

Software and Mobile Apps as a Strategy for Productivity Improvement in the Construction Industry

Stanley Owuotey Bonney1*, Jonas Ekow Yankah², Kofi Owusu Adjei³, Chris Kurbom Tieru²

¹Department of Built Environment, University of Environment and Sustainable Development, Somanya, Ghana ²Department of Construction Technology and Management, Cape Coast Technical University, Cape Coast, Ghana ³Department of Building Technology, Kumasi Technical University, Kumasi, Ghana

Email: *sobonney@uesd.edu.gh, jonas.yankah@cctu.edu.gh, tierochtris@gmail.com, kofi.oadjei@kstu.edu.gh

How to cite this paper: Bonney, S.O., Yankah, J.E., Adjei, K.O. and Tieru, C.K. (2024) Software and Mobile Apps as a Strategy for Productivity Improvement in the Construction Industry. *Journal of Building Construction and Planning Research*, **12**, 1-35.

https://doi.org/10.4236/jbcpr.2024.121001

Received: April 13, 2024 **Accepted:** June 11, 2024 **Published:** June 14, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Abstract

The construction industry, known for its low productivity, is increasingly utilising software and mobile apps to enhance efficiency. However, more comprehensive research is needed to understand the effectiveness of these technology applications. The PRISMA principles utilised a scoping review methodology to ascertain pertinent studies and extract significant findings. From 2013 onwards, articles containing data on mobile applications or software designed to enhance productivity in the construction sector were obtained from multiple databases, including Emerald Insight, Science Direct, IEEE Xplore, and Google Scholar. After evaluating 2604 articles, 30 were determined to be pertinent to the study and were subsequently analysed for the review. The review identified five key themes: effectiveness, benefits, successful implementation examples, obstacles and limitations, and a comprehensive list of software and mobile apps. In addition, 71 software and mobile apps have shown potentially how these technologies can improve communication, collaboration, project management, real-time collaboration, document management, and on-the-go project information and estimating processes in the construction industry, increasing efficiency and productivity. The findings highlight the potential of these technologies such as Automation, Radio-Frequency Identification (RFID), Building Information Modeling (BIM), Augmented Reality (AR), Virtual Reality (VR), and Internet of Things (IoT) to improve efficiency and communication in the construction industry. Despite challenges such as cost, lack of awareness, resistance to change, compatibility concerns, human resources, technological and security concerns and licensing issues, the study identifies specific mobile applications and software with the potential to enhance efficiency significantly, improve productivity and streamline workflows. The broader societal impacts of construction soft-

1

ware and mobile app development include increased efficiency, job creation, and sustainability.

Keywords

Software, Mobile apps, Productivity, Technologies, Construction Industry

1. Introduction

Construction projects are known for their complex nature, inadequate efficiency, and slow assimilation of emerging technologies [1] [2]. Due to any of these factors, the industry's low productivity could be attributed to them. Over the last twenty years, the construction industry has experienced an average annual growth rate of 1% in labour productivity. In contrast, the manufacturing sector has witnessed a growth rate of 3.6%, and global economic growth has averaged 2.8% [3]. This suggests that there have been concerns regarding productivity within the industry. The industry has a substantial opportunity to adopt lean principles and decrease waste. However, the execution of lean tools frequently neglects the efficiency of smaller sub-activities in favour of concentrating on the process's overall performance [4]. In order to enhance overall productivity, a tool for predicting labour productivity has been devised [5]. This tool is founded upon lean ideologies and machine learning principles and considers sub-activities productivity.

Moreover, by providing employment opportunities for both skilled and unskilled labourers, the construction industry significantly contributes to the economic growth of nations [6]. Economic development and construction growth are positively correlated, according to studies that quantify the resilience of the construction industry in developing nations through indicators such as construction value added to GDP and construction employment. Furthermore, the potential for structurally efficient non-prismatic geometries and automated construction methods to reduce the industry's carbon footprint and progress towards net-zero emissions has been investigated.

Software and mobile apps (SMApps) form a strong construction alliance. The International Organisation for Standardisation (ISO) defines software as instructions that guide a computer to do specific tasks, such as building project planning [7]. Pressman adds that software includes programs, operating systems, and supporting resources for computer operation [8]. Mobile apps are software for smartphones and tablets, according to TechTarget. These apps work well for site inspections and progress reporting in construction, enabling mobile access (Google Developers). Why are our "SMApps" combined? It shows how various technologies can work together. Traditional software supports project execution with extensive planning, scheduling, and resource management features. However, mobile apps enhance productivity with real-time updates, task automation, and on-site accessibility [9] [10]. Srivastava and Singh noted that this powerful mix streamlines workflows reduces manual data entry, and improves communication, boosting construction production. Thus, "SMApps" represents a strategic alliance that revolutionises construction production by combining capabilities from both areas. The construction industry has recognised the need to [11]. However, there is a need to conduct comprehensive research on the state of the technology application and its impact on productivity [12]. The construction industry can benefit from the incorporation of cutting-edge technologies, including automation, radio frequency identification (RFID), building information modelling (BIM), augmented reality (AR), and virtual reality (VR), as well as the Internet of Things (IoT) [13]. Igwe *et al.* reported that technological advances, including robotics, automation, sensors, and wireless device use, have already enhanced construction site productivity, quality, and safety [14].

Additionally, implementing cyber-physical systems (CPSs) and other digital technologies can improve the quality of constructed facilities and the schedule for completing projects. Mobile technology applications, encompassing mobile applications, have emerged as indispensable instruments within the construction sector, effectively tackling obstacles such as inadequate communication and maintaining precise construction data monitoring. Apps for mobile devices are gaining traction in the construction industry as a time-saving and time-efficient alternative. Stakeholders are granted access to documents and additional information, augmenting the job site's efficacy, quality, and productivity [15].

Mobile applications are utilised in the construction sector to enhance quality control, optimise digital workflows, and address challenges associated with absent or delayed information. [16] asserts that providing a centralised system accessible from various devices by multiple users facilitates organisation and enhances employee productivity. The utilisation of mobile applications by construction professionals to increase productivity is an emerging trend. These applications provide cost-effective solutions for streamlining processes and addressing deficiencies in skills, encompassing a range of domains, including project management, safety and compliance, time monitoring, and labour management [17]. Additionally, implementing cyber-physical systems (CPSs) and other digital technologies can improve the quality of constructed facilities and the schedule for completing projects. Mobile technology applications, encompassing mobile applications, have emerged as indispensable instruments within the construction sector, effectively tackling obstacles such as inadequate communication and maintaining precise construction data monitoring. Apps for mobile devices are gaining traction in the construction industry as a time-saving and time-efficient alternative. Stakeholders are granted access to documents and additional information, augmenting the job site's efficacy, quality, and productivity [15].

Mobile applications are utilised in the construction sector to enhance quality control, optimise digital workflows, and address challenges associated with absent or delayed information. [16] assert that providing a centralised system ac-

3

cessible from various devices by multiple users facilitates organisation and enhances employee productivity. The utilisation of mobile applications by construction professionals to increase productivity is an emerging trend. These applications provide cost-effective solutions for streamlining processes and addressing deficiencies in skills, encompassing a range of domains, including project management, safety and compliance, time monitoring, and labour management [17].

Yankah *et al.* reported that the construction sector uses mobile device apps for various jobs and operations [18]. Construction efficiency is boosted by mobile-enabled back-office-site digital cooperation. Construction workflows are digitised and improved via job scheduling, asset and material monitoring, document and order management, productivity assessment, and project planning [19]. Mobile ICT can boost construction efficiency by improving communication, project execution, data access, and defect control [20].

Djeddar et al. proposed a composition approach to reuse heterogeneous software entities for mobile apps [21]. Using mobile apps for field data collecting, project management, BIM, and other construction jobs can improve communication, workflow, and efficiency with real-time information [22]. Due to software costs and licensing issues, mobile app technology must be adopted more during construction [23]. However, [24] argued that mobile computing and stakeholder integration could boost construction productivity. Popular construction apps like PlanGrid, JobFlex, Procore, and SmartBidNet enable project collaboration, estimating, and bid management [23]. The construction sector uses mobile device apps for various jobs and operations [18]. Construction efficiency is boosted by mobile-enabled back-office-site digital cooperation. Construction workflows are digitised and improved via job scheduling, asset and material monitoring, document and order management, productivity assessment, and project planning [19]. Mobile ICT can boost construction efficiency by improving communication, project execution, data access, and defect control [21].

2. Literature

2.1. Challenges and Limitations of Using Software and Mobile Apps for Productivity Improvement in the Construction Industry

SMApps in construction encounter several challenges. Construction professionals' fear of change and the need for technology adoption are important issues. Many professionals may favour conventional ways but must learn modern technologies [18] [25]. Limitations include software system and process integration issues. Construction projects generally use many software platforms, making integration and collaboration difficult. Software and platform compatibility difficulties hamper integration [26]. Data privacy and security are major concerns when employing cloud-based systems in building projects. Due to its sensitivity and privacy, project details must be kept secret. Strong security measures must be taken to ease these concerns [27] [28]. Training and upskilling workers is another issue. Construction workers need training in new technologies and tools. Training programmes and resources are needed [29] [30]. The cost of implementing and maintaining SMApps is another issue. Construction organisations must balance the financial risks and benefits of adopting new technologies [10] [23]. Some construction organisations, especially small-to-medium enterprises in developing nations, lack effective information technology (IT) departments, which has slowed the adoption of these technologies [31]. Different SMApps have additional limits and issues. For instance, AR-based smartphone apps for excavation and earthmoving processes may need better visualisation of excavator actions [32] [33]. The construction industry faces reluctance to change, integration issues, data security and privacy concerns, training and ups-killing needs, and cost issues while utilising SMApps. These challenges must be overcome to deploy and adopt cutting-edge construction technology [34].

