
Journal of Computer and Communications, 2019, 7, 112-127
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2019.712011 Dec. 27, 2019 112 Journal of Computer and Communications

System Implementation Failures in the ERP
Development Process

Samantha Mathara Arachchi*, Siong Choy Chong, Alik Kathabi

University of Colombo School of Computing (UCSC), Colombo, Sri Lanka

Abstract
ERP mainly relates to business management software which consists of sever-
al modules that are important for the growth and survival of different types of
businesses and organisations. The integration of related business applications
in an organisation can bring significant advantages to the business by enabl-
ing faster supply chain management. ERP implementation enables firms to
adapt and configure information flows and integrate business processes in
order to enhance business performance. System implementation has been re-
viewed with adequate literature to significantly support the importance of
arithmetic and logical concepts and basic errors in programming including
typographical errors in a programme, identification of syntax errors and pro-
gramme output process errors. It has further discussed the variables declara-
tion, significance of modularization and necessity of supporting accessories
along with the usability of library files and the importance of the use of
frameworks. Enhancement of coding formatting and significance of coding
syntax were also critically reviewed with sufficient literature to identify the
system implementation failures in the ERP development process.

Keywords
System, Implementation, Programming, Failures, ERP, Factors, Framework

1. Introduction of System Implementation

ERP implementation is not an easy task for either the implementation team or
the firm. It has to be carried out by a competent group of technical experts with
a well-defined plan as it is a complex and expensive process to be carried out.
Although it is a difficult task [1], most organisations are compelled to implement
ERP systems as it can facilitate both productivity and efficiency of the current
and future organisational business processes [2].

How to cite this paper: Arachchi, S.M.,
Chong, S.C. and Kathabi, A. (2019) System
Implementation Failures in the ERP De-
velopment Process. Journal of Computer
and Communications, 7, 112-127.
https://doi.org/10.4236/jcc.2019.712011

Received: November 28, 2019
Accepted: December 24, 2019
Published: December 27, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2019.712011
https://www.scirp.org/
https://doi.org/10.4236/jcc.2019.712011
http://creativecommons.org/licenses/by/4.0/

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 113 Journal of Computer and Communications

Selecting a programming language for implementation is a main task in the
ERP context and ERP customisation does not have a lesser value attached to it.
Therefore, this procedure has to be followed with much care and there are many
facets to be considered, such as selecting a good programming language, de-
signing methodology and using the correct tools [3]. When selecting a good
programming language to implement ERP systems, there are many variables that
need to be considered [4]. Considering the ERP capabilities and the rapid ad-
vancements of technology, high-performance computing, web services support
and service-oriented architecture (SOA) are the key areas when evaluating a
suitable programming language [5] [6].

2. Considered Factors in Implementing

There are eight subdomains in this component. They are, arithmetic and logical
concepts (ALC), basic errors in system implementation (BESI), programme
output process errors (POPE), variables declaration (VD), modularisation (MO),
supporting accessories (SA), coding formatting (CF) and coding syntax (CS).

2.1. Arithmetic and Logical Concepts (ALC)

Algorithms are constructed using arithmetic and logical concepts. They are
step-by-step finite sequences of instructions to solve a well-defined computa-
tional problem. Algorithms are used to solve any complex real-life problems
visible in the industry when implementing an ERP system. Hence, it is very im-
portant to design the algorithm to solve the problem while writing and executing
programmes to get the expected output. There are two approaches for algorithm
design, namely the top-down and the bottom-up algorithm designs [7].

When automating business scenarios, there are logical concepts that need to
be fulfilled to complete the flow of business. All these logics must be constructed
accurately. If not, the ERP failure rate could be high, giving wrong or unrealistic
outputs [7]. According to Donald’s theory [8], some of the causes leading to high
ERP failure rate are as follows: branching performed incorrectly, loop termina-
tions not defined well-violated programming language rules violated program-
ming standards and misinterpreted language constructs by the programmers.
The recognition of arithmetic algorithms overcomes the shortcomings of some
typical current approaches and introduces logical correlation matrices as a solu-
tion to the logic diagrams. In addition, a dynamic pruning policy that offers a
specific instance is executed and also the complexity analyses which proves the
validity and sophistication of the new arithmetic separately [9]. These concepts
are important to avoid inadequate decision logic, arithmetic computations, and
erroneous arithmetic computations.

2.2. Basic Errors in Programming (BESI)

In programming, different types of errors can occur. They are typographical er-
rors such as syntax errors, data errors and programme output errors [10]. These
errors are explained in the following sub-sections as follows: 1) Typographical

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 114 Journal of Computer and Communications

Errors in a Programme [11], 2) Syntax Errors [12], 3) Programme Output Process
Errors [13] [14].

