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ABSTRACT 
In this study, a finite element simulation of in-stent restenosis (ISR) is conducted to simu-
late the deployment and expansion of a stent in an occluded artery with a contact model and 
a mechanics-based growth model. A tissue growth model based on the multiplicative de-
composition of deformation is applied to investigate the growth of the plaque and artery wall 
upon the stent’s implantation. Due to the high stresses at the contact points between the stent 
struts and the tissue, further tissue injury or restenosis is observed. The simulation results 
show that after the stent deployment, the von Mises stress is significantly larger in the pla-
que compared to the artery wall, especially in the region that is in contact with the stent. 
However, the growth of the plaque and artery tends to even out the stress concentration 
over time. The tissue growth is found to be more significant near the inner wall than the outer 
layer. A 0.77 mm restenosis is predicted, which agrees with published clinical observations. 
The features of the artery growth are carefully analyzed, and the underlying mechanism is 
discussed. This study is the first attempt to apply finite element analysis to artery restenosis, 
which establishes a framework for predicting ISR’s occurrence and severity. The results also 
provide insights into understanding the underlying mechanism of in-stent restenosis. 

 

1. INTRODUCTION 
Cardiovascular disease (CVD) is the leading cause of mortality in the United States in men and 

women of every major ethnic group. It accounted for nearly 840,768 deaths in 2016 [1]. Coronary artery 
disease (CAD) is the most common type of heart disease. According to CDC, it claimed 365,914 lives [2] 
in 2017. Coronary stenting has become a major treatment for coronary stenosis, narrowing a blood vessel 
leading to restricted blood flow, since its first use in 1986. In the US, 1.2 million patients undergo stent 
implantations each year [3]. Unfortunately, restenosis, a recurrence of stenosis, often occurs after months 
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or years after the stent implantation. According to [4], nearly one-third of the patients who receive stent 
implantation require further intervention within six months to reopen stented arteries. 

Restenosis is characterized by neo-intima formation, resulting from proliferating medial vascular smooth 
muscle cells migrating to the intima, and the synthesis of matrix components, mainly collagen, with resul-
tant stenosis and constrictive tissue remodeling [5]. Numerous papers have been published to study the 
interaction between the stent and the artery. On the one hand, clinical studies are focused on the biological 
understanding and remedies of restenosis. It has been shown that the biological cause of restenosis could 
be smooth muscle cell production, endothelial cell abundance, fibroblast growth factors, and so on [6-8]. It 
is observed in in vivo experiments [9] that the vascular wall stress increased immediately after balloon an-
gioplasty. It was also reported that the restenosis rate is closely related to the design of the stents [10]. It is 
now well-accepted that artery growth is stress-modulated. Therefore, an in-depth study of the stress field 
in the artery after stent placement becomes necessary. Numerical simulation is undoubtedly a suitable ap-
proach to do so. 

In one of the early studies, finite element analysis was carried out to examine the maximum principal 
stress in the stenosed artery caused by two different types of stents [11]. The stent expansion process was 
not modeled in this simulation, which failed to capture the contacting shear force that an expanding stent 
could impose on an artery. A similar study was done in [3] with more realistic settings, and the von Mises 
stress produced by different stents were compared. Some studies were also more focused on fluids flow 
impacted by the stents [12-14], using fluid-structure interaction methods such as the immersed finite ele-
ment method [15-17]. 

A novel metal stent is modeled as rigid body in [18] where the simulation is mainly focused on the 
fluid dynamics in the thoracic aorta. A complete stenting system of balloon-stent-plaque-artery was mod-
eled, and the recoil ratio was carefully examined in [19]. An even more realistic stenting process, including 
the stent insertion and balloon inflation, was modeled in [20]. Except for the idealized models, patient- 
specific simulations were also reported. The deployment of Bx Velocity stent in the real human coronary 
artery was simulated in [21], and the influence of the stent thickness was investigated. The effects of six 
different stents on a patient-specific artery were compared in [22], showing that the numerical simulation 
can help select stent selection. 

