andersson, K. (2019) A Survey of Blockchain from
the Perspectives of Applications, Challenges, and Opportunities. IEEE Access, 7,
117134-117151. https://doi.org/10.1109/ACCESS.2019.2936094

[3] Zheng, Z., Xie, S., Dai, H., Chen, X. and Wang, H. (2017) An Overview of Block-
chain Technology: Architecture, Consensus, and Future Trends. 2017 IEEE Interna-
tional Congress on Big Data (BigData Congress), Honolulu, 25-30 June 2017,
557-564. https://doi.org/10.1109/BigDataCongress.2017.85

[4] Lin, I.C. and Liao, T.C. (2017) A Survey of Blockchain Security Issues and Chal-
lenges. IJ Network Security, 19, 653-659.

[5] Beniiche, A. (2020) A Study of Blockchain Oracles. arXiv: 2004.07140.

[6] Al-Breiki, H., Rehman, M.H.U., Salah, K. and Svetinovic, D. (2020). Trustworthy
Blockchain Oracles: Review, Comparison, and Open Research Challenges. IEEE
Access, 8, 85675-85685. https://doi.org/10.1109/ACCESS.2020.2992698

[7] Heiss, J., Eberhardt, J. and Tai, S. (2019) From Oracles to Trustworthy Data
On-Chaining Systems. 2019 IEEE International Conference on Blockchain (Block-
chain), Atlanta, 14-17 July 2019, 496-503.
https://doi.org/10.1109/Blockchain.2019.00075

[8] Ritzdorf, H., Wüst, K., Gervais, A., Felley, G. and Capkun, S. (2018) TLS-N:
Non-Repudiation over TLS Enabling Ubiquitous Content Signing.
https://doi.org/10.14722/ndss.2018.23272

[9] Zhang, F., Cecchetti, E., Croman, K., Juels, A. and Shi, E. (2016) Town Crier: An
Authenticated Data Feed for Smart Contracts. Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, October
2016, 270-282. https://doi.org/10.1145/2976749.2978326

[10] Peterson, J. and Krug, J. (2015) Augur: A Decentralized, Open-Source Platform for
Prediction Markets. arXiv:1501.01042.

[11] Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N. and Kastania, A. (2018) As-
traea: A Decentralized Blockchain Oracle. 2018 IEEE International Conference on
Internet of Things (IThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), Halifax, 30 July-3 August 2018, 1145-1152.
https://doi.org/10.1109/Cybermatics_2018.2018.00207

[12] Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci, B., Piessens, F. and
Strackx, R. (2018) Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. 27th USENIX Security Symposium, Baltimore,
15-17 August 2018, 991-1008.

[13] Lo, S.K., Xu, X., Staples, M. and Yao, L. (2020) Reliability Analysis for Blockchain
Oracles. Computers & Electrical Engineering, 83, Article ID: 106582.
https://doi.org/10.1016/j.compeleceng.2020.106582

[14] Gorbunov, S. and Wee, H. (2019) Digital Signatures for Consensus. Cryptology
ePrint Archive, 269.

[15] Zhang, F., Safavi-Naini, R. and Susilo, W. (2004) An Efficient Signature Scheme
from Bilinear Pairings and Its Applications. International Workshop on Public Key
Cryptography, Singapore, 1-4 March 2004, 277-290.
https://doi.org/10.1007/978-3-540-24632-9_20

[16] Boneh, D., Lynn, B. and Shacham, H. (2004) Short Signatures from the Weil Pair-
ing. Journal of Cryptology, 17, 297-319. https://doi.org/10.1007/s00145-004-0314-9

https://doi.org/10.4236/jcc.2021.93007
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/ACCESS.2019.2936094
https://doi.org/10.1109/BigDataCongress.2017.85
https://doi.org/10.1109/ACCESS.2020.2992698
https://doi.org/10.1109/Blockchain.2019.00075
https://doi.org/10.14722/ndss.2018.23272
https://doi.org/10.1145/2976749.2978326
https://doi.org/10.1109/Cybermatics_2018.2018.00207
https://doi.org/10.1016/j.compeleceng.2020.106582
https://doi.org/10.1007/978-3-540-24632-9_20
https://doi.org/10.1007/s00145-004-0314-9

X. D. Liu, J. Feng

DOI: 10.4236/jcc.2021.93007 109 Journal of Computer and Communications

[17] Boneh, D., Drijvers, M. and Neven, G. (2018) Compact Multi-Signatures for Smaller
Blockchains. International Conference on the Theory and Application of Cryptolo-
gy and Information Security, Brisbane, 2-6 December 2018, 435-464.
https://doi.org/10.1007/978-3-030-03329-3_15

[18] Goldwasser, S., Micali, S. and Rivest, R.L. (1988) A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing, 17,
281-308. https://doi.org/10.1137/0217017

[19] Boneh, D., Gentry, C., Lynn, B. and Shacham, H. (2003) Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. International Conference on the Theory
and Applications of Cryptographic Techniques, Warsaw, 4-8 May 2003, 416-432.
https://doi.org/10.1007/3-540-39200-9_26

[20] Micali, S., Ohta, K. and Reyzin, L. (2001) Accountable-Subgroup Multisignatures:
Extended Abstract. Proceedings of the 8th ACM Conference on Computer and
Communications Security, Philadelphia, November 2001, 245-254.
https://doi.org/10.1145/501983.502017

[21] Lacharité, M.S. (2018) Security of BLS and BGLS Signatures in a Multi-User Setting.
Cryptography and Communications, 10, 41-58.
https://doi.org/10.1007/s12095-017-0253-6

[22] Brogle, K., Goldberg, S. and Reyzin, L. (2014) Sequential Aggregate Signatures with
Lazy Verification from Trapdoor Permutations. Information and Computation,
239, 356-376. https://doi.org/10.1016/j.ic.2014.07.001

[23] van der Laan, B., Ersoy, O. and Erkin, Z. (2019) MUSCLE: Authenticated External
Data Retrieval from Multiple Sources for Smart Contracts. Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing, Limassol, April 2019, 382-391.
https://doi.org/10.1145/3297280.3297320

https://doi.org/10.4236/jcc.2021.93007
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1137/0217017
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/501983.502017
https://doi.org/10.1007/s12095-017-0253-6
https://doi.org/10.1016/j.ic.2014.07.001
https://doi.org/10.1145/3297280.3297320

	Trusted Blockchain Oracle Scheme Based on Aggregate Signature
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Theoretical Basis
	3.1. Bilinear Mapping
	3.2. BLS Signature Algorithm and Aggregate Signature Algorithm

	4. Scheme Design
	4.1. The Specific Scheme
	4.2. Security Analysis
	4.3. Scheme Discussion
	4.3.1. Reliability of Requested Data
	4.3.2. Validity of Aggregate Signature
	4.3.3. Correctness of Motivation

	5. Experimental Analysis
	6. Conclusions
	Conflicts of Interest
	References

