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Abstract 
With the development of blockchain technology, more and more applications 
need out-of-chain data. Thus, blockchain oracles have become an important 
bridge for transferring data on and off the chain. This paper studies the 
mainstream blockchain oracles scheme, summarizes the shortcomings of the 
existing schemes and proposes a new blockchain oracle scheme based on BLS 
(Bohen-Lynn-Shacham) aggregation signature to ensure that off-chain data 
can be transferred into the blockchain in a trusted and reliable way. Specifi-
cally, the scheme uses multiple blockchain oracles to avoid the single point of 
failure or even a small number of malicious oracles, and improve the credibil-
ity of data. At the same time, it not only uses BLS aggregate signature to re-
duce the storage cost and communication overhead, but also uses commit-
ment mechanisms to ensure the reliability and authenticity of the data. Be-
sides, the simulation results show that the scheme can meet the practical ap-
plication requirements. 
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1. Introduction 

Blockchain is a decentralized, unchangeable data ledger [1]. It stores and verifies 
data through network nodes, which can solve the trust problem between unre-
lated nodes. Therefore, the blockchain will break the existing business model 
and infrastructure in many fields. And its distributed, immutable, persistent and 
other characteristics [2] make it have broad application prospects in the fields of 
finance, logistics, digital copyright, and public services. 

As a special form of data, smart contracts [3] can also be written into the 
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blockchain. When the pre-set conditions are met, smart contracts can be auto-
matically executed [4], ensuring that the entire process of data storage, reading, 
and execution is transparent, traceable, and immutable, thus creating a new and 
powerful way to establish a trust relationship between objects. 

It is worth noting that the blockchain is a deterministic and closed system en-
vironment, and no uncertain factors are allowed in smart contracts. Therefore, 
the blockchain cannot actively obtain off-chain data. In order to overcome the 
limitations of smart contracts effectively and enable off-chain data to communi-
cate with smart contracts and transfer data, it is necessary to deploy a bridge 
connecting the real world and smart contracts on the blockchain. The bridge is 
called blockchain oracle [5]. The user first informs the oracle on the chain of the 
external data that needs to be obtained through the network request, and then 
the oracle node obtains the external data through the off-chain API, and finally, 
the off-chain data will be returned to the user through the oracle. The off-chain 
data acquisition process [6] of the oracle is shown in Figure 1. 

The oracle can be regarded as the only interface for data interaction between 
the blockchain and the external world, which is particularly important in the 
construction of the blockchain ecosystem. Take the network transaction system 
based on blockchain technology as an example. In order to be scalable and relia-
ble, the system not only needs to obtain data on the blockchain efficiently and 
quickly, but also needs to obtain real data from off-chain or cross-chain data. 

Due to the consensus algorithm of the blockchain and the use of a hash algo-
rithm based on the Merkle tree structure, the integrity of the data on the chain is 
guaranteed. However, because the off-chain data is independent of the block-
chain, a specific solution is needed to ensure the reliability and consistency of 
the off-chain data. In order to broaden the application scenarios of blockchain 
and ensure the reliability of data on the chain, this article summarizes the ad-
vantages and disadvantages of the current mainstream blockchain oracle scheme 
and proposes a new blockchain oracle based on BLS (Bohen-Lynn-Shacham) 
aggregation signature. The scheme reduces the storage space of the blockchain 
while ensuring the credibility of the on-chain data, and proves the practical value 
of the scheme through simulation experiments. 

The organization of this paper is as follows: Chapter 2 introduces the current 
mainstream blockchain oracle scheme, and summarizes its advantages and dis-
advantages; Chapter 3 introduces the theoretical basis of BLS aggregation signa-
ture; Chapter 4 proposes a new blockchain oracle scheme based on BLS aggrega-
tion signature, and discusses the security and correctness of the scheme; Chapter 5  

 

 
Figure 1. Blockchain oracles framework. 
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conducted experiments on the program, and verified the feasibility of the pro-
gram through comparison; Chapter 6 summarizes the work of this article and 
proposes the next research plan. 

2. Related Work 

The current mainstream blockchain oracle on-chain mechanism [7] is divided 
into three categories, namely software-based, hardware-based and voting-based 
oracles. Among them, software-based oracles include Provable [5], TLS-N [8], 
etc.; hardware-based oracles include Town Crier [9], etc.; voting-based oracles 
include ChainLink [5], Augur [10], ASTRAEA [11], etc. 