The following errors should be remembered and addressed, when necessary,
to fix the bugs in the application: 1) identified indexing errors; 2) violated pa-
rameters or subscripts; 3) identified data errors; 4) identified non-terminating
sub-programmes; 5) identified disk handling errors; 6) identified output
processing errors; 7) identified iterative; 8) procedural errors; and 9) identified
initialisation errors.

Document management is very important to the software industry and needs
to be maintained well to identify the errors in programming. However, the tech-
niques of document management are applicable with little modification across a
wide variety of disciplines, including software. These documents should be mod-
ified along with design changes as quickly as possible. Formatting, checking
spelling and grammar, organising content and flow of content and also main-
taining templates are advisable to make retrieval easy. It should include memos,
recipients, and details of senders as well [15]. At its simplest, document man-
agement has usually been considered to cover the techniques of creating and or
acquiring, storing, locating and retrieving documents throughout their life cycle.
However, as the use of computers has increased, documents have increasingly
become available. Electronically, the remit of document management has evolved
to a point where a “document” can be virtually any sort of computer file, a spread-
sheet, a graphics file, a scanned image, a video clip, a voice-mail message and so
on [15].

2.3. Variables Declaration (VD)

Variables play an important role in computer programming because they enable
programmers to write flexible programmes. Rather than entering data directly
into a programme, a programmer can use variables to represent the data. When
the programme is executed, the variables are replaced with real data. This makes
it possible for the same programme to process different sets of data [16]. Every
variable has a name, designated as the variable name, and a data type. A variable
data type indicates what sort of value the variable represents. The opposite of a
variable is a constant. Constants are values that never change. Because of their
inflexibility, constants are used less often than variables in programming [16].

2.4. Modularisation (MO)

Modularisation programming is a software design technique that emphasizes on
separating the functionality of a programme into independent, interchangeable
modules [17], especially when automating a complex business process like an
ERP application. It maintains an easy and clear way to minimise the error rate of
the application. In addition, it gives a clear overview of the application [18].

2.5. Supporting Accessories (SA)

Nowadays, in programming, there are supporting applications, objects, classes

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 115 Journal of Computer and Communications

and many more readymade sets of codes that can be incorporated with the ex-
isting codes. This is an advantage rather than constructing a programme from
scratch. The usability of library files and the importance of use of frameworks
are identified as separate types as described in the following sub-sections: 1)
Usability of Library Files [19], 2) Use of Frameworks [20] [21] [22].

2.6. Coding Formatting (CF)

Coding formatting enhances the readability of lengthy programming and eases
the identification of the errors or bugs when fixing bugs. Especially when control
structures are used, it is important to format the code and align them properly
by using tabs for indentation, without using both tabs and spaces because not all
text editors treat tabs as exactly eight spaces and also leave only one blank line
between subroutines to limit blank lines in the programme [23].

2.7. Coding Syntax (CS)

The programming language syntax, which forms part of a larger analysis of dif-
ferent programming languages, has been identified to be able to reduce the gap
between programming languages [24]. Code syntaxes are the most powerful,
which provides the grammar to write a programme. If the syntax is wrong or is
misused, the programme will not execute properly and it will take two to three
minutes to even days to recover, even if a colon or a semicolon is missing. It
could become a major issue or mislead output [14]. To address this problem, the
following rules are recommended to be adopted: 1) use shift operators instead of
multiplication for constructing bit patterns; 2) always check for default case in
switch statement; 3) use each variable for one purpose only; 4) use each field of
structure for one purpose only; 5) avoid using global variables within outlines; 6)
avoid using nonlocal variables within routines; 7) declare each variable in the
smallest scope possible; 8) include all syntax errors to reduce the failure rate; and
9) correct errors promptly as they occur to keep the code simple [23] [25].

In addition, the data visualisation technique also helps to reduce the dimen-
sions of data through the use of self-organising neutral networks. Manually gen-
erated programming codes as well as automated programming codes show simi-
larities between them and are computed to get a generalised meaning of the syn-
tax trees for the non-vectorial self-organising maps model [22].

3. Methodology
3.1. Research Framework

Figure 1 shows the research framework for this study. The proposed framework
comprises two constructs: (1) ERP systems implementation (6) programming
language.

The independent variables consist of ERP systems implementation. Systems
implementation is the construction of the new system and the delivery of that
system into output using a computer programme [26].

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 116 Journal of Computer and Communications

Figure 1. Research framework.

The mediating variable is a programming language that can be selected ac-

cording to the type of application or convenience of the developer [22]. ERP
failure rate represents the dependent variable.

3.2. Hypotheses Development

The proposed research framework broadly depicts the possible relationships
connecting the two constructs. To substantiate these relationships, the literature
was explored to discover the theoretical evidence upon which the hypothetical
relationships connecting the constructs were built. These relationships have been
planned as a set of research hypotheses addressing the research questions. The
following two hypotheses were developed based on the research objectives and
research framework:

H1: There is a significant relationship between system implementation and
ERP failure.