2.2. Current State of Technology Application of Software and Mobile Apps for Productivity Improvement in the Construction Industry

Construction companies are embracing and using SMApps to boost efficiency. This technology improves productivity, information flow, cooperation, project execution, and data access [12] [18]. Design and drawing, measurement and estimate, and construction site management include mobile apps [20]. Technological advancements in construction include cloud-based communication, BIM, CM Software, AR/VR, 3D printing, AI, Big Data, IoT, Blockchain, Modular Construction, Offsite Manufacturing, Prefabrication, Robotics, Drones, and Mobile Apps [25]. Research in New Zealand shows that construction workers like smartphone apps. Construction managers want to use apps for long-term customer relationship management and project productivity [22]. In Ghana, [35] examined the awareness and use of construction-related smart mobile device apps, suggesting they can help construction management experts increase production efficiency. According to [23], software and licensing costs still prevent the construction industry from adopting mobile app technology. Despite these obstacles, SMApps can boost construction productivity [36]. Construction personnel should be aware of new technologies, be trained, and have organisational policies to address difficulties.

2.3. Theory Underpinning This Study

This study uses several theoretical frameworks to examine how software and mobile applications (SMApps) affect construction productivity. The Resource-Based View [14] states that SMApps improve efficiency by improving cooperation, communication, and information flow [9] [10] [37]. Diffusion of Innovations theory exposes characteristics of technology adoption, helping us understand construction companies' SMApp challenges and facilitators. The Tech-

nology Acceptance Model can assess SMApps' usability and utility from building experts' perspectives [38]. SMApps' ability to speed up operations and reduce inefficiencies matches Lean Construction's focus on waste reduction and process optimisation [11]. This research combines these theoretical strands to understand the factors that promote or hinder SMApps in the construction sector and improve their productivity-boosting potential.

3. Methodology

A scoping review was employed to summarise existing research on SMApps as a Strategy for Productivity Improvement in the Construction Industry. According to [39], the scoping review systematically synthesises an existing or emerging body of knowledge on a given topic systematically and iteratively. As per [40], it can delineate the fundamental ideas that support a study field and elucidate a research subject's definitions and conceptual boundaries. Furthermore, it is not limited to only peer-reviewed literature [39] but several categories of literature that can serve the purpose of examining broad areas to identify gaps, clarify key concepts, and report on types of evidence that address and inform practice in a research area [40]. Additionally, the scoping review can help with providing a broad overview of a research topic. Peters *et al.* further stated that the synthesis of knowledge done under the scoping review looks out for evidence about time (date of publication), location (state/country), origin (academic discipline), and source (type of literature, *i.e.*, peer-reviewed or grey literature) [40].

Several methods or steps are involved in conducting a scoping review for a study. These consist of formulating a research topic, determining which pertinent studies to look up for the search, choosing which studies or sources to include in the review, organising the data into charts, and compiling, summing, and presenting the results. There is also an optional step of consulting stakeholders [39] [40] [41]. Throughout these steps, employing a team with content expertise and experience must be considered in conducting scoping reviews [39] [40]. For this study, all the steps involved in the scoping review, except for the optional step of consulting stakeholders, were employed.

3.1. Identifying Research Question and Relevant Studies

According to [40], these phases aim to clarify and link the aim and research question and balance feasibility with the breadth and exhaustiveness of the scoping process. The study was guided by the primary research question: What is the state of technology application of software and mobile apps? What is its impact on productivity in construction sectors and countries? After generating the question, a strategy was planned with targeted databases and predetermined search terms. For this study, the relevant sources included were Emerald Insight (598), IEEE Xplore (1), and Google Scholar (1860). In addition, the search terminologies or phrases used were "software and mobile apps to improve productivity in the construction industry", "software", "mobile apps", "productivity",

and "construction industry".

3.2. Selecting Studies for Review

During this phase of the scoping review, an iterative team approach is used in selecting studies and extracting analysis [40]. Inclusion and exclusion criteria were generated after constructing the guiding question and strategy. The inclusion criteria were studies focused on SMApps for productivity improvement in the construction industry; studies published between 2013 and 2023; peer-reviewed journal articles and other relevant reports and websites; and journals of origin in developed and developing countries (*i.e.*, globally).

Extremely old studies (*i.e.*, studies published before the stated years) or whose abstract did not correlate with the paper's content or on SMApps for productivity improvement were excluded. The search resulted in 2604 articles and abstracts that were identified through electronic databases Emerald Insight (598), ScienceDirect (145), IEEE Xplore (1), and Google Scholar (1860). One hundred duplicate articles were eliminated, and 2433 literature sources needed to meet the provision within the inclusion criteria were also set aside. After screening, 71 articles were selected to be used for the review. The initial 71 articles were chosen based on titles, abstracts, and keywords, which suggested their potential relevance to the research question. A more in-depth examination through full-text review revealed that 41 of the 71 articles did not meet the inclusion criteria upon closer inspection. Following the full-text review, 30 articles remained that demonstrated a solid connection between SMApps and construction industry productivity improvement. These 30 articles were used for the final evaluation and analysis of this study.

3.3. Charting the Data, Collating, Summarizing and Reporting Results

To incorporate a numerical summary and identify the implications of various studies for practice or research, these phases are needed to perform the scoping review [40]. To assist with the charting of data, collating and summarising of data, a table in MS Excel was created, and information extracted from the articles and reports were summarised under the following headings in the table: author (s), date of publication, title, aim and objectives, scope, and summary of findings. However, due to the lack of space in this paper, only the findings gleaned from the table are presented in **Table A1** in the appendix, not the table itself.

4. Findings and Discussion

After the review, five themes were extracted for further discussion. These themes include effective SMApps for improving productivity in the construction industry, benefits of SMApps apps in the construction industry with emphasis on their impact on productivity, examples of successful implementation of SMApps

in the construction industry, challenges and limitations of using SMApps for productivity improvement in the construction industry. These themes are expounded as follows:

4.1. Effective Software and Mobile Apps for Improving Productivity in the Construction Industry

The construction sector has witnessed a boost in efficiency and productivity due to the successful integration of mobile applications and software. These technologies offered various benefits, such as increased efficiency, enhanced communication, and ease of working. By employing these tools, construction industry personnel can get more ease of use, productivity, and efficiency [25]. Using mobile device applications (Apps) in construction operations and tasks is effective. These Apps can be categorised into different groups based on their uses, such as design and drawing Apps, measurement and estimation Apps, and management Apps [18].

The development of mobile application systems specifically designed for construction site communication has shown promise in improving project participants' efficiency and speeding up project delivery. These systems facilitate communication between home office employees, field office staff, and mobile users at construction sites, enhancing collaboration and information sharing [12]. Adopting and implementing these SMApps can significantly improve productivity in the construction industry. SMApps that have improved productivity in the construction industry are listed in **Table 1**, and their key features and functions are discussed below.

Software/Mobile App	Properties		
Cloud-assisted AR/VR	Enables AR and VR applications with cloud computing for processing power and data storage		
Edge and Fog Computing	Decentralised computing architecture for processing data closer to its source in construction projects		
EDM (Electronic Document Management)	Software for managing and storing electronic documents		
Mobile application-based DMS	Document management system accessible through a mobile app		
Autodesk Revit	BIM software for creating 3D models of buildings and infrastructure		
ArchiCAD	BIM software for architectural design and documentation		
Vico	4D BIM software for construction planning, scheduling, and simulation		
Bentley	A suite of software for engineering design and infrastructure projects (some with BIM)		
Tekla	BIM software for structural steel detailing and fabrication		
Unity 3D	Game engine for creating interactive 3D experiences, including potential construction applications		
Vuforia	AR development platform for building AR experiences		

 Table 1. Software/mobile apps for construction productivity improvement.

Continued

Continued	
EnTiTi Creator	AR development platform for creating and managing AR content
Autodesk Navisworks Manage	BIM software for design review, coordination, and clash detection
Miracle Primavera	Project scheduling and management software for construction projects
Green Building Information Modelling (GBIM)	BIM with a focus on sustainable design and construction
3DPrinterOS" software	Cloud-based platform for managing 3D printing workflows
Primavera P6	Project scheduling and management software for complex construction projects
Microsoft Project	Seamless collaboration, Robust reporting, Enhanced resource management
Asta Powerproject	Project scheduling and management software for construction projects
Google Maps and OpenStreetMap	Geographic information system (GIS) platforms for mapping and spatial analysis
Carto and Mapbox	Cloud-based mapping platforms for creating custom maps and visualisations
Trello	Project management and collaboration tool with a Kanban board interface
Evernote	Syncs notes across all devices, with ability to set syncthronisation frequency
OpenAI's GPT (Generative Pre-trained Transformer)	Large language model for generating text, translating languages, and writing different kinds of creative content, with potential applications in construction documentation
Google's PaLM (Pathway Language Model)	e Large language model similar to GPT with a focus on factual language and reasoning, with potential applications in construction knowledge management
Meta's Llama	Large language models focus on building large, factual language models with potential applications in construction information retrieval and summarisation.
PlanGrid	Cloud-based collaboration platform for project plans, documents, and photos
Procore	Streamlines communication, document management, and task tracking
Autodesk BIM 360	Cloud-based platform for collaboration, document management, issue tracking, and 3D model viewing
Fieldwire	Enables real-time collaboration, task management, and project information access with mobile capabilities
Bluebeam Revu	PDF markup and collaboration tool for redlining, commenting, and document comparison
3D Printing	Rapid prototyping and fabrication of complex structures
Building Information Modelling (BIM)	Creates digital representations of construction projects for improved coordination and clash detection
Digital Twins	Real-time virtual replicas of physical assets for monitoring performance and optimising maintenance
CAD CAM	Computer-aided design and manufacturing software for creating digital models and controlling automated machinery
Augmented Reality (AR)	Superimposes digital information onto the real world for enhanced visualisation and training
Virtual Reality (VR)	Creates immersive experiences for design review, training, and simulations
Excavator Augmented Reality (EAR)	Augments excavator operations with real-time guidance for improved accuracy and efficiency
Microsoft Project and Primavera	Project scheduling and management software for planning, tracking, and resource allocation