Provable [5] is an oracle scheme that provides centralized data transmission 
services for Ethereum, which provides a security guarantee for the data trans-
mission layer of smart contracts. Provable obtains external data from the API or 
data source specified by the user’s smart contract and can prove that the data 
provided to the smart contract is the correct data obtained from the specified 
API or data source at a specific point in time, ensuring verifiability and availabil-
ity of out-of-chain data. However, it is only applicable to unsupported TLS ver-
sions (1.1 or lower), and can only be used in Ethereum, which is costly and relies 
on a single data source. 

TLS-N [8] is the first oracle scheme based on content extraction signatures. It 
uses the privacy protection function of Transport Layer Security (TLS) to gener-
ate non-interactive session proof based on blockchain smart contracts that can 
be effectively verified by third parties. TLS-N provides a practical and decentra-
lized blockchain oracle, which enhances the auditability and reliability of web 
content. When generating a certificate, part of the TLS session (such as pass-
words, cookies) can be hidden to protect privacy, while verifying the rest of the 
content. TLS-N is compatible with TLS 1.3, but the TLS-N scheme increases 
communication overhead and the deployability is poor, which requires some 
improvements to TLS. It can be understood from previous deployments that the 
standardization and adoption process of TLS is very slow, so it will take longer 
time to improve the TLS standard. 

Town Crier [9] is a verifiable data supply oracle system based on the Trusted 
Execution Environment (TEE), using trusted hardware (Intel SGX, Intel Soft-
ware Guard Extensions) and HTTPS designed a trusted hardware hybrid proto-
col based on blockchain to solve the limitation of HTTPS lack of digital signa-
ture. Among them, Intel SGX’s Enclave can encrypt and decrypt data requests 
from smart contracts or external data from data sources, and securely manage 
sensitive information. However, Town Crier requires hardware support, highly 
depends on the trusted execution environment, which is subject to security vul-
nerabilities attacks against Intel CPU and SGX, such as Foreshadow [12] and 
Spectre [12]. 

ChainLink [5] is the first decentralized oracle solution on Ethereum. It com-
bines smart contracts on the chain with distributed data sources off the chain 
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and securely pushes data between smart contracts and APIs through a reputa-
tion mechanism and an aggregation model. However, the aggregation cost of 
distributed data sources is high and the scalability is poor. 

Augur [10] is a decentralized and low-cost prediction market platform oracle 
built on Ethereum. The prediction market is open to the general public, where 
users vote on information from the outside world. And their voting rights are 
allocated to different token holders, and the prediction results need to be agreed 
by a majority of users. Augur’s incentive structure is designed to encourage users 
to remain honest and report accurate results to maximize their profits. However, 
Augur’s consensus mechanism design leads to low prediction efficiency, predic-
tion accuracy is restricted by the scale of the platform, and its uneven distribu-
tion of tokens damages the credibility of prediction results. 

In general, the current mainstream oracle implementation schemes have the 
following problems: 1) Single data source. Users need to specify a single data 
source to obtain external data. If the data source itself is fake or maliciously 
tampered with, the data returned by the oracle is also wrong; 2) Poor deploy-
ment. The solution depends on hardware security or needs to make substantial 
changes to existing mainstream protocols; 3) High complexity of the scheme. It 
leads to uneven distribution of incentive mechanism or affects the final result; 4) 
Limited application scope. The current blockchain can guarantee the integrity of 
on-chain data. However, it cannot effectively guarantee the consistency of the 
off-chain data [13]. Besides, although the oracle can help the blockchain to ob-
tain external data, it is still difficult to guarantee the reliability of external data 
sources [14], and if a single predictor is used, it will lead to centralization, lead-
ing to the risk of corruption, malicious and incorrect data generation. 

In response to the above problems, this paper combines the mainstream 
blockchain oracle scheme and proposes an automated, lightweight and accurate 
blockchain oracle scheme. The solution uses multiple blockchain oracles to 
avoid single points of failure or even a small number of malicious oracles. The 
use of BLS aggregated signature reduces block space overhead and communica-
tion load. Besides, the method of using commitments to reveal ensures the au-
thenticity of the off-chain data and improves the scalability and reliability based 
on the blockchain system. 