H2: Programming languages significantly mediate the relationship between
system implementation and ERP failure.

3.3. Research Method

A quantitative approach was adopted in this study. It is a normative survey ap-
proach and evaluation which is commonly used to explore the opinions of res-
pondents who represent the whole population. The quantitative approach is
more appropriate for this study since the objectives were to identify factors
leading to ERP failure [27]. This method describes the nature of a condition as it
takes place during the time of the study and explores the system or systems of a
particular condition at each and every stage of the SDLC. In addition, the me-
thod is appropriate because it enables the researcher to generalise the findings
obtained [28]. The constructs in the questionnaire were identified based on re-
levant literature, as well as the challenges and the concepts cited by respondents
during the pre-survey. The questionnaires were self-administered.

3.4. Study Setting

The researcher has examined the ERP development companies under the Com-
panies Registration Act of Sri Lanka and found that such development work is
undertaken by such companies registered under the Board of Investment (BOI)
and the Public Limited Companies (PLC) Act of Sri Lanka. However, the soft-

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 117 Journal of Computer and Communications

ware development companies registered under the PLC Act were not considered
in this study due to their lack of investment capacity and involvement of ERP
application development [29]. In addition, the PLCs do not have enough capital
and resources as well as bank guarantee when signing vendor agreements.
Hence, they are not engaged in developing total solutions for ERP applications.
There are some companies that are registered under the BOI but have less than
twenty employees, making little investments and having less capital. These
companies were omitted as well.

3.5. Unit of Analysis

The unit of analysis consists of employees engaged in developing ERP applica-
tions at each and every stage of the software implementation in software devel-
opment companies in Sri Lanka. The respondents were selected using a stratified
sampling method by considering staff members with similar educational quali-
fications and working experience. Under this sampling method, each member of
a population has an equal opportunity to become part of the sample based on
the levels of developers prescribed. Since all of the employees have an equal
chance of becoming research participants, this sampling method is said to be the
most efficient sampling procedure [30]. A total of 48 software development
companies registered under BOI qualified for this study. In the sampling strate-
gy, the researcher obtained a list of all the employees and selected the sample
accordingly software implementation.

3.6. Sample Design

According to the statistics of BOI, there were 66 companies registered for BOI
software development projects [31]. Based on the justifications mentioned in the
study setting, only 48 companies fulfilled the inclusion criterion. In all of the 48
companies, there were a total of 3640 employees. In the study, the representative
sample was selected using a stratified sampling technique to select the employees
followed by applying the random sampling approach to distribute the question-
naires. A stratum in this study is a subset of the population that shares at least
one of the following common characteristic which is Software Implementers
(SI)—everyone performing the same job role must have the same academic qua-
lifications. The sample of 188 out of the 3640 employees has been used in the
programming or developing the domain. The survey questionnaire is the re-
search instrument consisting of a series of questions and other prompts for the
purpose of gathering information from respondents and records their answers.

4. Data Analysis
4.1. Hypothesis 1: There Is a Significant Relationship between

System Implementation and ERP Failure

The quality of system implementation is directly related to ERP failure. Accor-
dingly, if system implementation is not being carried out appropriately, this
could cause ERP failure and vice-versa. Table 1 shows the results of the multiple

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 118 Journal of Computer and Communications

Table 1. Result of multiple regression for system implementation.

Independent
Variables

Unstandardised Coefficients
Standardised
Coefficients T Sig. VIF*

B Std. Error Beta

(Constant) 0.341 0.144 2.364 0.019

ALC 0.171 0.027 0.299 6.440 0.000 1.847

BESI 0.144 0.031 0.240 4.674 0.000 2.257

POPE 0.139 0.030 0.199 4.568 0.000 1.637

VD 0.052 0.023 0.086 2.215 0.028 1.282

MO 0.110 0.020 0.196 5.560 0.000 1.062

SA 0.067 0.025 0.121 2.693 0.008 1.733

CF 0.057 0.024 0.104 2.341 0.020 1.700

CS 0.161 0.026 0.219 6.287 0.000 1.042

VIF = Variance Inflation Factor.

regression analysis between system implementation (SI) as represented by its
subdomains of ALC, BESI, POPE, VD, MO, SA, CF, CS and ERP failure (ERPF)
according to the data collected.