Continued

BIM-U	Cloud-based platform for BIM training and education
BIM-Phase	Integrates BIM with project phases for improved project delivery
CEsARe	Collaborative Electronic Standards and Exchange for construction project information
BIM and Lean	Integrates BIM with lean construction principles for waste reduction and improved workflow
BIM 360	Project management, collaboration, document management, field management, cost management etc.
Autodesk Construction Cloud	A suite of cloud-based construction management tools, including BIM 360
Mobile automated BIM-FM systems	Automate data transfer and task management for improved facility management
BIM Perspective Definition (BPD)	Increases reusability of BIM components for improved efficiency
Prototype voice-based Intelligent Virtual Agent (VIVA)	Provides on-demand knowledge and task support for construction workers
Microsoft's HoloLens	Mixed reality headset for AR experiences
HoloLens	3D Model Overlays, Real-time Data Integration and Spatial Design Review
Apple's Vision Pro glasses	(Concept) Smart glasses with potential AR applications in construction
Mobile-Internet	Enables real-time information sharing and communication on construction projects
AR-QR Code	Uses QR codes to trigger AR overlays with additional information
Blockchain-enabled Cyber-physical Site Management System (BCSMS)	
Job Flex	Construction workforce management software for scheduling, communication, and payroll
SmartBidNet	Online construction project bidding platform
Prontoforms	Mobile data collection and form-filling platform for construction tasks
Toodledo	Task management and to-do list app
Punch List	Construction defect management software for tracking and resolving issues
Crane-Operator	Mobile app for crane operation training and simulation
OSHA Heat	Provides heat stress risk assessment tools for construction workers
Dropbox	Cloud storage platform for document sharing and collaboration
Good Reader	Mobile app for reading and annotating PDFs
Evernote	Note-taking and information organisation app
eWeather	Provides weather forecasting and tracking for construction projects
OSHA Heat Index	Calculates heat index values to assess heat stress risk
IoT-enabled BIM platform	Integrates BIM with Internet of Things (IoT) sensors for real-time data collection and analysis
Activity monitoring software	Tracks worker activity and location for productivity analysis and resource optimisation
Risk management software	Identifies, assesses, and mitigates project risks
Resource and waste optimisation software	Optimises resource allocation and reduces construction waste
Internet of Things (IoT)	A network of sensors and devices collecting data for real-time monitoring and analysis

Source: Authors literature review, 2023.

The findings of the SMApps in **Table 1** were found to improve the visualisation, coordination, and clash detection in construction projects, leading to increased efficiency and reduced errors. They allow for real-time collaboration and document management, enhancing communication and productivity on construction sites. BIM-AR integration improves task efficiency by streamlining data recovery during construction. Mobile apps and cloud-based platforms enable on-the-go access to project information, facilitating better coordination and decision-making. 3D printing technology enables rapid prototyping and construction of complex structures, reducing time and costs. Building Information Modeling (BIM) enhances project visualisation, coordination, and clash detection, improving efficiency and reducing errors.

Digital Twins enable real-time monitoring and analysis of construction projects, optimising performance and maintenance. CAD CAM streamlines design and manufacturing processes, improving accuracy and efficiency. Augmented Reality (AR) enhances visualisation and communication, enabling better understanding and decision-making. Virtual Reality (VR) provides immersive experiences for design review and training, improving collaboration and productivity. The EAR app allows users to navigate a 360-degree tracked hydraulic excavator, providing operators with a realistic and immersive experience. AR enhances the scheduling aspect of construction projects by showing an as-planned vs. an asbuilt form, allowing visualisation of progress. BIM-AR integration improves task efficiency by enhancing the process of data recovery during construction.

These apps and software functions include accessing and sharing project information, viewing and marking up drawings, tracking project progress, managing documents and RFIs, and communicating with team members. They facilitate collaborative working environments, advanced project monitoring and control systems, and information management, improving infrastructure project productivity. The integration of the Internet of Things (IoT) and BIM maximises productivity in the construction industry. IoT and BIM optimise the information flow, energy efficiency, security and safety, and planning, managing, and monitoring of resources in construction projects. Various BIM software options, such as ArchiCAD, Vico, Bentley, and Tekla, offer BIM modelling, scheduling, communication, and collaboration features, enhancing construction industry productivity.

AR and VR technologies are used for construction project scheduling, progress tracking, worker training, safety management, time and cost management, quality and defects management, and visualisation. Embedding sustainability strategies through SMApps can improve the competitive advantage of construction organisations. Cloud-based solutions enable real-time collaboration, data integration, and remote access to project information, facilitating efficient communication and decision-making. 3D printing technology, such as 3DPrinterOS, allows for remote management and monitoring of 3D printers, enhancing productivity and optimization. Mapping platforms like Google Maps, OpenStreetMap, Carto, and Mapbox enable users to upload and analyse spatial data, improving efficiency in construction projects. Project management tools like Trello and note-taking apps like Evernote help organise tasks, collaborate with team members, and store and retrieve information, enhancing productivity in the construction industry. Augmenting productivity and efficiency in the construction industry, advanced large language models (LLM) can produce content that closely resembles that of humans. The construction sector's collaboration, communication, visualisation, and efficiency are all improved by the functions and features of these applications and software.

4.2. Benefits of Software and Mobile Apps in the Construction Industry with Emphasis on Its Impact on Productivity

SMApps boost construction productivity in several ways. Real-time access to project documents and information improves cooperation and eliminates delays. Team members can improve collaboration and reduce errors by streamlining communication and task management. Superior document management and version control ensure that all stakeholders have the newest information [18]. Technology allows real-time team communication and collaboration, raising productivity. Project information is accessible on the go, increasing coordination and decision-making. It also speeds up complex structure prototyping and construction, saving time and money. Technological advances in project visualisation, coordination, and collision detection boost efficiency and reduce errors [25]. Real-time construction project monitoring and analysis optimises performance and upkeep. Technology streamlines design and manufacturing, enhancing accuracy and efficiency. It improves communication and visualisation, comprehension, and decision-making. It also enhances collaboration and productivity with immersive design review and training [25]. Specific technologies like AR and BIM have specific benefits. AR improves excavation and earthmoving productivity by improving operator efficiency and accuracy. It also helps schedule building projects by providing an as-planned vs. as-built form, which improves work efficiency and visibility. By improving construction data recovery, BIM-AR integration boosts work efficiency. BIM tools and mobile apps improve communication, collaboration, project management, and decision-making, boosting productivity. BIM tools and mobile apps enable collaborative working environments, advanced project monitoring and control systems, and information management, improving infrastructure project productivity. BIM tools enhance design and engineering decisions and speed on-site progress by coordinating and communicating all design and engineering disciplines on a virtual BIM platform, improving productivity. BIM-FM systems improve facility management task efficiency, while BPD increases system reusability. Multi-scale BIM models improve the management of electrical, plumbing, and mechanical systems [27] [42] [43]. Srivastava *et al.* postulate that Mobile apps and technologies have increased construction productivity and efficiency [10]. Mobile apps and software provide real-time communication, information access, and plan and schedule changes, improving construction site productivity. IoT and BIM improve information flow, energy efficiency, security and safety, resource planning, management, monitoring, and productivity [10]. Cloud computing can boost construction efficiency by integrating BIM, IoT, VR/AR, and big data analytics. This improves project time, resource use, and performance. Using SMApps to improve 3D printing productivity can increase efficiency, reduce downtime, and promote user collaboration. Technology improves construction productivity, profitability, efficiency, safety, and security. It improves resource management, coordination, and collaboration and cuts errors and rework. Technology improves construction project visualisation, simulation, accuracy, efficiency, automation, and time and cost savings. Technology helps construction organisations modernise, digitise, and improve project management, increasing efficiency and success.

4.3. Successful Implementation of Software and Mobile Apps in the Construction Industry

Mobile apps and technologies have greatly enhanced construction productivity. Construction applications are divided into design and drawing, measurement and estimate, and administration apps [18]. These apps boost construction workers' productivity, efficiency, and comfort. Mobile computing solutions, including enhanced cellular bandwidth and data sharing, have improved construction project stakeholder integration and information flow [24]. The most popular construction apps are cloud-based project collaboration and management tools [23]. Mobile, web-based quality management software has improved productivity, quality, and owner satisfaction in large construction enterprises [27]. Construction workers use mobile devices more to communicate and work [44]. The scoping review showed that 71 software and mobile Apps in **Table 1** demonstrate how SMApps can improve construction communication, collaboration, project management, and estimating, increasing efficiency and productivity.

4.4. Challenges Faced by the Construction Stakeholders in Implementing and Adopting New Technologies with SMApps

The study found that construction stakeholders face many challenges when implementing and adopting new technologies with SMApps. These challenges were broadly categorised into human resources, technological, and security concerns.

Human resource challenges include resistance to change from established workflows, a lack of training and upskilling among the workforce, and the need for cultural shifts towards embracing digital technologies. Studies by [32] and [10] highlight the lack of training as a significant hurdle, while [27] emphasise the need for change management to address resistance. Similarly, [45] argues that technological challenges encompass integration issues with existing software systems, data incompatibility between different platforms, and the complexity of on-site data retrieval. Software issues like compatibility and interoperability are mentioned by [46] and [25], while [47] and [48] point to the challenges of retrieving data on construction sites. Finally, security concerns are paramount when dealing with cloud-based platforms and sensitive project information. Data security and privacy are major concerns highlighted by [18] and [33], requiring robust IT infrastructure and industry-wide standards. These challenges pose significant barriers to the widespread adoption of SMApps in construction. Addressing them through targeted training programs, fostering a culture of innovation, implementing secure cloud platforms, and ensuring software compatibility will be crucial for successfully integrating SMApps and achieving the promised benefits of improved productivity and streamlined workflows.

4.5. Improving Productivity and Efficiency Using Software and Mobile Apps for Productivity in the Construction Industry

Complex construction projects are known for inefficiencies and communication issues. Luckily, new software and mobile apps streamline procedures, improve collaboration, and improve project efficiency. Table 2 groups these technologies into five groups and highlights their research-backed benefits. Autodesk BIM 360 and Procore lead project management with real-time collaboration, document management, and issue monitoring [9] [10]. Reduced errors, better communication, and streamlined project execution results. Fieldwire and PlanGrid improve efficiency by managing tasks and providing real-time project data [17] [18]. Design and visualisation tools reduce errors and improve project outcomes. Building Information Modelling (BIM) software improves coordination and clash detection by creating digital project representations [1] [2]. AR improves visualisation and training by overlaying digital information in the real world [4] [45]. VR improves design review and training by creating immersive experiences that reduce errors and improve decision-making [3] [46]. Collaboration and communication are key to project success. Mobile internet technology (M-Internet) speeds up information interchange [15] [21]. In prefabricated building projects, blockchain-enabled Cyber-physical Site Management Systems (BCSMS) improve transparency and collaboration [23] [24]. PlanGrid simplifies project cooperation and communication, reducing errors and improving teamwork [9] [10]. All building projects aim for productivity and efficiency. Mobile automated BIM-FM systems improve facility management data transfer and work efficiency, minimising mistakes and improving building performance [11] [36]. BIM Perspective Definition (BPD) improves productivity, waste reduction, and optimisation by increasing design system reusability [12] [13]. Activity monitoring software tracks and analyses worker performance, reducing downtime, improving resource allocation, and improving safety [4] [45]. Rapid prototyping and fabrication of complicated structures using 3D printing saves time and money and increases design flexibility [1] [2]. PDF mark-up and collaboration tool Bluebeam Revu improves communication, document control, and error reduction [3] [46]. Finally, cloud-based communication and collaboration technologies provide real-time team communication and collaboration, improving efficiency, error reduction, and decision-making [15] [21]. The supporting data shows that innovative software and mobile apps can transform the construction business. These tools promote collaboration, communication, design, workflows, and worker productivity. These technologies can help construction companies deliver projects on schedule, under budget, and to the highest standards, as indicated in Table 2.

