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Abstract 
In dealing with high-dimensional data, such as the global climate model, fa-
cial data analysis, human gene distribution and so on, the problem of dimen-
sionality reduction is often encountered, that is, to find the low dimensional 
structure hidden in high-dimensional data. Nonlinear dimensionality reduc-
tion facilitates the discovery of the intrinsic structure and relevance of the 
data and can make the high-dimensional data visible in the low dimension. 
The isometric mapping algorithm (Isomap) is an important algorithm for 
nonlinear dimensionality reduction, which originates from the traditional 
dimensionality reduction algorithm MDS. The MDS algorithm is based on 
maintaining the distance between the samples in the original space and the 
distance between the samples in the lower dimensional space; the distance 
used here is Euclidean distance, and the Isomap algorithm discards the Euc-
lidean distance, and calculates the shortest path between samples by Floyd 
algorithm to approximate the geodesic distance along the manifold surface. 
Compared with the previous nonlinear dimensionality reduction algorithm, 
the Isomap algorithm can effectively compute a global optimal solution, and 
it can ensure that the data manifold converges to the real structure asymptot-
ically. 
 
Keywords 
Manifold, Nonlinear Dimensionality Reduction, Isomap Algorithm, MDS 
Algorithm 

 

1. Introduction 

In the process of analyzing high-dimensional data, it faces the problem of “di-
mensionality disaster” [1]. Dimensionality reduction can reduce the complexity 
and space complexity of time, save the overhead of extracting unnecessary fea-
tures, and remove the noise mixed in the data sets, and the simpler model has 
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stronger robustness on small data sets. The purpose of dimension reduction is to 
visualize the data, observe and study the data, and improve the efficiency of ma-
chine learning. Therefore, the problem of dimensionality reduction has received 
extensive attention in many fields such as pattern recognition, machine learning 
and computer vision; with the increasing number of high-dimensional data, the 
problem of dimensionality reduction has become a research hotspot. Manifold 
has caught everyone’s attention. Dimensionality reduction in the field of ma-
chine learning and statistics refers to reducing the number of random variables 
that need to be considered. 

The traditional dimensionality reduction techniques are divided into two 
types: linear methods and nonlinear methods. The nonlinear methods are di-
vided into preserving local features and retaining global features. Retaining local 
features is based on reconstruction weights, adjacency graphs, and cut-based 
spaces. The retention of global features is based on retention distance, ker-
nel-based, and neural network-based. Based on distance preservation, it is di-
vided into multidimensional scaling (MDS) and isometric mapping (Isomap) 
based on geodetic distance. 

The isometric mapping algorithm is a classical algorithm in manifold learn-
ing. The goal of manifold learning is to find low-dimensional structures embed-
ded in high-dimensional data spaces and give an efficient low-dimensional re-
presentation. Because the manifold learning algorithm can utilize the local geo-
metry of the dataset to reveal its intrinsic manifold structure, it can achieve effi-
cient dimensionality reduction. In addition to the Isomap algorithm, well-known 
manifold learning algorithms include local linear embedding, Laplacian feature 
mapping, and local hold projection. These algorithms can keep the topology of 
the original data unchanged, and can better solve the “dimension disaster” 
problem in the data processing. This paper will introduce the Isomap algorithm 
and compare it with the MDS algorithm to compare the dimensionality reduc-
tion effects of the two algorithms. The content of this paper is as follows: The 
second chapter focuses on the Isomap algorithm and the principle of the MDS 
algorithm. The third chapter is the experimental comparison verification. The 
fourth chapter summarizes this article and its outlook for the future. 