Table 1 shows that the p-value for ALC, BESI, POPE, VD, MO, SA, CF and
CS was less than 0.05. Hence, SI depends on ALC, BESI, POPE, VD, MO, SA, CF
and CS. The R-square value was 0.799, which means that 79.9% of the variation
in SI is explained by ALC, BESI, POPE, VD, MO, SA, CF and CS. The value of
the VIF was less than 5 and hence, there is no problem of multicollinearity. In
terms of residual diagnostics, the residuals were independent and normally dis-
tributed. The Kolmogorov-Smirnov test of normality on the residuals showed a
p-value of 0.049, which is close to 0.05. Thus, the assumption of normality of the
residual terms is met. The equation has been constructed as follows:

The Equation:

SI = 0.538 (Constant) + 0.164 (ALC) + 0.135 (BESI) + 0.114 (POPE)
+ 0.025 (VD) + 0.155 (MO) + 0.051 (SA) + 0.077 (CF) + 0.122 (CS).

In stepwise regression, only income was significant. The R-square value was
0.999, which means 99.9% of the variation in SI is explained by ALC, BESI,
POPE, VD, MO, SA, CF and CS.

The Equation:

SI = 0.004 (Constant) + 0.147(ALC) + 0.206 (BESI) + 0.146 (POPE)
+ 0.083 (VD) + 0.085 (MO) + 0.061 (SA) + 0.084 (CF) + 0.186 (CS)

According to the above result, the hypothesis one has explained that there is a
significant relationship between system implementation and ERP failure.

4.2. Hypothesis Testing 2: Programming Languages Significantly
Mediates the Relationship between System Implementation
and ERP Failure

The programming languages are posited to have a significant mediating effect on

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 119 Journal of Computer and Communications

the relationship between SI and ERPF. Hence, the mediating effect of PL be-
tween SI and ERPF is illustrated in Figure 2.

Table 2 presents the results of the multiple regression analysis on the rela-
tionship between SI and ERPF as mediated by PL, while Table 3 presents the
results of PL upon SI.

The score of the Sobel test was 2.4683904 with a significant p-value is
0.0135722, which is less than 0.05. The finding implies that PL is a significant
mediator in the relationship between SI and ERPF as shown in Figure 3.

() ()2 2 2 2
a b

abz
b SE a SE

=
+

Based on the above formula, a is the regression coefficient for the relationship
between the independent variable and the mediator, b is the regression coeffi-
cient for the relationship between the mediator and the dependent variable, SEa
is the standard error of the relationship between the independent variable and

Table 2. Result of multiple regression analysis between system implementation and ERP
failure as mediated by programming languages.

Coefficientsa

Model
Unstandardised Coefficients Standardised Coefficients

t Sig.
B Std. Error Beta

1

(Constant) −0.003 0.007 −0.397 0.692

SI 0.702 0.003 0.999 359.678 0.000

PL 0.182 0. 056 0.001 0.299 0.765

aDependent Variable: ERPF.

Table 3. Result of multiple regression of programming language upon system implemen-
tation.

Coefficientsa

Model

Unstandardized
Coefficients

Standardized
Coefficients t Sig.

Collinearity Statistics

B Std. Error Beta Tolerance VIF*

1
(Constant) 0.688 0.182 3.773 0.000

PL 0.702 0.185 0.776 16.125 0.000 1.000 1.000

aDependent Variable: PL.

Figure 2. Mediating effect of advanced programming language on system implementa-
tion and ERP failure.

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 120 Journal of Computer and Communications

Figure 3. Mediating effect with coefficient values of programming languages between
system implementation and ERP failure.

the mediator, while SEb is the standard error of the relationship between the me-
diating variable and the dependent variable. The data was applied as follows:

1) (UnStandardised Beta) a = 1.000; Sa = 0.003.
2) b = 0.702; Sb = 0.185.
3) c = 0.182; Sc = 0.056.

Indirect Effect (IE) = b × c = 0. 702 × 0. 182 = 0.12776

Variance in IE = (b × Sb)2 + (c × Sc)2 = (0. 702 × 0. 185)2
+ (0.182 × 0. 056)2 = 0.016866 + 0.000103 = 0.0169698

SE in IE 0.0169698 0.1302=

Z = 0.12776/0.1302 = 0.98112

The p-value = P [Z > 0.98112] < 0.001 < 0.05

Thus the indirect effect is significant.
Using online Sobel application:
Sobel test statistic: 2.4683904.
One-tailed probability: 0.006786.
Two-tailed probability: 0.0135722, this is less than 0.05 and therefore PL is a

significant mediating factor.
Since the p-value is less than 0.05, PL mediates the relationship between SI

and ERPF. H6 is accepted.

4.3. Findings and Discussion—Hypothesis One

The first hypothesis was to determine whether there is a relationship between
system implementation and ERP failure. It posited that if the system implemen-
tation does not do a proper job, this could be a case of failure to the ERP appli-
cation and vice-versa.

Variables representing system implementation such as arithmetic and logical
concepts (ALC), basic errors in system implementation (BESI), programme
output process errors (POPE), variables declaration (VD), modularisation (MO),
supporting accessories (SA), coding formatting (CF) and coding syntax (CS) are
points of variance that are close to each other in their distribution.