3. Theoretical Basis 
3.1. Bilinear Mapping 

Let 1 2, , TG G G  each be a multiplicative cyclic group with a large prime number 
p. Let 1 2: Te G G G× →  be a map with the following properties: 

1) Bilinear: For all 1 2,U G V G∈ ∈  and *  , pa b Z∈ , there is always  
( ) ( ), , abe aU bV e U V= . 
2) Non-degeneracy: There exists 1 2,U G V G∈ ∈ , such that ( ), 1e U V ≠ , in 

other words, the map does not send all pairs into the identity in TG . 
3) Computability: For all 1 2,U G V G∈ ∈ , the polynomial-time algorithm 
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calculation can be found. 

3.2. BLS Signature Algorithm and Aggregate Signature Algorithm 

BLS signature algorithm [15] [16] is a digital signature algorithm constructed on 
the basis of bilinear mapping, which is mainly divided into four parts: initializa-
tion, key generation, signature and verification. BLS aggregate signature algo-
rithm [17] also mainly consists of four parts: initialization, key generation, ag-
gregate signature and aggregate signature verification. Its algorithm initialization 
and key generation are the same as BLS signature algorithm. 

1) Initialization 
Let 1 2, , TG G G  each be a multiplicative cyclic group with a large prime num-

ber p, the generators are 1g  and 2g  respectively. The bilinear pairing is given 
by 1 2: Te G G G× → . Define cryptographic hash functions { }*

2: 0,1H G→ . The 
publish system parameters are params = ( )1 2 1 2, , , , , , , .TG G G e g g p H  

2) Key generation 
Choose a random number px Z∈  and calculate 1 1

xv g G= ∈ , the private key 
is marked as sk x= , and the public key is marked as pk v= . 

3) Signature 
A given private key sk is used to generate signatures on the received message 

M, the signature ( ) 2
skH M Gσ = ∈ . ( )H M  represents the process of hashing 

the message M. In order to fight against forgery of signatures, the hash function 
input data contains the public key pk. 

4) Verification 
Given the public key pk, enter the message M and the signature σ  to deter-

mine ( ) ( )( )1, ,e g e pk H Mσ =  whether it is true. 
Proof: The proof process is shown in formula (1). 

( ) ( )( ) ( )( ) ( )( )11 1, ,, ,sk ske g e g eH M g MH e pk H Mσ = = =        (1) 

5) Aggregate signature 
For the aggregated set of users, each user is given an index i, from 1 to 

k U= , and each user iu U∈  generates a signature iσ  for different message  

{ }*0,1iM ∈ . Calculate 
1

k

i
i

σ σ
=

=∏  and the aggregate signature is σ . 

6) Aggregate signature verification 
Give the aggregate signature 2Gσ ∈  of the aggregate users’ set U, the origi-

nal message { }*0,1iM ∈  and the public key ipk  of all users iu U∈ . Verify  

the aggregate signature σ  to make the formula ( ) ( )( )1
1

,,
k

i i
i

e g e pk H Mσ
=

=∏  

holds. 
Proof: The proof process is shown in formula (2). 

( ) ( ) ( )( )
( )( ) ( )( )

1 1 1
1 1

1 1
1

, ,  ,

,,

i

i

sk
i

s

k k

i
i i
k k

i ii
i i

k

H M

g

e g e g e g

e H e pkM H M

σ σ
= =

= =

= =

= =

∏ ∏

∏ ∏
          (2) 

https://doi.org/10.4236/jcc.2021.93007


X. D. Liu, J. Feng 
 

 

DOI: 10.4236/jcc.2021.93007 100 Journal of Computer and Communications 
 

4. Scheme Design 

To improve the reliability of external data on the chain and prevent a single 
point of failure, the scheme uses multiple oracles. The basic framework of the 
blockchain oracle scheme is shown in Figure 2. When smart contracts need to 
obtain important external data, such as asset prices in financial derivatives, 
currency exchange rates for real-time transactions, the flight arrival time for 
flight delay insurance, and important game results, obtaining data from mul-
tiple data sources can improve the accuracy and credibility of the data, but 
some data sources may be malicious. The existing aggregate signature algo-
rithm cannot exclude malicious signatures. The program will filter the re-
quested data through the commit-reveal method, exclude malicious data 
sources, and improve the verification efficiency. Finally, the data on the chain 
is aggregated and signed, which reduces the amount of data on the chain and 
saves costs. Each oracle can obtain the external data required by the user’s 
smart contract from each external API. The oracle can take the form of sub-
scription or split reward to encourage the external API to return the correct 
message. 