All of the previous simulation studies stopped at the calculation of the stress field in the stented ar-
tery. In this study, we attempt to simulate the real growth of the artery under the impact of the stent’s 
deployment. There are various ways to model mechanical-induced growth; for example, the multi-cons- 
tituent open systems based on the theory of mixtures [23, 24]. Humphrey and Rajagopal [25] further de-
veloped the mixture theory by applying it to flow-induced arterial adaptions. Although it has some suc-
cessful applications, this approach is quite complicated in implementation and lacks generality. A recent 
two-dimensional continuum mathematical model of restenosis is proposed in [26] in which diffusion- 
reaction equations are used for modeling the mass balance between species in the arterial wall. 

Unlike the mathematical models cited previously, a mechanical growth model based on the multiplic-
ative decomposition of the deformation was developed [27, 28]. In this open system thermodynamics 
framework, an incompatible “growth” configuration was postulated between the material configuration 
and current configuration, resembling the idea of multiplicative decomposition in the context of finite 
plasticity, see [29]. This method has been applied in modeling multiple biological structures including ar-
terial wall [30], heart [31], skin [32], brain [33] etc. For relatively new review in this approach, see [34, 35]. 

Due to its realisms in presenting tissue growth and simplicity in implementation, the growth model 
based on the incompatible growth configuration and the decomposition of the deformation gradient into 
an elastic and growth part is adopted in our study to characterize the long term growth of the arterial wall 
after implanting the stent. The rest of the manuscript is organized as following: in Section 2, we briefly re-
view the mechanical growth model; in Section 3, the model setup, as well as the geometry, mesh, and 
boundary conditions are introduced; the results are presented in Section 4, followed by discussions; and 
finally conclusions are drawn in Section 5. 
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2. GROWTH MODEL 
In this section, we briefly review the mechanical growth model developed in [27, 28]. The model is 

described in the aspects of kinematics, equilibrium equations and constitutive equations. This growth 
model was successfully applied to the simulation of vessel tissue remodeling with residual stress [36]. 

2.1. Kinematics 

The key idea of the kinematics of the growth model is the multiplicative decomposition of deforma-
tion gradient F  into an elastic part eF  and a growth part gF . Based on the work in [29, 37], an inter-
mediate configuration gB  is introduced between the reference configuration 0B  and the current confi-
guration tB . As shown in Figure 1, χ  is the mapping from 0B  to tB , and the deformation gradient 
F  is defined in regular way as = ∂ ∂XF χ . We assume there exists a decomposition:  

e g= ⋅F F F                                         (1) 

Similarly, the right Cauchy-Green tensor C , velocity gradient l , Piola-Kirchhoff stress P  and the 
second Piola-Kirchhoff (PK2) stress S  can be decomposed into elastic and growth parts as well. Let 0ρ  
denote the density in the reference configuration, tρ  and gρ  denote its counterparts in the spatial con-
figuration and the intermediate configuration, respectively. Similarly, define the volume of a material par-
ticle in the reference, spatial and intermediate configurations as dV , dv  and gdV , respectively. In 
analogy to ( )detJ = F , define the Jacobians ( )e edetJ = F  and ( )g gdetJ = F . The transformations of the 
volumes become:  

g g e gd d , d d , d dv J V V J V v J V= = =                              (2) 

and  

e gJ J J=                                          (3) 

Based on the definitions, we have the following density transformations:  

g g t g e td d ,V v Jρ ρ ρ ρ= =                                   (4) 

2.2. Balance Laws 

The local form of the balance of mass balances the rate of change of the grown density 0ρ  with a 
mass source 0R :  

0 0Rρ =�                                           (5) 

 

 
Figure 1. The intermediate configuration and 
the decomposition of deformation gradient. 
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where the grown density is defined in the reference configuration and can be expressed as 0 t g gJ Jρ ρ ρ= = . 
For soft tissues, it is typically assumed that the density remains constant upon growth, which means  

g constρ =  and g 0ρ =� . So the mass source can be evaluated as 0 0 gtrR ρ= L , where gL  is the growth 
part of velocity gradient, and can be easily determined by the growth tensor gF . 