The mean score for system implementation of ERP applications was 3.70 with

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 121 Journal of Computer and Communications

a standard deviation of 0.3792. The maximum and minimum scores were 4.58
and 2.83, respectively. The median was 3.80, which indicates that at least 50% of
the system developers graded more than 3.80. Thus, the most frequent rating
amongst the system developers was 4.00. This shows that the factors identified in
the system implementation questionnaire for ERP system design are very im-
portant. The constructed framework is shown in Figure 4.

The eight clusters shown in Figure 4 include 45 items to represent the rela-
tionship between system implementation and ERP Failure, which were con-
firmed by the tested model of the research. The established testing environment
was supposed to fulfill the requirement of all items based on the above eight
clusters in the system implementation stage. This demonstrates the high diversi-
ty of ERP implementation.

The correlation coefficient for items for each factor, such as ALC, BESI, POPE,
VD, MO, SA, CF, and CS, was represented by p-values as low as 0.028, which are
less than 0.05. Thus, the items representing system implementation are signifi-
cant predictors of ERP failures.

For every unit increase in ALC, ERP failure is expected to drop by 0.171. For
every unit increase in BESI, ERP failure is expected to drop by 0.144, and for
every unit increase in POPE, ERP failure is expected to drop by 0.139. For every
unit increase in VD, ERP failure is expected to drop by 0.052. Furthermore, for
every unit increase in MO, ERP failure is expected to drop by 0.110, and for
every unit increase in SA, ERP failure is expected to drop by 0.067. In addition,
for every unit increase in CF, ERP failure is expected to drop by 0.057, and for
every unit increase in CS, ERP failure is expected to drop by 0.161.

According to the regression analysis, ALC, BESI, POPE, VD, MO, SA, CF, and
CS are the significant predictors that support the objective, i.e. there is a signifi-
cant relationship between system implementation and ERP failure, and the rela-
tionship is in an inverse direction. This implies that the more these factors are
being practiced, the lower would be the ERP failure rate.

Figure 4. Conceptual framework for H5.

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 122 Journal of Computer and Communications

The VIF values for ALC, BESI, POPE, VD, MO, SA, CF and CS are 1.847,
2.257, 1.637, 1.282, 1.062, 1.733, 1.700 and 1.042, respectively. Since they are be-
low 5, there is no problem with multicollinearity among these factors.

The findings show that arithmetic and logical concepts should take into con-
sideration that inadequate decision logic, arithmetic computations, branching
performed incorrectly, loop terminations undefined, violated programming
language rules and standards, as well as misinterpreted language constructs by
the programmers, are the main causes that directly affect ERP failure [7].

In addition, this study has also confirmed that basic errors in system imple-
mentation include typographical, syntax, indexing, data, disk handling, output
processing, iterative procedural, initialisation and violated parameters or sub-
scripts, as well as non-terminating sub-programmes are factors that increase the
ERP failure rate [10]. Donald [14] also found that programme output process
errors play the main role in order to reduce the ERP failure rate. These include
errors such as input-output format, main storage allocation, identified software
interface and identified erroneous “error message” processing, database interface
errors, user interface errors [13] and compiler errors.

According to Andrei [11] and [16], the necessity of the declaration of a varia-
ble is very important. The variable type and dimensions should not be incor-
rectly declared while unique names for variables and standard naming methods
for library files should be meaningful. In addition to this modularization, pre-
cautions such as including codes within the main() routine, limiting the number
of lines in a routine to 50 or less, having subroutines or loops without duplica-
tion of codes are also supposed to reduce ERP failure.

Then the value of the following items formatting programming code such as
tabs and spaces for indentation, a consistent indentation pattern for a pro-
gramme’s control structure, and limiting blank lines in programmes, which were
identified by Chris [23] and was also confirmed by this research. In addition, the
researcher also found that coding syntax with the use of shift operators instead
of multiplication for constructing bit patterns, switch statement, check for de-
fault case, using each variable for exactly one purpose, avoiding using global va-
riables within routines and nonlocal variables within routines, declaring each
variable in the smallest scope possible, correcting errors promptly as they occur,
as well as keeping code simple were important to enhance the success of the ERP
system [12].

The first hypothesis of this research has been examined through H5 which in-
cludes eight clusters along with the 48 items. The findings showed that there is a
relationship between system implementation and ERP failure. If a proper system
implementation is not carried out, then the ERP failure rate will be high. There-
fore, to reduce the failure rate, system implementation has to be carried out ac-
cording to the research framework proposed in this study.