This paper proposes a blockchain oracle scheme based on BLS aggregated 
signatures. The scheme is a completely deterministic signature algorithm, which 
is divided into five stages. The first stage is the initialization stage. After the 
oracle receives the data request, it initializes the parameters of the BLS aggrega-
tion signature. The second stage is the signature collection stage, where the 
oracle smart contract obtains the signature of each oracle’s requesting data. The 
third stage is the commit-reveal stage. After the oracle smart contract obtains the 
commitment of each oracle for the requested data, the oracle smart contract 
sends a request to each oracle to obtain the plaintext of the requested data. The 
fourth stage is the verification stage. After the oracle smart contract verifies the 
validity of the signature, it screens the request data obtained from multiple 
oracles, and finally obtains consistent request data. The fifth stage is the aggrega-
tion signature stage. The oracle smart contract performs aggregation signature 
on the consistency request data. The sixth stage is the incentive stage. The oracle 
that submits the consistency request data in the fifth stage is rewarded. The pro-
gram parameters are shown in Table 1. 

 

 
Figure 2. Distributed oracles and data sources. 
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Table 1. Parameters of scheme. 

Parameter Definition 

iO  The i-th oracle 

ipk  The public key of the i-th oracle 

isk  The private key of the i-th oracle 

im  The query result returned by the i-th oracle 

iσ  The signature of the i-th oracle 

iID  The identification of the i-th oracle 

R The set of 2f + 1 messages received from the oracle smart contract 

m The request returned to the user’s smart contract 

kD  The set of identical results that is greater than or equal to f + 1 

σ  The aggregate signature of all iσ  in kD  

I The set of all iσ  in kD  

4.1. The Specific Scheme 

There are a total of n ( 3 1n f≥ + ) oracle nodes in this scheme, and only f oracle 
nodes are allowed to be malicious. The malicious nodes may have dishonest be-
haviors, such as invalid signatures or submitting wrong request data. 

Step 1. Initialization 
After the oracle smart contract receives the data request from the user’s smart 

contract, it sends the data request to each oracle, where 1 2, , TG G G  are the mul-
tiplicative cyclic groups with the order of a large prime number p, the generators 
are 1g  and 2g  respectively, and each oracle set the private key i psk ∈ , cal-
culate the public key 1 1

isk
ipk g G= ∈ , and send the public key back to the oracle 

smart contract. 
Step 2. Signature collection 
The oracle smart contract is sent to each oracle for query requirements. The 

oracle requests data from the external API and the external API returns the 
query data mi to the oracle. After the oracle splices mi and pki, the oracle gene-
rates a signature ( ) 2|| isk

i i iH m pk Gσ = ∈  and sends { }, ,i i i ic ID pkσ=  to the 
oracle smart contract. 

Step 3. Commit—Reveal 
Assume that C is the set of information { }, ,i i i ic ID pkσ=  collected by the 

oracle smart contract. When C contains 2f + 1 pieces of information  
{ }, ,i i i ic ID pkσ= , the smart contract generates a set { }iR ID C= ∈  broadcasts 

the oracles in R to return the plaintext of the query data, and the oracles that re-
ceive the broadcast R return { }, ,i i i id ID mσ= . 

Step 4. Validation 
The oracle smart contract verifies the validity of the signature iσ  returned by 

each oracle iO . If the signature is valid, the oracle smart contract will be classi-
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fied into different sets iD  according to the category of mi, until the set kD  has 
f + 1 or more than f + 1 identical external data m, and the consistent data m is 
obtained. 

Step 5. Aggregate signature 

The oracle smart contract performs aggregation signature 
1

k

i
i

σ σ
=

= ∑  on kD  

with f + 1 or more of the same external data m, sorts out the set { }i kI ID D= ∈  

of iID  in kD , and returns the result { }, ,res m Iσ=  to the user smart con-
tract. 

Step 6. Incentive 
The smart contract rewards oracles in the I with valid signatures and correct 

request data. 
The main flow diagram of the scheme is shown in Figure 3. 