2. Isomap Algorithm 
2.1. Basic Principles of Isomap Algorithm 

The basic principle of the dimensionality reduction algorithm is to analyze and 
process high-dimensional data to find meaningful low-dimensional structures 
hidden in high-dimensional data. The main idea of the Isomap algorithm is to 
calculate the geodesic distance between data points by local neighborhood dis-
tance approximation, and complete the data dimensionality reduction by estab-
lishing the equivalence relationship between the geodesic distance of the original 
data and the distance between the data after dimension reduction. The Isomap 
algorithm is derived from the linear dimensionality reduction algorithm MDS, 
which has the main features of the MDS algorithm, namely the validity of the 
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calculation, the global optimization and the asymptotic convergence. At the 
same time, it can be more flexible to learn the nonlinear structure of data [2]. 
The key point of the Isomap algorithm is to replace the traditional Euclidean 
distance with the geodesic distance, so as to better find the internal structure of 
high-dimensional data. The geodesic distance [3] in Isomap is represented by 
the shortest path in the nearest neighbor graph. When calculating the geodesic 
distance, the distance between a sample and a point close to the sample is calcu-
lated by the Euclidean distance, and the distance between a sample and a point 
that is far from the sample is calculated by the shortest path calculated by Floyd 
algorithm to approximate the geodesic distance. This method can effectively ex-
press data in high-dimensional space in low-dimensional space and reduce the 
loss of data information after dimension reduction. 

2.2. Isomap Algorithm Steps 

Since the Isomap algorithm is based on the multidimensional scaling analysis 
MDS algorithm to improve the dimensionality reduction, before introducing the 
Isomap algorithm, it is very necessary to introduce the MDS algorithm, and un-
derstand the MDS algorithm can also understand the Isomap algorithm. 

The MDS algorithm is a very traditional dimensionality reduction method. It 
is based on distance. The goal is to keep the distance between sample points in 
the original space and the distance between sample points in the low-dimensional 
space after dimension reduction equal [4]. Suppose there are m samples  

[ ]1 2, , , mx xX x=   in the original space, the distance matrix of these samples in 
the original space is m mD R ∗∈ , the i-th row and j-th column elements ijdist  are 
the distances from the sample ix  to jx , and the distance matrix D is expressed 
as 

11 1

1

m

m mm

dist dist

dis d
D

t ist
=
 
 
 
  



  
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                      (1) 

The goal of the MDS algorithm is to obtain the representation of the m sam-
ples in the low-dimensional space [ ]1 2, , , mz zZ z=  , where Z is the corres-
ponding sample point after the original sample point projection. MDS requires 
maintaining the Euclidean distance between sample points in the original space 
in low-dimensional space, so the Euclidean distance of any two samples in Z in 
low-dimensional space is equal to its distance in the original space, which is 

i j ijz z dist=−                            (2) 

Let the inner product matrix of the dimension-reduced samples be denoted by 
B and TB Z Z= , for each element in matrix B T

ij jib z z= , then matrix B can be 
expressed as 
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To square the two sides of the Equation (2), you can get 
2 T22 2 2i j j ii jj iij i jdist z z z z b b b+ − = + −=               (4) 

Let the sample Z after dimension reduction be centered, which is 1 0m
ii z

=
=∑ , 

Then the sum of the row and column of matrix B is 0, which is 1 0m
iji b

=
=∑ , 

1 0m
ijj b

=
=∑ . Then, add different types of summation symbols to the left and 

right sides of Equation (4), and then simplify and merge the similar items to ob-
tain 
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After the deformation of the formula (5), the formula (6), and the formula (7), 
it is obtained 

( )( )2
1

1 m
ii ijjb dist tr B
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Then, since the expression with the summation symbol is long and cumber-
some, use 2

.idist 、 2
.jdist  and 2

..dist  instead of using the simple symbol and sum, 
the following expression can be obtained 

2 2
. 1

1  m
i ijjdist dist
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j ijidist dist

m =
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After the Equation (4) is deformed, the Equation (8) and Equation (9) are 
substituted into the transformed equation, and the Equations (11)-(13) are subs-
tituted into the Equation (8) and Equation (9). After the substitution, the formu-
la obtained can be obtained 

( )2 2 2 2
. . ..