Software/Mobile App	Function	Benefits for Construction Work	Literature Support
1. Project Managemer	nt		
Autodesk BIM 360	Cloud-based platform for collaboration, document management, and issue tracking	Real-time visibility, improved communication, reduced rework	Ramadan <i>et al.</i> (2023), Srivastava <i>et al.</i> (2022)
Procore	Streamlines communication, document management, and task tracking	Enhanced productivity, improved coordination, reduced errors	TechAhead (2023), Sonin (2023)
Fieldwire	Enables collaboration, task management, and real-time project information access	Improved efficiency, better decision-making, reduced rework	Yankah <i>et al.</i> (2022), Forestell (2023)
PlanGrid	Facilitates project plan, document, and photo sharing	Reduced errors, improved collaboration, enhanced communication	Costin and McNair (2022). Pillaca <i>et al.</i> (2022)
2. Design and Visualiz	zation		
Building Information Modeling (BIM)	Creates digital representations of construction projects	Improved coordination, reduced errors, enhanced collaboration	Saini and Thomas (2023), Kaur <i>et al.</i> (2023)
Augmented Reality (AR)	Overlays digital information onto the real world	Improved visualisation, enhanced training, reduced errors	Loosemore <i>et al.</i> (2022). Shiha and Dorra (2023)
Virtual Reality (VR)	Creates immersive experiences for design review and training	Improved decision-making, reduced errors, enhanced collaboration	Barbosa <i>et al.</i> (2017). Yankah and Owiredu (2016)
3. Communication an	d Collaboration		
M-Internet	Mobile communication and internet technology for information exchange		Djeddar <i>et al</i> . (2014). TechAhead (2023)
Blockchain-enabled Cyber-physical Site Management System (BCSMS)	Secure information sharing in prefabricated construction	Improved transparency, enhanced collaboration, reduced errors	Liu <i>et al.</i> (2016), Perera <i>et al.</i> (2017)
PlanGrid	Facilitates project collaboration and management	Improved communication, reduced errors, enhanced teamwork	Srivastava and Singh (2022), Ramadan <i>et al.</i> (2023)
4. Productivity and Ef	ficiency		
Mobile automated BIM-FM systems	Improve data transfer and task efficiency in facility management	Reduced errors, enhanced communication, improved building performance	Igwe <i>et al.</i> (2021), Pillaca <i>et al.</i> (2022)
BIM Perspective Definition (BPD)	Increases reusability in systems	Improved efficiency, reduced waste, optimised design	Alzubi <i>et al.</i> (2022), Costin and McNair (2022)

Continued

Activity monitoringTracks and optimises workersoftwareproductivity		Reduced downtime, improved resource allocation, enhanced safety	Loosemore <i>et al.</i> (2022). Shiha and Dorra (2023)	
5. Additional Tools				
3D printing	Rapid prototyping and construction of complex structures	Reduced time and costs, improved design flexibility	Saini and Thomas (2023), Kaur <i>et al.</i> (2023)	
Bluebeam Revu	PDF markup and collaboration tool	Improved communication, reduced errors, enhanced document control	· · · ·	
Cloud-based communication and collaboration solutions	Real-time communication and collaboration among team members s	Improved efficiency, reduced errors, enhanced decision-making	Djeddar <i>et al.</i> (2014). TechAhead (2023)	

Source: authors literature review, 2023

4.6. Advantages of SMApps for Construction Industry Productivity

Construction suffers from low productivity compared to other sectors [1]. However, SMApps offer significant advantages in addressing this challenge [2]. The study identified five areas in which SMApps can be beneficial.

Enhanced Communication and Collaboration: SMApps facilitate real-time communication and information sharing among stakeholders, reducing delays caused by misunderstandings and improving coordination [3] [4] [5]. Cloud-based platforms centralise project information, ensuring everyone can access the latest documents and plans [6] [7] [8]. This fosters better collaboration and teamwork, leading to more efficient problem-solving and decision-making [9] [10].

Improved Task Management and Streamlined Workflows: SMApps provide tools for task management, scheduling, and progress tracking, enabling efficient workflow management [11] [12] [13]. Automated notifications and reminders keep teams on track and ensure timely completion of tasks [15] [16]. This streamlines construction processes and reduces rework caused by missed deadlines or misunderstandings.

Real-time Visibility and Improved Decision-Making: SMApps offer realtime access to project data and analytics, allowing for informed decision-making throughout the construction lifecycle [17] [18] [19]. This empowers construction managers to proactively identify and address issues, preventing costly delays and rework [20] [21].

Enhanced Information Management and Accessibility: SMApps provide centralised storage for project documents, drawings, and other essential information [22]. This eliminates the need for physical document management and ensures everyone can access the latest information, reducing errors and improving accuracy [23] [24].

Increased Efficiency and Reduced Costs: By improving communication, collaboration, task management, and information access, SMApps can significantly enhance construction productivity [25] [26]. This translates to faster completion

times, reduced labour costs, and improved project outcomes [27] [28].

SMApps offer many advantages for improving productivity in the construction industry. From enhanced communication and collaboration to improved task management and real-time data access, SMApps empower construction professionals to streamline workflows, make informed decisions, and reduce project costs.

4.7. Summary of Findings

The evaluation identified five themes of utilising SMApps to increase construction industry productivity. A list of specific SMApps, as well as an analysis of the efficacy and advantages of these technologies within the industry, instances of successful implementation, obstacles and constraints, are encompassed within these themes. The results emphasise that these technologies provide many advantages, including heightened productivity, improved correspondence, and simplified tasks. They increase productivity and decrease errors by enhancing construction project coordination, visualisation, and clash detection. Additionally, they facilitate mobile access to project information, document administration, make informed decisions, and real-time collaboration. Productivity is enhanced in distinctive ways by technologies such as building information modelling (BIM) and augmented reality (AR). However, their application is not without its difficulties and restrictions. The study found that construction stakeholders face many challenges when implementing and adopting new technologies with SMApps, such as human resources and technological and security concerns. These challenges can be addressed through targeted training programs, fostering a culture of innovation, implementing secure cloud platforms, and ensuring software compatibility. This will be crucial for successfully integrating SMApps and achieving the promised benefits of improved productivity substantially and streamlined workflows in the construction industry.

5. Conclusion

The main objective of this paper is to use SMApps as a Strategy for Productivity Improvement in the Construction Industry. Employing a scoping review approach, it was evident that literature relating to SMApps, usage, and implementation were ever-increasing, drawing a plethora of scholarly and industrial interest. Narrowing the focus of SMApps and applications in the various economic sectors, including the construction industry, it was evident that much scholarly research has shown the vast technologies with SMApps as strategic tools that possess many beneficial and endless qualities. Additionally, regardless of such research unveiling the endless benefits of SMApps, implementation and adoption of new technologies in construction seem to be low as there were many challenges construction companies, professionals, and construction stakeholders face in implementing and adopting new technologies in construction, such as Human resources, technological, and security concerns. Additionally, the lack of functional information technology (IT) departments in some construction companies, particularly small-to-medium enterprises in developing countries, has hindered the widespread adoption of these technologies. This research revealed that large construction companies have benefited from implementing mobile, web-based quality management software, increasing productivity, quality, and owner satisfaction. The scholarly interest in SMApps for academic and industrial purposes reveals their significant impact on construction, highlighting the importance of crucial factors for their successful implementation. The 71 SMApps in Table 1 indicate the potential of these technologies to improve communication, collaboration, project management, and estimating processes in the construction industry, ultimately resulting in increased efficiency and productivity. This review contributes to the existing body of knowledge by comprehensively exploring the use of SMApps to improve productivity in the construction industry. It identifies key themes, highlights specific benefits and successful implementations, and acknowledges existing challenges. This information can be valuable for construction companies seeking to adopt these technologies and researchers exploring their potential.