4.2. Security Analysis 

In order to analyze and define security [18], suppose there is an adversary 𝒜𝒜 
who wants to forge a BLS aggregate signature. The security of the BLS aggre-
gated signature scheme is equivalent to that there is no opponent 𝒜𝒜 who can 
forge aggregated signatures within a certain game range. The existence of forgery 
means that attacker 𝒜𝒜 attempts to forge an aggregated signature on a message of 
his choice through a group of users. In the aggregated key selection security 
model, adversary 𝒜𝒜 is given the ability to challenge the public key and select 
other public keys. His goal is to forge the existence of the collective signature. 
The adversary also gains access to the signing oracle of the challenge key. The 
specific process is shown in Table 2. His advantage Adv AggSig 𝒜𝒜 is defined as 
his probability of winning in the game. 

Note that the scheme does not impact the security of the signature scheme. In 
other words, the security of the signature is equal to the security of the used sig-
nature scheme [19]. 

Adversary 𝒜𝒜 has the ability to generate keys in the key selection model, and 
there is a potential multi-signature attack [20]. If the messages in the scheme are 
all M, the hash values are all ( ) 2h H M G= ∈ , and the aggregated signature is 
vulnerable to rogue key [21] attacks. 𝒜𝒜 rogue key attack is an attack that uses 
special parameters to make the aggregated signature offset valid parameters  

 

 
Figure 3. Schematic diagram of the main flow. 
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Table 2. Aggregation signature forgery attack model. 

Aggregation signature forgery attack 

1. Initialization. The aggregate signature forger 𝒜𝒜 obtains a randomly generated public key pk1. 

2. Queries. Proceeding adaptively, 𝒜𝒜 requests signatures with pk1 on messages of his choice. 

3. Response. Finally, 𝒜𝒜 outputs k − 1 additional public keys pk2, …, pkk. Here k is a game 
parameter, at most N. These keys and the initial key pk1 will be included in the aggregate 
signature forged by 𝒜𝒜. 𝒜𝒜 also outputs messages m1, …, mk, and finally, 𝒜𝒜 generates an aggregate 
signature σ that is signed by k users on their corresponding messages. 

4. If the aggregate signature σ is an effective aggregation of messages m1, …, mk under the keys 
pk1, …, pkk, and σ is nontrivial, i.e., that is, 𝒜𝒜 did not request a signature on M1 under pk1, the 
forger wins. The probability is over the coin tosses of the key-generation algorithm and of 𝒜𝒜. 

 
during the aggregation process. Assuming that the public key of the honest user 
I is 1

1 1
xpk g= , the malicious user II chooses 2 px ∈  and constructs the public 

key 2 1
2 1 1

x xpk g g −= . For any M, the malicious user II can calculate the aggregate 
signature ( ) 2x

A H Mσ =  and declare that it is the valid aggregate signature of 
users I and II. 

Proof The proof process is shown in formula (3) [21]. 

( )( ) ( )( )
( )( )

( )( )
( )

1 2 1

1 2 1

2

1 1 1

1 1 1

1

1

, ,

,

,

,

x x x

x x x

x

A

e g H M e g g H M

e g g g H M

e g H M

e g σ

−

−

⋅

=

=

=

                 (3) 

In the scheme proposed in this paper, each oracle sets its own private key, and 
no private key is transmitted during the interaction. Due to the difficulty of 
CDH, adversary 𝒜𝒜 cannot derive the corresponding private key from the public 
key. In addition, since the hash value calculated by each oracle contains the pub-
lic key pki, each hash value is different, so rogue key attacks cannot be carried 
out during the aggregation of signatures. 

4.3. Scheme Discussion 
4.3.1. Reliability of Requested Data 
The request data returned to the user’s smart contract is always reliable. There 
are a total of ( )3 1n n f≥ +  oracles in the scheme, allowing f oracles to be dis-
honest, so at least 2f + 1 oracles are honest. Among the 2f + 1 oracles received in 
the commit phase, at least f + 1 oracles are honest, which is larger than f dishon-
est oracles, and the number of honest oracles is always greater than the number 
of dishonest oracles. The reveal stage can always ensure that there are greater 
than or equal to f + 1 oracles that return the same correct answer. Therefore, the 
reliability of the data requested on the chain is ensured. 