The growth process is assumed to be quasi-static, therefore the linear momentum balance is simply:  
div 0=σ                                          (6) 

2.3. Constitutive Equations 

An isotropic hyperelastic growth model based on the compressible Neo-Hookean model is used in 
this study. Denote the Helmholtz free energy as ( )g,φ C F , the PK2 stress and Kirchhoff stress can be eva-
luated as: 

1 Te
g e g

e
2 2 : − −∂∂Ψ ∂Ψ

= = = ⋅ ⋅
∂ ∂ ∂

CS F S F
C C C

                            (7a) 

T T
e e e= ⋅ ⋅ = ⋅ ⋅F S F F S Fτ                                 (7b) 

where eS  denotes the elastic part of S . The constitutive moduli   can be obtained by taking the de-
rivative of S  with respect to C , and its counterpart in the current configuration can be derived by a 
push-forward operation: 

( ) ( )
g

g g g g

g g

d , ,
2 2 2 :

d
θ

θ

∂  ∂ ∂∂
= = + ⊗ 

∂ ∂ ∂ ∂   FF

S F F S F F FS
C C F C

                    (8a) 

( ) ( )T T: := ⊗ ⊗F F F F                                 (8b) 

The detailed derivation of the hyperelastic stress tensor can be found in [38]. It can be seen imme-
diately from Equations (7) and (8) that both the stress and its moduli differ from their usual form only by 
an additional variable gF , which is determined independently by the governing equation of the growth. 
Again, this resembles the concept of finite growth resembles finite strain plasticity in the sense that the 
basic constitutive equations themselves remain unchanged, however, they are evaluated exclusively in 
terms of the kinematic quantities of the intermediate configuration. 

2.4. Growth Function 

To complete the stress and constitutive moduli, the growth deformation tensor gF  must be uniquely 
determined. It can be either isotropic or anisotropic. In this study, we adopt a simple isotropic form:  

g gθ=F I                                         (9) 

where gθ  denotes an internal variable which is often referred to as growth factor. The growth multiplier 
is 1 in the plain elastic deformation, greater than 1 in growth, and smaller than 1 in atrophy. 

To model the evolution of the growth multipliers, the rate of growth multipliers is usually specified 
as:  

( ) ( )g g g g ekθ θ φ= ⋅ F�                                   (10) 

where gφ  is a growth criteria function to enforce a threshold on the growth, gk  is a weighted function to 
prevent unlimited growth. gφ  and gk  are specified with the following forms in [29] with a detailed pa-
rameter study: 

( ) crit
g e etr Mφ = −M                                  (11a) 
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max g
g

max

1
1

k
γθ θ

τ θ
− 

=  − 
                                 (11b) 

where τ  and γ  are material constants that are used to control the speed of growth, eM  is the Mandel 
stress defined as e e e= ⋅M C S , and crit

eM  is the criteria of growth. A local Newton iteration can be used to 
solve for the growth factor. Applying backward Euler scheme to Equation (10), we have:  

( )g g g
n tθ θ θ= − ∆�                                    (12) 

The residual is evaluated as:  

( )( )max gn crit
g g e e

max

1 tr
1

R M t
γθ θ

θ θ
τ θ

− 
= − − − ∆ − 

M                       (13) 

To minimize the residual R, we linearize Equation (13) for tangent moduli K:  

g g
g g

g g g
1

kRK k t
φ

φ
θ θ θ

 ∂ ∂∂
= = − + ∆  ∂ ∂ ∂ 

                           (14) 

In the local Newton iteration, where the deformation tensor F  is known, update the stretch ratio gθ  
with g g R Kθ θ← − . The corresponding growth part of the deformation tensor gF  can be calculated 
using Equation (9). Consequently the elastic part eF  can be calculated using Equation (1). The elastic 
stress eS  and elastic constitutive moduli e  can then be obtained using Equations (7) and (8), respec-
tively. 