There are consistent findings as well for this phase of system implementation.
According to [32], ERP implementation is the ability of the firm to adapt and

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 123 Journal of Computer and Communications

configure information flows and integrate business processes in order to en-
hance business performance. Considering the ERP back capabilities and the
rapid advancements of technology, high-performance computing, web services
support, and service-oriented architecture will be the key areas when evaluating
a suitable programming language to implement an ERP [5] [6]. The method that
generates the syntax tree and uses the feature tree to match the knowledge in the
syntax tree to identify code knowledge automatically is being widely followed
[12]. The experimental results show that the system can effectively and accu-
rately gather the statistic of knowledge in the programme code in real-time.

If the input programme covers the whole range of the language syntax con-
structs, then the parser corresponding to the generated annotated grammar is
able to parse and transform into an Abstract syntax tree (AST) any programme
of the given language [11]. It is important to use code review correctly. Format-
ting, spell check and grammar, organising content and flow of content and
maintaining templates are advisable. In order to retrieve them, it should include
memos and the details of recipients and senders as well [15].

The results also showed that misusing or improper use of arithmetic and logi-
cal concepts, including inadequate decision logic, arithmetic computations,
branching performed incorrectly, loop terminations undefined, violated pro-
gramming language rules and, standards, misinterpreted language constructs by
the programmer are the main causes that directly affect the ERP failure [7].
Zhang [9] has pointed out similar results. In this research, more factors have
been considered together to determine their impact. That is, again, a major sig-
nificant contribution to this research.

Basic errors in system implementation which include typographical [11], the
syntax [12], indexing, data, disk handling, iterative procedural, initialisation and
violated parameters or subscripts and also non-terminating sub-programmes are
factors that increase the ERP failure rate. Widera [10] has identified the same
factors which are needed to enhance the programme. All these scholars have
separately explained how to write a programme with the minimum of those er-
rors.

Consistent with Donald [14], this research found that programme output
process errors play the main role in order to reduce the failure rate. This in-
cludes the following errors such as input-output format, main storage allocation,
identified software interface and identified erroneous “error message” processing,
database interface errors, user interface errors [13] and compiler errors.

According to [11] and [16], a variable declaration with the variable type and
dimensions incorrectly declared, unique names for variables used meaningfully
and standard naming methods for library files are also imperative. In addition to
this modularisation, routine, limit number of lines in a routine to 50 or less,
subroutines or loops without duplicate codes also contribute to reducing the
ERP failure.

Chris [23] explains that coding, formatting with the tabs and spaces for in-
dentation, programme’s control structure to follow consistent indentation pat-

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 124 Journal of Computer and Communications

tern, and limiting blank lines in the programme were also proved again in this
research with regard to all the above factors.

The researcher found that coding syntax with the use of shift operators instead
of multiplication for constructing bit patterns, switching statement, checking for
default case, using each variable for exactly one purpose, avoiding using global
variables within routines and nonlocal variables within routines, declaring each
variable in the smallest scope possible, correcting errors promptly, as they occur
and finally keeping code simple can enhance the success of the system [12].

4.4. Findings and Discussion—Hypothesis Two

The 2nd hypothesis was to determine whether programming languages (PL) me-
diate the relationship between system implementation and ERP failure. Sobel’s
test results showed the value of 2.4683904 with a significant p-value is 0.0135722.
This implies that PL is a significant mediator between system implementation
(SI) and ERP failure (ERPF).

The findings are in line with the literature based on the two key points sup-
porting PL as a significant mediator. First, modularisation [17], especially when
automating a complex business process like an ERP application It maintains an
easy and clear way to minimise the error rate of the application. In addition, it
gives a clear overview of the application [18].

On the other hand, Al-Hossan [33] has also identified that limited access to
supporting accessories like library files, frameworks, objects, and modules also
increase the ERP failure rate among the software development companies.

In the 2nd hypothsis, modularisation which aligns with the codes within the
main() routine, limiting the number of lines in a routine or without duplication
codes influencing the relation between system implementation using different
programming languages is important to reduce ERP failure [25]. In addition,
awareness of supporting accessories such as library files, frameworks, and objec-
tives are also important, while Zimin [17] and [33] explained similar facts with
the limiting factors discussed under the literature review.

5. Conclusions and Recommendation

Another interesting recommendation is derived from the perspective of system
implementation. The logic programming is a type of programming paradigm
which is largely based on formal logic. It expresses facts and rules about some
problem domains in the business process. Therefore, the handling of arithmetic
and logical concepts is the most important consideration when automating ERP
application.

Knowing the whole range of the language syntax helps to construct an er-
ror-free programme. It was explained that it is important to use code review
correctly. Formatting, spell check and grammar, organising content and flow of
content and maintaining templates are advisable.

To minimise that the basic errors it is necessary to reduce typographical errors

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 125 Journal of Computer and Communications

for developing abstract syntax trees, syntax errors, indexing, data, disk handling,
iterative procedural, initialisation and violated parameters or subscripts and also
non-terminating sub-programmes to fix the bugs in the application.