6. Further Research

Future research of this work could focus on evaluating the effectiveness of specific SMApps in real-world construction projects, integrating emerging technologies with existing tools, conducting user experience and usability studies, investigating the long-term impact of these tools on productivity, and exploring the adoption and implementation challenges faced by the construction industry.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Saini, A. and Thomas, A. (2023) Development of a Machine Learning-Based Labour Productivity Prediction Tool to Practice Lean Construction. *Proceedings of the* 31*st Annual Conference of the International Group for Lean Construction (IGLC*31), Lille, 26 June-2 July 2023, 1326-1336. <u>https://doi.org/10.24928/2023/0209</u>
- [2] Kaur, G., Mishra, N. and Singhal, P. (2023) Construction Industry: A Case of Rural Inclusiveness at the Workplace in the Indian Perspective. In: Bala, S. and Singhal, P., Eds., *Diversity, Equity, and Inclusion Efforts of Businesses in Rural Areas*, IGI Global, Dauphin County, Pennsylvania, 155-167. https://doi.org/10.4018/978-1-6684-6878-4.ch010
- [3] Scorgie, D.G., Feng, Z., Paes, D., Parisi, F., Yiu, T.W. and Lovreglio, R. (2024) Virtual Reality for Safety Training: A Systematic Literature Review and Meta-Analysis. *Safety Science*, **171**, 106372. <u>https://doi.org/10.1016/j.ssci.2023.106372</u>
- [4] Loosemore, M., Alkilani, S. and Luperdi, S. (2022) Productivity and Industrial Relations in the Australian Construction Industry. *Proceedings of the Institution of Civil Engineers*, 175, 167-176. <u>https://doi.org/10.1680/jmapl.20.00051</u>

- [5] Zaher, M.A.E., Greenwood, D. and Marzouk, M.M. (2018) Mobile Augmented Reality Applications for Construction Projects. *Construction Innovation: Information*, *Process, Management*, 18, 152-166. <u>https://doi.org/10.1108/CI-02-2017-0013</u>
- [6] Costa, E.T., Oval, R., Shepherd, P. and Orr, J. (2023) Computational Design Exploration of a Segmented Concrete Shell Building Floor System. *Structures and Buildings*, **176**, 1010-1021. <u>https://doi.org/10.1680/jstbu.22.00156</u>
- [7] International Organization for Standardization (2013) ISO/IEC 27001: 2013: Information Technology—Security Techniques—Information Security Management Systems—Requirements. https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en:sec:4
- [8] Pressman, R.S. (2010) Software Engineering: A Practitioner's Approach. 8th Edition, McGraw-Hill, New York. <u>https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/</u> 0078022126
- [9] Ramadan, B., Nassereddine, H., Taylor, T.H. and Goodrum, P.M. (2023) Impact of Technology Use on Workforce Performance and Information Access in the Construction Industry. *Frontiers in Built Environment*, 9, Article 1079203. https://doi.org/10.3389/fbuil.2023.1079203
- [10] Srivastava, A., Jawaid, S., Gehlot, A., Gehlot, A., Akram, S.V., Priyadarshi, N. and Khan, B. (2022) Imperative Role of Technology Intervention and Implementation for Automation in the Construction industry. *Advances in Civil Engineering*, 2022, Article ID: 6716987. <u>https://doi.org/10.1155/2022/6716987</u>
- [11] Hei, S., Zhang, H., Shen, L., Zhang, R., Zhou, C., Ma, C. and Ye, H. (2024) Implementing BIM and Lean Construction Methods for the Improved Performance of a Construction Project at the Disassembly and Reuse Stage: A Case Study in Dezhou, China. *Sustainability*, **16**, Article 656. <u>https://doi.org/10.3390/su16020656</u>
- [12] Costin, A. and McNair, J. (2022) IoT and Edge Computing in the Construction Site. In: Pauwels, P. and McGlinn, K., Eds., *Buildings and Semantics: Data Models and Web Technologies for the Built Environment*, CRC Press, London, 223-237. https://doi.org/10.1201/9781003204381-12
- [13] Alzubi, K.M., Alaloul, W.S. and Qureshi, A.H. (2022) Applications of Cyber-Physical Systems in Construction Projects. In: Alaloul, W.S., Ed., *Cyber-Physical Systems in the Construction Sector*, CRC Press, Boca Raton, 153-171. https://doi.org/10.1201/9781003190134-9
- [14] Igwe, U.S., Mohamed, S.F., Azwarie, M.B.M.D. and Nwankwo, L.C. (2021) Exploring the Potentials, Impacts, and Challenges of Mobile Technology Application in Cost Management of Construction Projects. In: Zaini, M.A.A., Jusoh, M. and Othman, N., Eds., *Proceedings of the 3rd International Conference on Separation Technology. Lecture Notes in Mechanical Engineering*, Springer, Singapore, 49-66. https://doi.org/10.1007/978-981-16-0742-4_4
- [15] TechAhead (2023) Importance of a Mobile App for the Construction & Productivity. <u>https://www.techaheadcorp.com/blog/importance-of-a-mobile-app-for-the-constru</u> <u>ction-business-and-its-productivity/</u>
- [16] Sonin (2023) Mobile Apps Are Changing the Construction Industry. https://sonin.agency/mobile-apps-changing-construction-industry/
- [17] Forestell, K. (2023) 11 Essential Apps for Construction Professionals to Boost Productivity. DOZR. https://dozr.com/blog/essential-apps-for-construction-professionals

- [18] Yankah, J.E., Novieto, D.T., Davies, E. and Adjei, K.O. (2022) Panorama of Mobile Device Applications (Apps) for the Construction Industry. *Frontiers in Engineering* and Built Environment, 2, 205-217. https://doi.org/10.1108/febe-03-2022-0010
- [19] Struk, V. and Struk, V. (2021) Digitizing Construction Industry with Mobile App Development. Relevant Software. <u>https://relevant.software/blog/digitizing-construction-industry-with-mobile-app-development/</u>
- [20] Hasan, A., Jha, K.N., Rameezdeen, R., Ahn, S. and Baroudi, B. (2018) Perceived Productivity Effects of Mobile ICT in Construction Projects. In: Mutis, I. and Hartmann, T., Eds., Advances in Informatics and Computing in Civil and Construction Engineering, Springer, Cham, 165-172. https://doi.org/10.1007/978-3-030-00220-6_20
- [21] Ahuja, V. (2013) Mobile Information Communication Technologies and Construction Project Managementt: Indian Scenario Case Study. In: Information Resources Management Association, Ed., *Enterprise Resource Planning: Concepts, Methodologies, Tools, and Applications*, IGI Global, Dauphin County, Pennsylvania, 838-853. <u>https://doi.org/10.4018/978-1-4666-4153-2.ch049</u>
- [22] Barbarosoglu, B.V. and Arditi, D. (2016) Mobile Applications for the Construction Industry. Interaction between Theory and Practice in Civil Engineering and Construction, Istanbul, 24-29 May 2016, 545-550. https://doi.org/10.14455/ISEC.res.2016.25
- [23] Liu, T., Mathrani, A. and Mbachu, J. (2016) Hunting the Popular Construction Apps. 2016 3rd Asia-Pacific World Congress on Computer Science and Engineering (APWC on CSE), Nadi, 5-6 December 2016, 205-211. https://doi.org/10.1109/apwc-on-cse.2016.042
- [24] Perera, S., Ingirige, B., Ruikar, K. and Obonyo, E. (2017) Advances in Construction ICT and e-Business. Routledge, London. <u>https://doi.org/10.4324/9781315690698</u>
- [25] Al_Neyadi, A. (2018) Sustainable and Digital Strategies for Enhancing United Arab Emirates Construction Industry Competitiveness. University of Wolverhampton, Wolverhampton. <u>http://hdl.handle.net/2436/622670</u>
- [26] Mahajan, G. (2022) Refurbishing Recent Emerging Technology Trends in Construction Industry. *Techniques and Innovation in Engineering Research*, 6, 153-174. <u>https://doi.org/10.9734/bpi/taier/v6/17462D</u>
- [27] Jowett, B., Edwards, D.J. and Kassem, M. (2023) Field BIM and Mobile BIM Technologies: A Requirements Taxonomy and Its Interactions with Construction Management Functions. *Construction Innovation*, 24, 134-163. https://doi.org/10.1108/ci-07-2022-0160
- [28] Shi, Q., Ding, X., Zuo, J. and Zillante, G. (2016) Mobile Internet Based Construction Supply Chain Management: A Critical Review. *Automation in Construction*, 72, 143-154. <u>https://doi.org/10.1016/j.autcon.2016.08.020</u>
- [29] Zoleykani, M.J., Abbasianjahromi, H., Banihashemi, S., Tabadkani, S.A. and Hajirasouli, A. (2023) Extended Reality (XR) Technologies in the Construction Safety: Systematic Review and Analysis. *Construction Innovation*, Ahead-of-Print. https://doi.org/10.1108/ci-05-2022-0131
- [30] Maghiar, M., Witt, D. and Dylan, J. (2015) Progressive Mobile BIM Tools Usage for Productivity Improvements on Construction Sites. 2015 ASEE Southeast Section Conference. <u>http://se.asee.org/proceedings/ASEE2015/papers2015/71.pdf</u>
- [31] Adebowale, O.J. and Agumba, J.N. (2022) Applications of Augmented Reality for Construction Productivity Improvement: A Systematic Review. *Smart and Sustain*-

able Built Environment, 13, 479-495. https://doi.org/10.1108/sasbe-06-2022-0128

- [32] Azhar, S., Jackson, A. and Sattineni, A. (2015) Construction Apps: A Critical Review and Analysis. 2015 *Proceedings of the 32nd ISARC*, Oulu, 15-18 June 2015, 1-7. <u>https://doi.org/10.22260/isarc2015/0008</u>
- [33] Maskuriy, R., Selamat, A., Ali, K.N., Marešová, P. and Krejcar, O. (2019) Industry
 4.0 for the Construction Industry—How Ready Is the Industry? *Applied Sciences*, 9, Article 2819. https://doi.org/10.3390/app9142819
- Bello, S.A., Oyedele, L.O., Akinadé, O.O., Bilal, M., Akanbi, L. and Ajayi, A.O. (2021) Cloud Computing in Construction Industry: Use Cases, Benefits and Challenges. *Automation in Construction*, **122**, Article 103441. https://doi.org/10.1016/j.autcon.2020.103441
- [35] Yankah, J.E. and Owiredu, G.K. (2016) Awareness and Utilization of Construction Related Smart Mobile Device Applications in the Construction Industry. *Science* and *Technology*, 6, 1-7.
- [36] Barney, J.B. (1991) Firm Resources and Sustained Competitive Advantage. *Journal of Management*, 17, 99-120. <u>https://doi.org/10.1177/014920639101700108</u>
- [37] Rogers, E.M. (2003) Diffusion of Innovations. 5th Edition, Free Press, New York. <u>https://books.google.com.gh/books/about/Diffusion_of_Innovations_5th_Edition.h</u> <u>tml?id=9U1K5LjUOwEC&redir_esc=y</u>
- [38] Davis, F.D. (1989) Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. *MIS Quarterly*, 13, 319-340. https://doi.org/10.2307/249008
- [39] Mak, S. and Thomas, A. (2022) Steps for Conducting a Scoping Review. *Journal of Graduate Medical Education*, 14, 565-567. https://doi.org/10.4300/JGME-D-22-00621.1
- Peters, M.D., Godfrey, C.M., McInerney, P., Soares, C.B., Khalil, H. and Parker, D. (2015) The Joanna Briggs Institute Reviewers' Manual 2015: Methodology for JBI Scoping Reviews. https://reben.com.br/revista/wp-content/uploads/2020/10/Scoping.pdf
- [41] Howe, J.E. (2022) Black Male College Athlete Identity: A Scoping Review. *International Review for the Sociology of Sport*, 58, 43-65. https://doi.org/10.1177/10126902221082042
- [42] Koseoglu, O. and Nurtan-Gunes, E.T. (2018) Mobile BIM Implementation and Lean Interaction on Construction Site. *Engineering, Construction and Architectural Management*, 25, 1298-1321. <u>https://doi.org/10.1108/ECAM-08-2017-0188</u>
- [43] Carreira, P., Castelo, T., Gomes, C.C., Ferreira, A., Ribeiro, C. and Costa, A.A. (2018) Virtual Reality as Integration Environments for Facilities Management. *Engineering, Construction and Architectural Management*, 25, 90-112. https://doi.org/10.1108/ECAM-09-2016-0198
- [44] Sattineni, A. and Schmidt, T. (2015) Implementation of Mobile Devices on Job Sites in the Construction Industry. *Proceedia Engineering*, **123**, 488-495. https://doi.org/10.1016/j.proeng.2015.10.100
- [45] Shiha, A. and Dorra, E.M. (2023) Resilience Index Framework for the Construction Industry in Developing Countries. *Journal of the Construction Division and Management*, **149**. <u>https://doi.org/10.1061/jcemd4.coeng-12942</u>
- [46] Ahmed, S., Hossain, M.M. and Hoque, M.I. (2017) A Brief Discussion on Augmented Reality and Virtual Reality in the Construction Industry. *Journal of System* and Management Sciences, 7, 1-33.