2.5. Baseline Hyperelasticity and Algorithm 

In this preliminary work, we use compressible Neo-Hookean as the baseline hyperelastic model since 
it has been validated in multiple applications [28-30, 37]. But there is no fundamental difficulty preventing 
other models being used. The compressible Neo-Hookean free energy is written as:  

[ ]2
e e e

1ln : 3 2ln
2 2

J Jλ µΨ = + − −C I                           (15) 

The explicit forms of the stress and constitutive moduli can be obtained based on Equation (15):    
[ ] 1

e e eln Jλ µ µ−= − +S C I                              (16a) 

( )e e eln Jλ µ µ= − +I Bτ                               (16b) 

and 

( )( )1 1 1 1 1 1
e e e e e e e eln Jµ λ λ− − − − − −= − ⊗ + ⊗ + ⊗C C C C C C                  (17a) 

( )( )e eln ik jl il jk ij klJµ λ δ δ δ δ λδ δ= − + +                       (17b) 

where the operation ⊗  and ⊗  between two second order tensors A  and B  are defined as  
( ) ik jlijkl

⊗ =A B A B  and ( ) il jkijkl⊗ =A B A B  respectively. For more details of the mathematics in con-  

tinuum mechanics, please refer to [39]. 
For completeness, we list the specific expressions of Equations (7) and (8) using compressible Neo- 

Hookean as the baseline hyperelasticity, the detailed derivation can be found in [37]: 

e2
e

1
θ

=S S                                     (18a) 

e=τ τ                                      (18b) 
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and   

g
e e e e e e e4 5

g g

1 4 1 1: :
2 2

k
t

Kθ θ
   = − ∆ + ⊗ +   
   
S C C S                      (19a) 

( ) ( )g T T
e e e e e e e e e e e

g

4 1 1: : : :
2 2

k
t

Kθ
    = + ∆ ⊗ + ⊗ + ⊗        

F F S C C S F F            (19b) 

Growth model can be easily implemented within the existing nonlinear finite element framework. In 
this research the updated Lagrangian formulation is used. Except for the modifications to the Kirchhoff 
stress and the corresponding constitutive moduli, all the additional computational work it introduces is 
the iterative solution of the stretch ratio gθ . Algorithm 1 lists the major part of the algorithm. 

 

 

3. COMPUTATIONAL SETUP 

3.1. Geometry 

Promus PREMIERTM is a relatively new coronary stent designed by Boston Scientific that has a higher 
strength and less restenosis rate compared to older generations. Here, a 16 mm length model is created 
with SOLIDWORKS (Dassault Systémes). It is constructed from a cylinder base with a diameter of 2.5 cm 
and crimped to a catheter with a diameter of 1.055 cm. The thickness of the strut is 0.081 mm. Figure 2(a) 
shows the planar sketch of the stent, the dimensions are approximated because the original design is not 
open for public access. Figure 2(b) shows the planar and 3D design of the stent in millimeter. There are 8 
struts in the circumferential direction and 13 layers of struts in the longitudinal direction. Notice that 
there are 4 connectors between two adjacent layers of struts proximally, while there are only 2 elsewhere. 
The connectors are arranged helically. 

The artery is modeled as a tube with a length of 20 mm, shown in Figure 3. The lumen diameter is 3 
mm and the wall thickness is 0.8 mm. The plaque is assumed to have a bell-like shape. It is 9 mm long and  

the smallest lumen diameter is 1.8 mm. Therefore, the stenosis rate (measured as blocked lumen

original lumen
1 D

D
− ) before  

stent operation is 40%. 
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Figure 2. Geometry of the stent. (a) Planar sketch of the stent; (b) 3D 
view of the stent. 

 

 
Figure 3. Geometry of the stenosed artery. 

3.2. Boundary Conditions 

In reality, the stent has to be crimped onto a catheter before inserted into the vessel. After the stent is 
in place, a folded balloon will be inflated to expand the stent. In this study, we are interested in the interac-
tion between the stent and the artery, besides the expansion of the effective part of the stent is rather uni-
form [3], therefore the balloon is neglected in our system and the motion of the stent is simplified as pre-
scribed radial displacement. 

The simulation is divided into 3 steps: stent crimping, stent expanding, and vessel growth. In the ini-
tial stress-free state, the diameter of the stent is larger than the lumen diameter of the stenosed artery. To 
simulate the crimping process, in the first step, the stent is compressed in the radial direction. The second 
step is to simulate the expansion of the stent and its interaction with the artery. The stent will expand free-
ly before it reaches the inner wall of the artery. Then the stent will push inner wall of the plaque, expand-
ing the lumen diameter to 3 mm; the last step is the main focus of this study, where we predict the growth 
of the plaque and artery using the growth model introduced in Section 2. 