4.3.2. Validity of Aggregate Signature 
The aggregated signature is aggregated from the signatures of the oracles that are 
honest and return the correct data. When the aggregated signature is to be veri-
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fied, the public key of each oracle can be found according to the identity set 
{ }i kI ID D= ∈ , calculated ( )||i ih H m pk= , and substituted into the formula  

( ) ( )( )1
1

,,
k

i
i

e g e pk H Mσ
=

=∏  to judge whether the aggregated signature σ  is  

valid. The public keys in all identity sets are needed for verification. Assuming 
there are n oracles in identity set I, n + 1 pairing operations are required, but the 
aggregate signature only occupies 160 bits in the block, saving the block space. 

4.3.3. Correctness of Motivation 
The scheme effectively prevents free-riding attacks and ensures that dishonest 
oracles cannot get rewards. The commit-reveal stage effectively prevents free-riding 
attacks. A free-riding attack [5] refers to an attack in which a malicious oracle 
machine directly copies request data obtained by other oracles without spend-
ing additional costs to obtain request data and obtain rewards. In this scheme, 
the oracle does not summit mi in the commitment phase, but submits 

{ }, ,i i i ic ID pkσ= , ensuring the confidentiality of mi. After the oracle smart 
contract needs to verify the validity of the signature in the verification phase, the 
oracle will be classified according to the difference of mi in the revealing phase. 
If the signature is invalid, the oracle is considered dishonest, and the dishonest 
oracle will not appear in the reward set Dk. The commit-reveal stage ensures that 
the dishonest oracle is not rewarded and the accuracy of the incentive is guaran-
teed. 

5. Experimental Analysis 

The experimental test runs in the Ubuntu 18.04 environment, and the specific 
configuration is Intel(R) Core(TM) i5-4210M CPU @ 2.60 GHz, 4 GB memory. 

In order to verify the practical value of the scheme in this paper, the experi-
ment mainly tests the performance of BLS aggregated signatures and the per-
formance of multiple oracles. The experiment compares different signature 
schemes and tests the gas consumed by different signature schemes. After the 
smart contract is compiled on Remix, it is deployed on the Geth node of the 
Ethereum private chain for testing. Besides, gas is the count of the internal 
workload of the Ethereum virtual machine. All transactions, execution of smart 
contracts, or data storage all need to consume gas. The currency used by Ethe-
reum is ETH, and the unit of gas is wei, 1 ETH = 1018 wei. 

Figure 4 shows the average time consumption of each phase of the BLS sig-
nature. It can be concluded that the verification phase of the BLS signature con-
sumes the most time, followed by the signature phase, and the least 
time-consuming phase is the aggregation signature. The signature phase in-
cludes the initialization of the signature algorithm and the completion of the 
signing of the message. 

The total time of a BLS signature corresponds to the main time of actual op-
eration of a blockchain oracle. Since in practical applications, the number of 
oracles is directly proportional to the amount of incentives, in order to balance  

https://doi.org/10.4236/jcc.2021.93007


X. D. Liu, J. Feng 
 

 

DOI: 10.4236/jcc.2021.93007 105 Journal of Computer and Communications 
 

 
Figure 4. BLS signature average time for each phase. 

 
Table 3. The elapsed time for each phase of BLS aggregate signature. 

Number of oracles 10 20 30 40 50 

Signing time (ms) 18.4 48.4 61.8 76.8 90 

Validating signature time (ms) 42.1 85 131.2 176 219.2 

Aggregate signatures time (ms) 14 29.8 49.5 70.4 84.5 

Total signature time (ms) 74.5 163.2 242.5 323.2 393.7 

 
costs and ensure data reliability, the scheme needs to select an appropriate 
number of oracles according to the actual situation. When the number of oracles 
is equal to fifty times, the total time is 393.7 milliseconds, which proves that the 
scheme has relatively high feasibility. Refer to Table 3 for detailed data on the 
time-consuming of each stage and total time-consuming of the BLS aggregation 
signature. 