https://www.kuet.ac.bd/webportal/ppmv2/uploads/1581425075Vol.7_No.3_1.pdf

- [47] Song, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J. and Hampson, K.D. (2017) Trends and Opportunities of BIM-GIS Integration in the Architecture, Engineering and Construction Industry: A Review from a Spatio-Temporal Statistical Perspective. ISPRS International Journal of Geo-Information, 6, Article 397. https://doi.org/10.3390/ijgi6120397
- [48] Liu, T., Mathrani, A. and Mbachu, J. (2019) Benefits and Barriers in Uptake of Mobile Apps in New Zealand Construction Industry. *Facilities*, **37**, 254-265. https://doi.org/10.1108/F-08-2017-0078

Appendix

Table A1. Appendix: Summar	v of key findings from	the systematic literature review
rabie min mppendix. Summar	y of Key minungs non	i the systematic merature review

Database	Software/ Mobile App	Function	Benefits of Productivity Improvement	Challenges	Author (s)/ date of publication,
Emerald Insight (598) <i>Search</i> <i>question</i> : software and mobile apps to improve productivity in the construction industry	PlanGrid Procore Autodesk BIM 360 Fieldwire Bluebeam Revu	 PlanGrid: A mobile construction management app that allows users to access project plans, documents, and photos in real time, improving collaboration and reducing errors. Procore: A construction project management software that provides tools for project scheduling, budgeting, and communication, enhancing productivity and efficiency. Autodesk BIM 360: A cloud-based construction management platform that enables teams to collaborate on building information modelling (BIM) projects, streamlining workflows and reducing rework. Fieldwire: A construction management app that allows teams to collaborate on tasks, track progress, and manage documents, improving communication and productivity. Bluebeam Revu: A PDF markup and collaboration tool that enables construction professionals to review and annotate project documents, enhancing communication 	errors. It enhanced document management and version control, ensuring the latest information is readily available to all stakeholders.	and lack of	Yankah <i>et al.</i> (2022) <u>https://doi.org/</u> 10.1108/FEBE- 03-2022-0010
	3D printing Building Information Modelling (BIM) Digital Twins CAD CAM Augmented Reality (AR)	Cloud-based communication and collaboration solution: Enables real-time communication and collaboration among team members, improving efficiency and productivity. Mobile Apps: Provide	Enables real-time communication and collaboration among team members, improving efficiency and productivity. Provide on-the-go access to project information, allowing for better	-	(Mahajan, 2022) <u>https://doi.org/</u> <u>10.35940/ijitee.</u> <u>g9236.1011112</u> <u>2</u>

					I
	Virtual Reality	on-the-go access to project	coordination and	implementing and	
	(VR) Building	information for better	decision-making.	maintaining the	
	Information	coordination and	Facilitates rapid	technologies. Data	
	Modelling	decision-making.	prototyping and	security and privacy	
	(BIM)	3D printing: Facilitates rapid	_	concerns in	
		prototyping and construction	•	cloud-based solutions.	
		of complex structures,	and costs.	Compatibility and	
		reducing time and costs.	Enhances project	interoperability issues	
		Building Information	visualisation,	between different	
		Modelling (BIM): Enhances	coordination, and clash	software and platforms	
		project visualisation,	detection, improving	(Mahajan, 2022).	
		coordination, and clash	efficiency and reducing		
		detection, leading to	errors.		
		improved efficiency and	Enables real-time		
		reduced errors.	monitoring and analysis		
		Digital Twins: Enables	of construction projects,		
		real-time monitoring and	optimising performance		
		analysis of construction	and maintenance.		
		projects, optimising	Streamlines design and		
		performance and	manufacturing processes,		
		maintenance.	improving accuracy and		
		CAD CAM: Streamlines	efficiency.		
		design and manufacturing	Enhances visualisation		
		processes, improving	and communication,		
		accuracy and efficiency.	enabling better		
		Augmented Reality (AR):	understanding and		
		Enhances visualisation and	decision-making.		
		communication, enabling	Provides immersive		
		better understanding and	experiences for design		
		decision-making. Virtual Reality (VR):	review and training, improving collaboration		
		Provides immersive	and productivity.		
		experiences for design review	and productivity.		
		and training, improving			
		collaboration and			
		productivity.			
		* · ·			
	Excavator	The EAR app allows users to	The app aims to improve	The challenges	Abdeen <i>et al</i> .
	Augmented	navigate a 360-degree tracked		-	(2022)
	Reality (EAR)	hydraulic excavator,	and earthmoving	AR-based mobile apps	https://doi.org/
		providing operators with a	processes by utilising AR	for excavation and	10.1108/CI-07-
		realistic and immersive	technology to enhance	earthmoving processes	2022-0168
		experience.	operator efficiency and	were visualising the	
			accuracy.	excavator activities,	
				and the requirements	
				of improved features	
				were the highest agreed	
				strengths and	
				weaknesses of the EAR	
				(Abdeen <i>et al.</i> ,2022).	
	Microsoft	AR enhances the scheduling	AR enhances the	The provided sources	Zaher <i>et al</i> .
		-	1	1	

Project and Primavera BIM-U BIM-Phase CEsARe	aspect of construction projects by showing an as-planned vs. an as-built form, allowing visualisation of progress. BIM-AR integration improves task efficiency by enhancing the process of data recovery during construction.	- ·	do not mention the challenges related to productivity improvement in software and mobile apps (Zaher <i>et</i> <i>al.</i> ,2018).	(2018) https://doi.org/ 10.1108/CI-02- 2017-0013
Autodesk BIM 360, PlanGrid, Procore, and Fieldwire.	The functions of these MBT software and apps include accessing and sharing project information, viewing and marking drawings, tracking project progress, managing documents and RFIs, and communicating with team members.	The benefits of using MBT software and apps include improved productivity, enhanced communication and collaboration, reduced errors and rework, increased efficiency in project management, and better decision-making.	also challenges associated with the	Jowett <i>et al.</i> (2023) https://doi.org/ 10.1108/CI-07- 2022-0160
BIM and lean	BIM tools and mobile apps facilitate collaborative working environments, advanced project monitoring and control systems, and information management, improving infrastructure project productivity. The coordination and communication of all design and engineering disciplines on a virtual BIM platform, enabled by BIM tools, optimise design and engineering decisions and accelerate on-site progress, resulting in productivity improvement.	BIM tools and mobile apps facilitate collaborative working environments, advanced project monitoring and control systems, and information management, improving infrastructure project productivity. The coordination and communication of all design and engineering disciplines on a virtual BIM platform, enabled by BIM tools, optimise design and engineering decisions and accelerate on-site progress, resulting in productivity improvement.	The provided sources do not mention the challenges related to BIM implementation in infrastructure projects (Koseoglu & Nurtan-Gunes, 2018).	Koseoglu and Nurtan-Gunes (2018) <u>https://doi.org/</u> <u>10.1108/ECAM</u> <u>-08-2017-0188</u>
	BIM 360: A cloud-based construction management software that enables real-time collaboration,	Enhanced collaboration and communication among construction teams, leading to better	Adoption and integration of new technologies into existing construction	Zoleykani <i>et al.</i> (2023) https://doi.org/

		1	r		
	Procore Fieldwire PlanGrid Autodesk Construction Cloud	document management, and issue tracking, leading to improved productivity. Procore: A construction project management software that streamlines communication, document management, and task tracking, enhancing productivity on construction sites. Fieldwire: A mobile app that allows construction teams to collaborate, manage tasks, and access project information in real time, improving productivity and efficiency. PlanGrid: A construction productivity software that enables teams to access and share project plans, documents, and photos, reducing rework and improving productivity. Autodesk Construction Cloud: A suite of construction management software that includes BIM 360, PlanGrid, and other tools, providing end-to-end project visibility and	coordination and productivity. Real-time access to project information and data enables faster decision-making and problem-solving, resulting in improved productivity.	to use the software and mobile apps effectively. The cost and investment are	<u>10.1108/CI-05-</u> <u>2022-0131</u>
2]]]]]]]	BIM-FM systems BIM Perspective Definition (BPD)	productivity improvement. Mobile automated BIM-FM systems were used to solve problems related to transferring data and improving task efficiency in the FM process. BIM Perspective Definition (BPD) was used to increase system reusability. Indoor navigation was improved using BIM-FM methods. Various projects were conducted to improve FM-BIM methods, including integrating required BIM-FM information for owners' needs and managing	V Mobile automated BIM-FM systems improved task efficiency in the FM process. BIM Perspective Definition (BPD) increased reusability in systems. Improved indoor navigation facilitated efficient facility management. Integrating BIM-FM information for owners' needs enhanced the management of electrical, plumbing, and mechanical systems.	The article does not explicitly mention the challenges associated with the mentioned software and mobile apps (Carreira <i>et</i> <i>al.</i> ,2018).	Carreira <i>et al.</i> (2018) <u>https://doi.org/</u> <u>10.1108/ECAM</u> <u>-09-2016-0198</u>