1      
2ij ij i jb dist dist dist dist= − − − +              (14) 

In this way, each element in the inner product matrix B can be calculated by 
the Euclidean distance matrix D, and each element in B is obtained. Then, the 
inner product matrix B is obtained. Since TB Z Z= , eigenvalue decomposition 
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is performed on matrix B, and BV Vλ=  is obtained, then 
T TB Z Z V Vλ= =                           (15) 

among them, 
1 0

0 m

λ
λ

λ

 
 =  
  



  



 ( 1 2 mλ λ λ≥ ≥ ≥ ), V is a matrix composed of 

eigenvectors corresponding to eigenvalues. 
In order to make the dimension reduction effective, only the distance after 

dimension reduction is as close as possible to the distance in the original space, 
instead of being strictly equal. Assuming that the dimension to be finally reduced 
is d-dimensional, then the largest d (from large to small) of the eigenvalues con-
stitutes a diagonal matrix dλ , then the final output of the MDS algorithm, that  

is, the lower dimension of each sample in the original space is 
1

T2
d dZ Vλ= , where  

T
dV  is the eigenvector matrix composed of eigenvectors corresponding to d ei-

genvalues [5]. 
The input to the MDS algorithm is the Euclidean distance matrix D, but the 

Euclidean distance is not applicable to the manifold. For example, for the 
two-dimensional manifold of the Earth in three-dimensional space, suppose that 
the distance between the North Pole and the South Pole is calculated in 
three-dimensional space, which is the length of the line connecting the two 
points. However, this calculation is wrong. Because it is impossible to make a 
hole through the Arctic to the South Pole, it is necessary to walk along the sur-
face of the earth. Of course, it is not acceptable to walk along any line, because 
there will be many different distances. Therefore, a new measure of the distance 
defined on the Earth’s surface (manifold) is needed. In order to correspond to 
the European space, here is a general definition of the straight-line distance. In 
the European space, “between two points, the shortest line segment”, the con-
cept of the line segment is generalized to become “the shortest curve between 
two points is the line segment”, this shortest curve is usually called “geodetic 
line” [6]. Therefore, the Isomap algorithm first obtains the geodesic distance 
matrix from the Euclidean distance matrix through the Floyd algorithm, and 
then puts the geodesic distance matrix into the MDS, thereby obtaining the final 
dimensionality reduction result. 

The specific process of converting the Euclidean distance matrix into the geo-
desic distance matrix is as follows: first, the Euclidean distance matrix is known 
(the distance between all sample points is calculated by Euclidean distance), and 
the number of neighborhoods k is set, for each the sample point, the distance 
between a sample point and the k sample points that are closer to the sample 
point is calculated by the Euclidean distance, and the distance from the rest of 
the sample point (the point farther away from the sample point) is set to infinity; 
in the second step, the above matrix is updated to the shortest path matrix by the 
Floyd algorithm. The geodesic distance between sample points can be approx-
imated by the shortest path, thus converting the Euclidean distance matrix to the 
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geodesic distance matrix. After the geodesic distance matrix is added, the geo-
desic distance matrix is placed into the MDS algorithm to obtain the final di-
mensionality reduction result. 

The Isomap algorithm flow is summarized as follows: 1) Calculate the Eucli-
dean distance between each sample point to obtain the Euclidean distance ma-
trix; 2) Set the number of neighborhoods. In the Euclidean distance matrix, ex-
cept for the neighborhood points, the remaining distances are set to infinity; 3) 
Update the above matrix to the shortest path matrix by Floyd algorithm; 4) In-
put the shortest path matrix into the MDS algorithm, and the result is the result 
of dimension reduction of Isomap algorithm. 

2.3. Isomap Advantages 

1) Capable of processing high dimensional data such as nonlinear manifolds; 
2) Global optimization; 
3) Whether the input space is highly folded, distorted, or curved, Isomap can 

still optimize the low-dimensional European representation globally; 
4) Isomap can guarantee a gradual recovery to the real dimension. 

2.4. Isomap Disadvantages 

1) It may be unstable and dependent on the topological space of data; 
2) When it is guaranteed to gradually recover to the geometry of the nonlinear 

manifold: when N is increased, the point provides a distance closer to the geo-
detic distance, but takes more calculation time; if N is small, geodesic the dis-
tance will be very imprecise. 

3. Isomap Algorithm vs. MDS Algorithm 

Both the Isomap algorithm and the MDS algorithm are dimension reduction al-
gorithms. MDS algorithm is a linear dimension reduction algorithm, which is 
suitable for European space. Isomap algorithm is a nonlinear dimensionality re-
duction algorithm, which is suitable for manifolds, that is, high dimensional space. 