Figure 5 shows that the gas consumed by each scheme increases with the in-
crease of the number of oracles, and the two show a certain linear relationship. 
Among them, BGLS is a BLS aggregation signature scheme with the lowest cost, 
but it cannot detect malicious oracles. BGR is a trapdoor permutation-based ag-
gregate signature scheme proposed by Brogle et al. [22], which can be regarded 
as an aggregation variant of RSA. The disadvantage of BGR is that the aggre-
gated signatures are created in sequence, which makes this scheme not suitable 
for application scenarios with multiple oracles. The solution in this paper is a 
fault-tolerant BLS aggregation signature. It is necessary to verify each BLS sig-
nature one by one before aggregation. The increase in the number of oracles will 
increase the number of finite field multiplications and pairing operations of two 
points, so the consumption of gas will be more than the BLS aggregation signa-
ture scheme. TLS-N can generate non-interactive session proofs based on 
blockchain smart contracts that can be effectively verified by a third party, effec-
tively ensuring the correctness of the data on the chain, which consumes the  
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most gas. The data measured by the smart contract is platform-independent. It 
can be compiled once and can be executed in various systems. Due to the com-
puter’s scheduling, a certain degree of error will be caused, but the overall gas 
consumption is basically the same. The gas consumed by the scheme in this pa-
per is between BGR and TLS-N, but BGR needs to create signatures in order 
[23], which is not suitable for application in multi-oracles scenarios. Although 
TLS-N can provide verifiable proof of the data on the chain, it consumes much 
more gas than the scheme in this article. Therefore, according to the gas con-
sumed by each scheme, the fault-tolerant BLS aggregation signature blockchain 
oracle scheme proposed in this paper has practical value. 

It can be seen from Table 4 that the size of the BLS aggregation signature 
BGLS is fixed, and the size of the aggregation signature is equal to 160 bits, 
which has nothing to do with the number of oracles. Compared with Elliptic 
Curve Digital Signature Algorithm (ECDSA) signatures that cannot aggregate the 
signatures of the same message, BLS signature aggregation can aggregate the sig-
natures of the same message and occupies a small space, and it is a completely de-
terministic signature algorithm. Because the BLS signature space is small, the gas 
consumed for storing BLS signatures is less than the gas consumed for storing  

 

 
Figure 5. Gas consumption of different schemes. 

 
Table 4. Comparison of BLS with other signatures. 

 RSA BLS ECDSA 

Aggregation feature Yes Yes No 

Aggregate signature BGR BGLS / 

Aggregate signature space (bit) 2048 160 / 

Transaction cost (wei) 63,122 50,022 50,023 

Storage cost (wei) 512,311 244,317 245,123 

Verification cost (wei) 100,075 260,000 10,085 
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RSA signatures. But in terms of signature verification, the gas consumed to veri-
fy RSA signatures is less than that of BLS signatures, and the gas consumed to 
verify ECDSA signatures is lower. This is mainly because the cost of restoring 
the ECDSA public key is lower and related operations have been encapsulated 
into functions on Ethereum. However, since Ethereum recently accepted the 
improvement proposal (EIP 1108 [23]), this may significantly reduce the oper-
ating costs of BLS and BGLS. In summary, the blockchain oracle scheme that 
uses BLS signatures to aggregate signatures has certain advantages. Its aggregate 
signature space is small, which can save block space and reduce communication 
between blocks. In the future, the gas consumption of BLS and BGLS operations 
on Ethereum will be reduced. 

6. Conclusions 

In order to realize a large-scale blockchain-based network transaction system with 
scalability and reliability, the blockchain must be inseparable from off-chain data 
in specific application scenarios. The paper proposes a novel blockchain oracle 
scheme, which reduces the block space overhead and blockchain network load 
under the condition that the aggregated signature takes up a small space and less 
interaction, and ensures the consistency of the data on the chain and off the 
chain. In addition, the scheme can avoid single points of failure or even a small 
number of malicious oracles, ensuring the consistency of data on and off the 
chain. The experiment results show that the scheme has high practical value. 

The blockchain oracle can solve the problem of blockchain access to external 
data. It does not destroy the decentralization of the main chain. Therefore, under 
the premise of privacy security, it guarantees the strong correlation of the data 
on the chain and off the chain, and ensures the credibility and authenticity of 
external data sources. 

Future research work mainly includes the following three aspects: 
1) We will improve the BLS aggregated signature scheme or find other aggre-

gated signature schemes to improve the security of aggregated signatures while 
reducing the complexity of operations. 

2) We will combine the threshold scheme to optimize the BLS signature, to 
further simplify the interaction between the oracle and the smart contract. 

3) According to the difference and importance of the data source, we will study 
the blockchain oracle schemes with different fine-grained trust mechanisms. 
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