		electrical, plumbing, and mechanical systems. The use of multi-scale BIM models was explored for managing electrical, plumbing, and mechanical systems.	Using multi-scale BIM models improved the management of electrical, plumbing, and mechanical systems.		
Science Direct (145)	Prototype voice-based Intelligent Virtual Agent (VIVA)	It is designed to improve worker productivity in the architecture, engineering, and construction (AEC) industry.		VIVA has limitations, such as the lack of additional sensors to perceive the user's context or task status (Linares-Garcia <i>et al.</i> , 2022).	Linares-Garcia et al. (2022) https://doi.org/ 10.1016/j.autco n.2022.104554
	Augmented reality technology, Microsoft's HoloLens, Apple's Vision Pro glasses	Augmented reality technology presents a significant opportunity for the construction industry and is predicted to experience significant growth momentum shortly.	Augmented reality in construction can assist in assembly guidance, building design assessment, and building facility management.	Its current status as one of the least developed technology products in the industry and the need to identify and resolve the main problems related to the lack of improvement in labour productivity within the sector (Alkan & Başağa, 2023).	Alkan and Başağa (2023) <u>https://doi.org/ 10.1016/j.autco n.2023.105107</u>
	Mobile- Internet	M-Internet combines mobile communication with Internet technology, providing an effective and efficient way to exchange information in construction supply chains. It consists of mobile terminals, access networks, and application services	sharing and interaction between various participants in	Conventional Internet technologies in construction supply chain management (CSCM) have limitations in information exchange that are tedious, time-consuming, and error-prone. Security is a concern when applying the M-Internet in CSCM (Shi <i>et al.</i> , 2016).	Shi <i>et al.</i> (2016) https://doi.org/ 10.1016/j.autco n.2016.08.020
	AR-QR Code	for accessing design and construction information on construction sites.	Improved productivity, as workers can easily access and understand design and construction information without extensive searching and interpretation.	The article does not explicitly mention the challenges associated with the mentioned software and mobile apps (Sabzevar <i>et al.</i> , 2023).	Sabzevar <i>et al.</i> (2023) <u>https://doi.org/</u> 10.1016/j.autco n.2023.105017
	Blockchain-ena bled	BCSMS enhances construction site information	BCSMS improves construction quality,	The article does not explicitly mention the	Xiao <i>et al</i> . (2023)

	Cyber-physical Site Management System (BCSMS)	sharing in a cross-collaborative prefabricated construction environment.	efficiency, and site safety by sharing information among stakeholders in a trusted and transparent manner	challenges associated with the mentioned software and mobile apps (Xiao <i>et al.</i> , 2023).	https://doi.org/ 10.1016/j.aei.20 23.102102
	Augmented reality	The app facilitates self-checking during assembly by providing craft workers with quick visual feedback.	The augmented reality application tailored for pipe fitting and spool inspection can increase productivity and reduce rework through more transparent communication of design information and visual feedback in real time. The application can help control costs and schedules of heavy industrial construction projects by improving productivity in pipe spool assembly.	Incorporating automation into the piping industry is challenging due to the nature of piping work and its dependence on skilled craft workers. Strict tolerances required on construction projects and shortages of skilled labour make productivity improvement challenging (Kwiatek <i>et al.</i> , 2019).	Kwiatek <i>et al.</i> (2019) <u>https://doi.org/</u> <u>10.1016/j.autco</u> <u>n.2019.102935</u>
IEEE Xplore	PlanGrid, Job Flex, Procore, SmartBidNet	PlanGrid: Facilitates project collaboration and management. JobFlex: Assists with estimating and tendering. Procore: Helps with project management. SmartBidNet: Aids in bid management.	Mobile computing offers construction workers a quick and simple platform to communicate relevant on-site information to other stakeholders situated in different locations, improving productivity	The cost of software and licensing is a significant constraint to the uptake of mobile apps in the construction industry (Liu <i>et al.</i> , 2016).	Liu <i>et al.</i> (2016) <u>https://doi.org/</u> <u>10.1109/APW</u> <u>C-on-CSE.2016</u> .042
Google Scholar (1860).	Ustream Prontoforms Toodledo Punch List Crane-Operato r Hand Signals OSHA Heat and Safety Tool Dropbox Good Reader Evernote eWeather OSHA Heat Index	Productivity apps help with information management, such as preparing documents, managing tasks, and editing documents	Productivity apps help with information management, such as preparing documents, managing tasks, and editing documents	The top two challenges in implementing apps in the construction industry are lack of training and difficulty viewing documents on mobile devices. Lack of training is a significant problem as companies do not provide the necessary training to use the apps effectively. Difficulty viewing information on the mobile device's screen is another challenge, so companies should consider screen size	Azhar <i>et al.</i> (2015) https://doi.org/ 10.22260/ISAR C2015/0008

			when deciding which mobile devices to use on the construction site (Azhar <i>et al.</i> , 2015)	
Information Modeling (BIM) software IoT-enabled BIM platform Activity monitoring software Risk management software Resource and waste optimisation software	Building Information Modeling (BIM) software: BIM platforms enable real-time visibility and traceability in prefabricated construction, improving productivity. IoT-enabled BIM platform: Integrating IoT with BIM allows energy-saving on demand and intelligent building energy monitoring, further enhancing productivity. Activity monitoring software: AI applications in construction include activity monitoring, which can help track and optimise worker productivity. Risk management software: AI techniques, such as machine learning, can be applied to risk management in construction, improving productivity by identifying and mitigating potential risks. Resource and waste optimisation software: AI can optimise resource allocation and minimise waste in construction projects, increasing productivity.	Increased profitability, efficiency, safety, and security in the construction industry	the construction industry makes	Abioye <i>et al.</i> (2021) https://doi.org/ 10.1016/j.jobe. 2021.103299
Things (IoT) Building Information Modeling (BIM) Augmented Reality (AR) and Virtual Reality (VR) Cloud-assisted	IoT-based automation systems can be implemented in the construction industry to improve productivity and efficiency. These systems enable smart monitoring and control of various processes in construction sites, leading to better resource management and reduced downtime software allows for creating	Enhanced resource management Improved coordination and collaboration Reduced errors and rework Better visualisation and simulation Increased accuracy and efficiency Automation of repetitive tasks	Integration of different technologies and systems Cost of implementation and training Data security and privacy concerns Resistance to change and adoption Availability of skilled workforce (Srivastava	Srivastava <i>et al.</i> (2022) <u>https://doi.org/</u> <u>10.1155/2022/6</u> <u>716987</u>

				[]
Edge and Fog	and managing digital		<i>et al.</i> , 2022)	
Computing	representations of			
	construction projects. It			
	facilitates collaboration			
	among different stakeholders,			
	improves coordination,			
	reduces errors and rework,			
	and enhances productivity.			
	AR and VR technologies can			
	be used in the construction			
	industry for visualisation,			
	simulation, and training.			
	They enable workers to			
	understand complex tasks			
	better, improve accuracy, and			
	enhance productivity			
	Cloud-based platforms can			
	support the deployment and			
	management of AR and VR			
	applications in the			
	construction industry. They			
	provide scalability,			
	accessibility, and data storage			
	capabilities, contributing to			
	improved productivity.			
			m1 · 1.	D 11 / I
EDM	for document management,	save time and money on		Parikh <i>et al</i> .
(Electronic	which helps save project cost	construction projects	explore more solutions	(2021).
Document	and time, improve quality,	Mobile apps and software	and manage	
Management)	and reduce retrieval time of	enhance efficiency and	construction projects	
Mobile	documents.	connectivity, making it	remotely using mobile	
	administration work,	possible for construction	apps.	
ed DMS	drawing design, project	• 1	The use of software for	
(Document	scheduling, and project	successful.	document tracking and	
Management	management.		management is	
System)	improves the efficiency of	construction industry can	-	
	project managers.	lead to modernisation,	indicating a potential	
		digitalisation, and	challenge in this area	
		improved project	(Parikh <i>et al.</i> , 2021)	
		management.		
Building	Maximize productivity:	Maximise productivity:	Security: As Industry	Maskuriy <i>et al</i> .
Information	Integrating the Internet of	Integrating the Internet of	4.0 involves data and	(2019)
Modelling	Things (IoT) and BIM	Things (IoT) and BIM	systems in a virtual	
(BIM)	maximises productivity in the	maximises productivity in	environment, security	https://doi.org/
Augmented	construction industry.		issues must be	10.3390/app91
Reality (AR)	Enhance information flow:	Enhance information	addressed to prevent	42819
	IoT and BIM optimise the	flow: IoT and BIM	negative consequences	
	flow during a project	optimise the flow during a		
	lifecycle.	project lifecycle.		
	Optimize energy efficiency:	Optimise energy		
	IoT and BIM help optimise	efficiency: IoT and BIM		
	energy efficiency in	help optimise energy		
		· · · · · · · · · · · · · · · · · · ·		

· · · · · ·				I	
		construction projects. Improve security and safety: IoT and BIM improve	efficiency in construction projects. Improve security and		
		security and safety in	safety: IoT and BIM		
		construction projects.	improve security and		
		Planning, managing, and	safety in construction		
		monitoring of resources: IoT	projects.		
		and BIM aid in the planning,	Planning, managing, and		
		managing, and monitoring of			
		resources in construction	IoT and BIM aid in the		
		projects.	planning, managing, and		
		. ,	monitoring of resources in		
			construction projects.		
	Autodesk Revit	ArchiCAD: BIM software for	Mobile apps and software	Challenges include the	(Maghiar <i>et al</i> .,
	ArchiCAD	architects, available for both	enable real-time	need for integration	2015)
	Vico	Windows and Mac OS. It	,	into traditional	
	Bentley	allows the creation of BIM	,	construction	
	Tekla	models on mobile devices	the ability to modify plans	-	
		and offers a cloud-integrated	and schedules, leading to	procedures and the	
		model-sharing service called	improved productivity on	requirement for new	
		BIMx. It also provides a free	construction sites	skill sets in using	
		trial and is free for students.		progressive mobile	
		Vico: Offers location-based		BIM tools (Maghiar <i>et</i>	
		scheduling for on-site work		<i>al</i> ., 2015).	
		management and is compatible with popular BIM			
		tools and scheduling			
		software. It provides tutorials			
		and training videos on its			
		website.			
		Bentley: Has mobile			
		applications for on-site access			
		to online databases and			
		provides powerful			
		work-sharing capabilities. It			
		allows distributed team			
		members to use their own			
		applications and file formats.			
		Owners and users can			
		publish precise, data-rich			
		engineering content in			
		various mediums.			
		Tekla: Offers an application			
		for on-site communication			
		with the offsite office and			
		specialised configurations for			
		different construction			
		management needs. It			
		develops software solutions to enhance building potential			
	Autodesk Revit	AR and VR technologies are	AR and VR technologies	The complexity of	Ahmed <i>et al</i> .