Table 1 lists the boundary conditions on the stent and the artery in different steps. Because of the pe-
riodic nature of the system, only one half of the stent and artery are modeled and a cylindrical coordinate 
system is used. It is worth mentioning that the radial displacement in the crimping step is −0.431 mm, 
which means the stent is crimped onto a cylinder with a diameter of 1.8 mm rather than 1.055 mm. This 
makes no difference because the stent is in elastic phase during the crimping step, it will result with the 
same state when it gets in contact with the artery. 
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Table 1. Boundary conditions. 

 Stent Artery 

Crimping 

0.431 mmrU = −  

- 0Uθ =  on side planes 

0zU =  on reference point 

Expanding 

0.169 mmrU =  0Uθ =  

0Uθ =  on side planes  
0zU =  on reference point 0zU =  on top and bottom planes 

Growth - 

0rU =  on the outer wall 
0Uθ =  

0zU =  on top and bottom planes 

rU , Uθ , zU  denote the displacements in radial, circumferential, and axial directions respectively. rU  is 
measured based on the initial state, not the previous step. 

3.3. Materials and Mesh 

The major component in the stent is 316LN stainless steel. We model it as an elastoplastic material. 
The material constants are obtained from [40] as listed in Table 2. The material of the artery is described 
with the compressible Neo-Hookean as mentioned in Section 2. The material constants and growth para-
meters are obtained from [30], as listed in Table 3. The material property of the plaque is changing with 
its development. We assume it is in the beginning of the calcification stage, when it is much stiffer than the 
healthy artery. Since there is no experimental data for the growth parameters, we adopt them from [29]. 
This set of parameters has not been calibrated with clinical results; it only describes the growth qualita-
tively. The growth exponent and adaption speed are relatively high in order to accelerate the growth. The 
growth criterion is low, which makes growth more evident. Finally the maximum growth factor is set to 
bound the growth in a reasonable range. 

In this analysis, the displacement of the stent is prescribed, therefore it is modeled with shell element 
to simplify the computation. A total of 7261 elements are used. The artery is modeled with C3D8 element 
since the geometry is simple and material is compressible, 25,560 elements are used. 

4. RESULTS AND DISCUSSIONS 

4.1. Crimping 

The diameter of the outer surface of the stent is 2.662 mm in stress-free state. It should be crimped 
onto a 1.055 mm-diameter catheter before being inserted into the artery. However, since the crimping 
process is in the elastic range, we only need to crimp it to 1.8 mm, which is as wide as the stenosed artery, 
so that it does not penetrate the artery before the expansion begins. Figure 4 shows the von Mises stress in 
the artery-stent system at the end of the crimping process. At this point, the artery is stress-free, while the 
stent is not. From this point on, the stent and the artery are in contact. 

4.2. Expanding 

As the stent continues expanding, the plaque will be pushed to the artery wall. The goal of the opera-
tion is to recover the lumen diameter to 3 mm. Figure 5(a) and Figure 5(b) present the geometry of the 
artery-stent system and the von Mises stress in the artery at the end of the expansion process, respectively.  
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Table 2. Material constants of the stent. 

Young’s modulus (MPa) 1.93×105 

Poisson’s ratio 0.33 

Plastic behavior Yield stress (MPa) Plastic strain 

 304 0 

 484 0.0928 

 612 0.179 

 868 0.4 
 
Table 3. Material constants and growth parameters of the artery. 

 artery plaque 

µ  (MPa) 1.15385 11.5385 

λ  (MPa) 1.7307 17.307 

growth criterion (MPa) 0 0 

maximum growth factor 1.3 1.3 

growth exponent γ  5 5 
adaption speed 1 τ  0.5 0.5 

 

 
Figure 4. Von Mises stress in the artery-stent system at the end of crimping 
process. 

 
It can be seen that after the stent operation, the plaque is significantly compressed, and the inner wall of 
the vessel becomes flat. The von Mises stress in the healthy tissue is negligible compared to the plaque. The 
contact area can be clearly observed based on the stress field. Maximum stress in the plaque indicates the 
danger of the rupture. 