The Isomap algorithm achieves the goal of dimensionality reduction by mod-
ifying the algorithm MDS originally applied to the European space. The purpose 
of the MDS algorithm is to keep the distance between the sample points in the 
original space and the distance between the sample points in the low-dimensional 
space after dimensionality reduction. The MDS is designed for the European 
space with Euclidean distance, but if the data is distributed in a manifold, the 
Euclidean distance is not applicable, only the geodesic distance can be used. 
Therefore, the Isomap algorithm replaces the input of the MDS algorithm (Euc-
lidean distance matrix) with the geodesic distance matrix obtained by the short-
est path algorithm, thus solving the problem that the Euclidean distance is not 
applicable to the manifold, which is the biggest difference between Isomap algo-
rithm and MDS algorithm. 

In order to more intuitively compare the Isomap algorithm with the MDS al-
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gorithm, an S-shaped surface as shown in Figure 1 is randomly generated. This 
surface is composed of 400 sample points. The Isomap algorithm (the number of 
neighbors is set to 15) and the MDS algorithm are used to reduce the dimension 
and reduce it to 2 dimensions. The dimensionality reduction results are shown 
in Figure 2 and Figure 3. As can be seen in Figure 1, the arrangement of the 400 
sample points is not very tight, that is, there is a distance between the sample 
point and the sample point, but it can be seen from the results obtained by MDS 
algorithm after dimensionality reduction (Figure 3) that the sample points and 
the sample points are very close together, and some even overlap, which is far 
from the distance between the real sample points. The result obtained from the 
dimensional reduction of the Isomap algorithm (Figure 2) shows that the dis-
tance between the sample points obtained after dimensionality reduction is sim-
ilar to the distance between the real sample points. Therefore, in the manifold, 
the Isomap algorithm has a better dimensionality reduction effect. 

The above Isomap algorithm sets the neighborhood number k to 15 to obtain 
the dimensionality reduction result of Figure 2. Now the neighborhood number 
k is set to 400. The obtained result is shown in Figure 4. It can be seen that the 
Isomap algorithm and the MDS algorithm are dimensionally reduced. The result 
is the same. The reason is that k here takes 400, and the sample points are 400 in 
total. That is to say, the distance between sample points in the Isomap algorithm 
is calculated by Euclidean distance, and the geodesic distance is not used. At this 
point, we can also see the biggest difference between the Isomap algorithm and 
the MDS algorithm. 

From the above experimental results, it can be seen that in the process of  
 

 
Figure 1. S surface. 
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Figure 2. Isomap algorithm dimensionality reduction results.  

 

 
Figure 3. The result of dimensionality reduction with MDS algorithm. 

 

 
Figure 4. Isomap algorithm (k 400) and MDS algorithm comparison. 
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dimensionality reduction using the Isomap algorithm, the selection of the 
neighborhood number k plays a key role. If the value of k is too small, the graph 
will not be connected; and if the value of k is too large, it will make the Isomap 
algorithm tend to the MDS algorithm. Therefore, the choice of the number of 
neighborhoods k is crucial. For the selection problem of k, an adaptive method 
was proposed later [7]. 

4. Conclusion 

The dimensionality disaster caused by high-dimensional data has made the di-
mensionality reduction widely concerned. The traditional dimensionality reduc-
tion algorithm (such as MDS algorithm) applicable to European space has not 
been applied to high-dimensional space. Manifold learning is a new dimensio-
nality reduction method, its main goal is to effectively discover the low-dimensional 
manifold structure inherent in high-dimensional data sets and give an effective 
low-dimensional representation. This paper mainly introduces the dimension 
reduction algorithm for manifolds, Isomap algorithm, which starts from the pers-
pective of maintaining the global structure. In addition, this paper also compares 
it with the MDS algorithm through experiments, from the experimental results 
in addition to the difficulty of selecting the neighborhood number k; it is proved 
that the dimensionality reduction is performed on the manifold. The Isomap al-
gorithm can maintain the topology of the high-dimensional data more than the 
MDS algorithm; that is, the dimensionality reduction effect is better. 
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