Unity 3D Vuforia EnTiTi Creator Autodesk Navisworks Manage Miracle Primavera	used for construction project scheduling, progress tracking, worker training, safety management, time and cost management, quality and defects management, and visualisation. AR technologies help automate quality and defect management systems, reduce project failures, and improve communication between parties involved in a project. VR technologies allow workers and consultants to experience a project before it is built, helping in decision-making and minimising cost and delays	progress tracking, worker training, safety management, time and	on-site data retrieval and the need for lightweight mobile devices for construction-related information projection (Ahmed <i>et al.</i> , 2017).	(2017).
Green Building Information Modelling	Embedding sustainability strategies through software and mobile apps can improve the competitive advantage of UAE construction organisations from a social, environmental, and economic point of view.	Embedding sustainability strategies through software and mobile apps can improve the competitive advantage of UAE construction organisations from a social, environmental, and economic point of view. Demonstrating the benefits of technology adoption can help the construction industry embrace change and understand the advantages of Industry 4.0 technologies.	sustainability initiatives. The lack of skills for successfully deploying sustainability strategies is a significant challenge for the UAE	Al_Neyadi (2018)
Building Information Modelling (BIM) Internet of Things (IoT) Virtual Reality (VR) and Augmented Reality (AR) Big Data Analytics	Cloud-based solutions enable real-time collaboration, data integration, and remote access to project information, facilitating efficient communication and decision-making.	conjunction with emerging technologies	Despite the potential benefits, there are challenges to the broader adoption of cloud computing in the construction industry. These include data security and privacy concerns, interoperability issues between different software and platforms, limited awareness and understanding of cloud	Bello <i>et al.</i> (2021) https://doi.org/ 10.1016/j.autco n.2020.103441

3DPrinterOS"	"3DPrinterOS" software is a		computing among industry professionals, and the need for robust IT infrastructure and reliable internet connectivity on construction sites. Overcoming these challenges requires addressing security concerns, promoting industry-wide standards and guidelines, providing training and education on cloud computing, and investing in infrastructure development (Bello <i>et</i> <i>al.</i> , 2021).	https://doi.org/
software,		mobile apps for productivity improvement in 3D printing can increase efficiency, reduce downtime, and improve	challenges in terms of compatibility with different 3D printers,	10.1080/174527 59.2017.132672 <u>4</u> Tay <i>et al.</i> (2017)
Primavera P6, Microsoft Project, Asta Powerproject.	These tools offer various functions such as automated schedule delivery, resource planning, security risk warnings, and 4D visualisation	The benefits of using these tools include better working practices and improved results in terms of productivity	challenges associated with implementing	https://doi.org/ 10.1080/156235 99.2020.181958 <u>3</u> Desgagné-Lebe uf <i>et al.</i> (2020)
Google Maps and OpenStreetMa p: Carto and Mapbox	Google Maps and OpenStreetMap: These platforms enable public users to upload and download their data and perform simple analyses such as distance	Google Maps and OpenStreetMap: These platforms allow users to upload and download data, perform distance measurements, and	Software Issues: Integrating multiple software in a project can be challenging due to differences in software compatibility.	https://doi.org/ 10.3390/ijgi612 0397 Song <i>et al.</i> (2017)

Evernotemanagement tool that helps users organise tasks and collaborate with team members. It provides a visual interface with boards, lists, and cards to track progress and assign tasks efficiently. Trello can be used for personal productivity as well as team collaboration. It offers features like due dates, checklists, attachments, and notifications to enhance productivity. Evernote is a note-taking app that allows users to capture and organise ideas, documents, and werk on notes together. It helps improve productivity by providing a centralised platform for storing and retrieving information.management and organisation. Centralised platform for storing and retrieving information.adoption challenges. 10.1201/972 2022 Overwhelming number of features and options. Intergation and compatibility issues with other tools.Naser (2022)Improved time productivity.Security and privacy concerns (Naser, 2022).Security and privacy concerns (Naser, 2022).Improved time productivity.Provenote is a note-taking app that allows users to capture and organise ideas, documents, and web clippings. It offers features like tags, notebooks, and search functionality to find and access information quickly. Evernote also supports collaboration, allowing users to share and work on notes together. It helps improve productivity by providing a centralised platform for storing and retrieving information.adoption challenges. Distribution.10.1201/972 (2022)Improved time productivity.Security and privacy concerns (Naser, 2022).Security and privacy concerns (Naser, 2022).Improved time security and privacy concerns (Na		1	1	1	
Evernotemanagement tool that helps users organise tasks and collaborate with team members. It provides a visual interface with boards, lists, and cards to track progress and assign tasks efficiently. Trello can be used for personal productivity as well as team collaboration. It offers features like due dates, checklists, attachments, and notifications to enhance productivity. Evernote is a note-taking app that allows users to capture and organise ideas, documents, and web clippings. It offers features like tags, notebooks, and search functionality to find and access information quickly. Evernote also supports collaboration, allowing users to share and work on notes together. It helps improve productivity by providing a centralised platform for storing and retrieving information.management and and communication. Centralised platform for storing and retrieving information.10.1201/978 7823467User (2022)Overwhelming number offers features like tags, notebooks, and search functionality to find and access information quickly. Evernote also supports collaboration, allowing users to share and work on notes together. It helps improve productivitymanagement and productivity by providing a centralised platform for storing and retrieving information.adoption challenges. DVerwhelming number of features and options. Integration and compatibility issues with other tools.User (1)The plat allows users to capture and organise ideas, documents, and web clippings. It offers features like tags, notebooks, and search functionality to find and ertralised platform for storing and retrieving information.adoption challenges. (D) 2022).User (2)DVerwh		Carto and Mapbox: These commercial companies allow public users to generate online interactive maps and perform spatial analysis using their data and GIS methods.	information. This can improve productivity by allowing users analyse purposes to access and analyse geospatial data for various purposes quickly. Carto and Mapbox: These platforms enable users to create interactive maps and spatial analysis using their data. This can enhance productivity by empowering users to visualise and analyse spatial information in a customised and user-friendly manner.	seamless integration and coordination between different software systems. To address this challenge, implementing IFC and CityGML models is suggested to integrate various functions and avoid details losses (Song <i>et al.</i> , 2017).	
OpenAI's GPT These advanced large These advanced large Implementing https://doi.org/line		management tool that helps users organise tasks and collaborate with team members. It provides a visual interface with boards, lists, and cards to track progress and assign tasks efficiently. Trello can be used for personal productivity as well as team collaboration. It offers features like due dates, checklists, attachments, and notifications to enhance productivity. Evernote: Evernote is a note-taking app that allows users to capture and organise ideas, documents, and web clippings. It offers features like tags, notebooks, and search functionality to find and access information quickly. Evernote also supports collaboration, allowing users to share and work on notes together. It helps improve productivity by providing a centralised platform for storing and	management and organisation. Enhanced collaboration and communication. Centralised storage and easy access to information. Improved time management and prioritisation. Increased efficiency and	adoption challenges. Overwhelming number of features and options. Integration and compatibility issues with other tools. Security and privacy concerns (Naser,	https://doi.org/ 10.1201/978036 7823467 Naser (2022)
	OpenAI's GPT	These advanced large	These advanced large	Implementing	https://doi.org

10		1 11 (775)	1 11/7735		10 105501
(Genera Pre-train		language models (LLM) can	language models (LLM)	Generative AI (GenAI)	10.48550/arXiv
Transfo		generate human-like content	can generate human-like	in the construction	.2310.04427
		based on learning from existing content, which can	content based on learning	-	Chiming at al
Google's (Pattern		benefit various construction	from existing content, which can benefit various	challenges that must be addressed. However,	(2023)
Languag		industry tasks.	construction industry	the provided sources	(2023)
Modelli	-	They can assist in generating	tasks.	do not mention the	
Meta's I	-	construction-related content,	They can assist in	specific challenges	
lvicta s i		such as project proposals,	generating	(Ghimire <i>et al.</i> , 2023).	
		reports, and documentation,	construction-related	(Gillinite et al., 2020).	
		thereby improving	content, such as project		
		productivity and efficiency in			
		the industry.	documentation, thereby		
			improving productivity		
			and efficiency in the		
			industry.		
D:1.1:	,	BIM is a multifaceted	BIM enables the creation	The costs associated	https://doi.org/
Building Informa	,	computer software data	of a virtual representation	with augmented reality	https://doi.org/ 10.1108/SASBE
Modelli		model that applies	of a construction project,	(AR) have been a	-06-2022-0128
(BIM):	U	augmented reality and virtual	allowing stakeholders to	challenge, with only	00 2022 0120
(DIM).		reality to solve contemporary	visualise and analyse the	large enterprises being	Adebowale and
		issues in construction. It can	project before it is built.	able to afford the	Agumba
		improve project performance	This helps identify and	technology's	(2022)
		in the construction sector.	resolve identity and	substantial up-front	
			potential issues early on,	investments. However,	
			reducing rework and	introducing	
			improving overall project	open-source mobile	
			efficiency.	toolkits has reduced	
				costs, making	
				small-to-medium more	
				accessible to small- to	
				medium-sized	
				contractors.	
				Additionally, the lack	
				of functional	
				information	
				technology (IT)	
				departments in some	
				construction	
				companies, particularly	
				small-to-medium	
				enterprises in	
				developing countries, has hindered the	
				widespread adoption	
				of these technologies	
				(Adebowale &	
				Agumba, 2022).	
				11guilloa, 2022).	