4.3. Growth 

The growth process starts after the expansion. In our model, the Mandel stress is the source of growth, 
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Figure 5. Geometry and Von Mises stress at the end of expansion process. 
(a) Geometry of the artery-stent system; (b) Von Mises stress in the artery. 

 
Figure 6 shows the Mandel stress in the artery during the growth process. As expected, the Mandel stress 
is gradually decreased because of the growth of the tissue. At the final state, the Mandel stress in the whole 
artery becomes 0, which indicates the end of the growth. Restenosis is also observed in this figure: the 
plaque “bounces back” towards the inner direction. The amount of the growth is shown in Figure 7. 
Starting from the initial state where 1.0θ = , the growth factor increases to the maximum. The growing 
area expands from the plaque to the vessel wall. The growth in the plaque is much faster than the healthy 
tissue. However, because the growth is bounded, the lumen diameter of the artery is still larger than the 
pre-procedure state in Figure 4. 

To visualize the restenosis quantitively, we look at the change of the lumen diameter from the pre- 
procedure state to the final stable state after restenosis as shown in Figure 8. At normalized time 2t = , 
the lumen diameter is pushed to 3 mm. Interestingly, the lumen diameter continues increasing for a short 
period of time, expanding to 3.2 mm before it starts to decrease. This is due to the compressible nature of 
the material: in the early stage of the growth, the stress generated from the compression is not large 
enough to hold the growth. After this point, the restenosis starts to develop, until the growth is terminated 
by the criterion, which is the so-called biological equilibrium. The final lumen diameter is 2.23 mm, 
therefore, the loss due to the restenosis is 0.77 mm and the net gain of the stent operation is 0.43 mm. The 
restenosis rate is 64.2%, which is quite severe but reasonable given the problem setup. 

To compare the growth at different locations in the artery, the growth factors at 5 points along the 
radial direction in the middle of the artery wall are sampled. It can be seen from Figure 9, the growth is 
weakened from the inner wall to the outer wall as expected. The relationship between the distance to the 
inner wall and the growth factor is highly nonlinear. The results show the change in the near-wall area is  
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Figure 6. Mandel stress in the artery during the growth: (a) The initial state; (b) t = 100; (c) t = 200; 
(d) t = 300. 
 

 
Figure 7. Growth factor in the artery during the growth: (a) The initial state; (b) t = 100; (c) t = 200; 
(d) t = 300. 
 
not as significant as in the middle. Moreover, the change of the growth factor over the normalized time is 
also highly nonlinear. This is likely due to the sensitivity of the growth model. Unfortunately only a li-
mited number of parameter studies are done in literature to perform a quantitate analysis. The qualitative 
findings are found to be consistent with clinical observations. 
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Figure 8. Lumen diameter. 

 

 
Figure 9. Growth factors along the radial direction: Point 1 to 5 are dis-
tributed uniformly from the inner wall to the outer wall. 

5. CONCLUSIONS 
Restenosis is a common side effect of the stent procedure which is caused by the tissue growth. Clini-
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cal study has been carried out for years but the mechanism of the growth is still not clear. Researchers in 
the field of computational mechanics have only been involved in the area of biological growth recently yet 
there are already plenty of outcomes. The stent procedure has been studied in many previous papers. 
However, in this study, we push the study forward by applying a stress-induced growth model to the 
post-procedure artery. The growth of the artery tissue is investigated. Qualitatively, it is found that the 
maximum growth factor is mostly concentrated in the area that is in contact with the stent, since it is 
where the stress is the highest. This implies that the goal of the design of the future stents should be fo-
cused on reducing stress concentration. Quantitively, the lumen diameter of the post-procedure artery is 
found to be re-narrowed from 3 mm to 2.23 mm, which is reasonable based on clinical observations. 

It can be seen from this study that finite element analysis is a promising tool to study some of the 
complicated biological growth that in vivo investigations are difficult to apply to. However, there are also 
unsolved problems: first, in order to characterize the growth more realistically, experiments must be done 
to find the proper growth parameters; second, the growth is assumed to be isotropic, which is not neces-
sarily true because we know the vessel is highly anisotropic. More sophisticated growth model may be re-
quired to capture the anisotropy. 
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