This researcher has also found such errors in input-output format to get the
expected results, main storage allocation to run the application smoothly with
enough ram and rom and for store data and retrieval, identified software interface
and erroneous “error message” processing for enhancing the user-friendliness,
database to store enough data physically or in cloud virtually, reduce the compi-
ler and user interface errors and are highly recommend to produce more effi-
cient and productive error-free code.

According to the finding of this research also explained the necessity of va-
riables declaration with the variable type and dimensions to represent data cor-
rectly. Unique names for variables should be used meaningfully. Standard nam-
ing methods for library files are necessary to structure the programme properly
and reduce the conflict with system files. In addition to that, the modularization
is also important to separate the functionality of a programme into independent,
interchangeable modules to make it faster and improve the performance.

The researcher has explained that coding formatting with the tabs and spaces
for indentation enhances the readability of the coding when referring them again
for correction or modification. The Programme’s control structure recommends
following consistent indentation patterns and limiting blank lines in programs.
As a whole, these were also recommended in order to reduce the programme
implementation errors.

Furthermore, the researcher, found that coding syntax has also explained and
recommended the use of shift operators instead of multiplication for construct-
ing bit patterns, switch statement, using each variable for exactly one purpose,
avoid using global variables within routines, declaring each variable on the
smallest scope possible and correcting errors promptly as they occur, and finally
keeping code simple was factor which enhances the success of the system. The
syntax is language-specific and differs either a little or a lot depending on a lan-
guage. They are important only in the scope of a particular language. There are
some languages that compile to another base language, and they usually have a
different syntax. Changing the syntax of a language can be relatively easy or
hard, depending on what the syntax should be. Therefore, it is recommended to
know the language accurately in order to save time and budget.

Selecting a proper and programming language is also very important because
day by day technology changes, thereby creating new updates as well as plug-ins
and supporting objects. It is important, recommended and necessary to keep in
touch to decide when to quit the existing application and switch to the new gen-
eration.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jcc.2019.712011

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 126 Journal of Computer and Communications

References
[1] Samuel, A.A., Reddy, B.S. and Nair, J. (2014) Conceptualizing Dimensions of En-

terprise Resource Planning Systems Success: A Socio Technical Perspective. Inter-
national Journal of Enterprise Information Systems, 10, 53-75.

[2] Shivkumar, S. and Hasmukhrai, T. (2012) Software Testing Techniques. Interna-
tional Journal of Advanced Research in Computer Science and Software Engineer-
ing, 7, 16.

[3] Howden, W. (2006) Reliability of the Path Analysis Testing Strategy. IEEE Transac-
tions on Software Engineering, SE-2, 208-215.
https://doi.org/10.1109/TSE.1976.233816

[4] Chaim, M., Maldonado, J. and Jino, M. (2003) A Debugging Strategy Based on Re-
quirements of Testing. Seventh European Conference on Software Maintenance and
Reengineering, Benevento, Italy, 28 March 2003, 160-169.

[5] Galin, D. (2004) Software Quality Assurance. Pearson Education Limited, Harlow.

[6] Lewis, W.E. (2005) Software Testing and Continuous Quality Improvement. Auer-
beach Publications, New York.

[7] Vinu, V.D. (2006) Principles of Data Structures Using C and C++. New Age Inter-
national, Telangana, India.

[8] Donald, E.K. (1995) The Art of Computer Programming. Vol. 3, Odd Bookworm,
Hackensack, NJ.

[9] Zhang, L., Yuan, S., Tang, J. and Xie, X. (2008) Research on the Composite Arith-
metic of Logic Compound Sentences in Decompilation. 2008 International Sympo-
sium on Computer Science and Computational Technology, Shanghai, 20-22 De-
cember 2008, 442-446.

[10] Widera, M. (2011) Why Testing Matters in Functional Programming. Fern Univer-
sity at in Hagen, Hagen.

[11] Andrei, A. and Daniel, I.V. (2012) Automating Abstract Syntax Tree Construction
for. 14th International Symposium on Symbolic and Numeric Algorithms for Scien-
tific Computing, Timisoara, Romania, 26-29 September 2012, 152-159.

[12] Gayle, L.M. (2011) Cracking the Coding Interview: 150 Programming Questions
and Solutions. 5th Edition, CareerCup.

[13] Carlton, R. (2017) Three Dangers of a Poorly-Designed ERP User Interface. Con-
verted Media.

[14] Knuth, D.E. (2007) The Art of Computer Programming. Volume 1, 3rd, Edition,
Dorling Kindersley, Delhi.

[15] Doverton, D. (2001) Techniques of Document Management: A Review of Text Re-
trieval and Related Technologies. Journal of Documentation, 57, 192-217.
https://doi.org/10.1108/EUM0000000007082

[16] Vangie, B. (2015) variable.html. http://www.webopedia.com/TERM/V/variable.html

[17] Jin, Z.M., Fu, Q., Jin, J. and Tao, J.W. (2013) Characteristics and Module Design of
Weaving ERP. 3rd International Conference on Information Management, Innova-
tion Management and Industrial Engineering, Kunming, 26-28 November 2010,
422-425.

[18] Kenneth, E. (2011) Modularization. Aalborg University, Copenhagen.

[19] Georges, E.K. (2009) Building a Service-Oriented ERP from an Open Source Soft-
ware. Fourth International Conference on Software Engineering Advances, Porto,
Portugal, 20-25 September 2009, 33-38.

https://doi.org/10.4236/jcc.2019.712011
https://doi.org/10.1109/TSE.1976.233816
https://doi.org/10.1108/EUM0000000007082
http://www.webopedia.com/TERM/V/variable.html

S. M. Arachchi et al.

DOI: 10.4236/jcc.2019.712011 127 Journal of Computer and Communications

[20] Leopoulos, V., Kirytopoulos, K. and Voulgaridou, D. (2005) ERP Systems as a
Component of the Electronic Supply Chain: Classification of Implementation Risks.
International Conference on Computational Intelligence for Modelling, Control
and Automation, and International Conference on intelligent Agents, Web Tech-
nologies and Internet Commerce, Vienna, Austria, 28-30 November 2005, 676-682.

[21] Song, H., Huiyou, C. and Qing, W. (2009) Component Library-Based ERP Software
Development Methodology. 2009 International Conference on Interoperability for
Enterprise Software and Applications China, Beijing, 21-22 April 2009, 34-38.

[22] Zhu, Z.Y. and Dai, S.H. (2009) J2EE-Based Enterprise ERP System Design and Im-
plementation. 2009 2nd IEEE International Conference on Computer Science and
Information Technology, Beijing, 8-11 August 2009, 509-512.

[23] Chris, P. (2009) Learn to Program. 2nd Edition, Pragmatic Bookshelf.

[24] Andreas, S. (2013) An Empirical Investigation into Programming Language Syntax.
ACM Transactions on Computing Education, 13, Article No. 19.
https://doi.org/10.1145/2534973

[25] Samantha, M.A, Chong, S.C. and Kennedy, D.G. (2014) A Comparison between
Evaluation of Computer Based Testing and Paper Based Testing for Subjects in
Computer Programming. International Journal of Software Engineering and Appli-
cations, 5, 57-72. https://doi.org/10.5121/ijsea.2014.5105

[26] MITRE (2013) System Design and Development. MITRE Corporation, ‎Bedford,
MA.

[27] Creswell, J. (1994) Research Design: Qualitative and Quantitative Approaches. Sage
Publications, New York.

[28] George, D. and Mallery, P. (2013) IBM SPSS Statistics 21 Step by Step: A Simple
Guide and Reference. 13th Ed, Pearson, Upper Saddle River, NJ.

[29] Central Bank of Sri Lanka (2014) Annual Report 2014.

[30] Sekaran, U. and Bougie, R. (2013) Research Methods for Business A Skill-Building
Approach. 6th Edition, Wiley, New York.

[31] Board of Investment (2012) BOI. http://www.investsrilanka.com/

[32] Srinivasan, D.D. and Gopalaswamy, R. (2006) Software Testing: Principles and
Practice. Pearson Education, India.

[33] Al-Hossan, A. and Al-Mudimigh, A.S. (2011) Practical Guidelines for Successful
ERP Testing. Theoretical and Applied Information Technology, 27, 11-18.

https://doi.org/10.4236/jcc.2019.712011
https://doi.org/10.1145/2534973
https://doi.org/10.5121/ijsea.2014.5105
http://www.investsrilanka.com/

	System Implementation Failures in the ERP Development Process
	Abstract
	Keywords
	1. Introduction of System Implementation
	2. Considered Factors in Implementing
	2.1. Arithmetic and Logical Concepts (ALC)
	2.2. Basic Errors in Programming (BESI)
	2.3. Variables Declaration (VD)
	2.4. Modularisation (MO)
	2.5. Supporting Accessories (SA)
	2.6. Coding Formatting (CF)
	2.7. Coding Syntax (CS)

	3. Methodology
	3.1. Research Framework
	3.2. Hypotheses Development
	3.3. Research Method
	3.4. Study Setting
	3.5. Unit of Analysis
	3.6. Sample Design

	4. Data Analysis
	4.1. Hypothesis 1: There Is a Significant Relationship between System Implementation and ERP Failure
	4.2. Hypothesis Testing 2: Programming Languages Significantly Mediates the Relationship between System Implementation and ERP Failure
	4.3. Findings and Discussion—Hypothesis One
	4.4. Findings and Discussion—Hypothesis Two

	5. Conclusions and Recommendation
	Conflicts of Interest
	References

