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Abstract 
In this work, we show that it is possible to establish coordinate transforma-
tions between inertial reference frames in the theory of special relativity with 
a minimum universal speed of physical transmissions. The established coor-
dinate transformations, referred to as modified Lorentz transformations be-
cause they have almost identical form to the Lorentz transformations, also 
comply with the requirement of invariance of the Minkowski line element. 
Particularly, the minimum universal speed can be associated with the phase 
speed of de Broglie matter wave. As application, we also discuss the possibil-
ity to formulate relativistic classical and quantum mechanics for the special 
relativity associated with the modified Lorentz transformations, which de-
scribes physical processes that represent an expansion or a collapsing of mas-
sive quantum particles. 
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1. Introduction  

In physics, the special theory of relativity is formulated from the postulate of the 
principle of relativity [1] [2] [3] [4], which states that all physical laws are iden-
tical in all inertial reference frames, and the postulate of constancy of maximum 
universal speed of physical transmissions, which is identified with the speed of 
light in vacuum and can be verified by the Michelson-Morley experiment [5]. 
Consequently, the Lorentz transformations can be derived and the Minkowski 
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spacetime can be introduced [6]. There are profound features that emerge from 
the relativistic formulation of classical physics with fundamental changes to the 
Newtonian concepts from which physical laws of dynamics are based, particu-
larly on the perception of the geometrical structure of space and time, such as 
time dilation and space contraction, due to the relative motion between inertial 
reference frames [7] [8] [9] [10] [11]. 

In this work, we examine mathematically possible conditions that can be im-
posed on the Minkowski line element and the Lorentz transformations for the 
derivation of spacetime dilation and contraction in the theory of special relativi-
ty. We refer to the universal constant in special relativity simply as Minkowski 
constant. If the Minkowski constant is assumed to be the maximum speed of 
physical transmissions, which is normally identified with the speed of light in 
vacuum, then it is known that the usual Lorentz transformations can be derived. 
However, we will show that, in fact, the Minkowski constant can be assumed to 
be the minimum universal speed of physical propagations, and then we are able 
to establish a system of modified Lorentz transformations for the minimum 
Minkowski constant that also leave the Minkowski line element invariant. Par-
ticularly, we will show that it is possible to associate the minimum universal 
speed with the phase speed of de Broglie matter wave. Within the framework of 
special relativity associated with the modified Lorentz transformations, we also 
discuss the possibility to formulate relativistic classical and quantum mechanics, 
in the forms of Klein-Gordon and Dirac wave equation [12] [13], which can be 
used to describe physical processes that involve expanding or collapsing of mas-
sive quantum particles. 

2. Derivation of Spacetime Dilation and Contraction Using  
Minkowski Line Element 

In the theory of special relativity, the Minkowski line element is formed on the 
Minkowski spacetime, which is a union of space and time into a four-dimensional 
manifold. The Minkowski line element can be written in the general form 

2d d ds g x xα β
αβ=                            (1) 

where the metric tensor ijg  is given as 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

gαβ

 
 − = ±
 −
 

− 

                      (2) 

In the current formulation of relativistic physics, both signs of the metric ten-
sor are equivalent, which leads to assigning positive, negative, or zero values to 
the Minkowski line element 2ds . In this work, however, we will assume that the 
Minkowski line element is only assigned with positive or zero values, that is 

2d 0s ≥ , therefore we will need to consider the positive and negative signs of the 
metric tensor separately and, as shown below, the separation will lead to consid-
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eration of the Minkowski constant being assigned to either a maximum or 
minimum universal value, rather than the only maximum value as currently be-
ing identified with the speed of light in vacuum. 

Consider an inertial reference frame S in which a Minkowski coordinate system 
( ), , ,t x y z  is defined. If we use the metric signature ( )diag 1, 1, 1, 1gαβ = − − −  
then the Minkowski line element 2ds  is written as 

2 2 2 2 2 2d d d d ds c t x y z= − − −                       (3) 

For real physical analysis, the Minkowski should satisfy the condition 2d 0s ≥ . 
This requirement implies that the speeds of all physical propagations are less 
than the maximum universal speed c, which has been identified with the speed 
of light in vacuum. Therefore, within the time interval dt the distance travelled 
by all physical fields are less than the distance travelled by the electromagnetic 
field. 

On the other hand, when the distance travelled by all physical fields greater 
than the distance travelled by the physical field whose speed is determined by the 
Minkowski constant c then, also for real physical analysis, that is 2d 0s ≥ , we 
need to assume a lower universal speed limit instead of an upper universal speed 
limit. And in this case we need to use the metric signature ( )diag 1,1,1,1gαβ = −  
and the Minkowski line element 2ds  is written as 

2 2 2 2 2 2d d d d ds c t x y z= − + + +                      (4) 

2.1. Relative Time Rates between the Temporal Coordinates 

Now, we consider another inertial reference frames S' in which a Minkowski 
coordinate system ( ), , ,ct x y z′ ′ ′ ′  is also established. We then assume that the 
form of the line element 2ds  given in Equation (3) is invariant with respect to 
the two frames so that we can obtain the following relation 

2 2 2 2 2 2 2 2 2 2d d d d d d d dc t x y z c t x y z′ ′ ′ ′− − − − −= −            (5) 

In this case the two inertial reference frames are connected only by the as-
sumption that their Minkowski line elements have identical forms. In the fol-
lowing, we first examine, from the relation given in Equation (5), the kinematics 
of physical objects, or observers, in the two frames and study how the respective 
values of spacetime dilation and contraction can be compared in the two frames. 
Then, we examine the spacetime dilation and contraction in the traditional way 
by using the coordinate transformations between the two frames when one 
frame is assumed to be moving with respect to the other. We need to establish 
transformations of spacetime coordinates that leave the Minkowski line element 
invariant with respect to the coordinates in the two frames, such as the Lorentz 
transformations. In fact, as we will discuss in Section 3 that the Minkowski line 
element 2ds  can also be made invariant under a system of modified Lorentz 
transformations in which the Minkowski constant c is assigned with a minimum 
universal speed of physical transmissions rather than a maximum universal 
speed as being associated with the Lorentz transformations, and in particular we 
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will show that the modified Lorentz transformations are associated with de 
Broglie matter wave. 

In the inertial reference frame S we define the velocity d dt=v r , where  
( ), ,x y z=r , and, similarly, in the inertial reference frame S' we also define the 

velocity d dt′ ′ ′=v r , where ( ), ,x y z′ ′ ′ ′=r . The velocities v  and ′v  may be 
assumed to be the velocities of physical objects with regard to their motion, re-
spectively, in the two inertial reference frames. It is observed that if v v c′= = , 
then the equation for the Minkowski line elements given in Equation (5) satisfies 
automatically. On the other hand, if v c≠  and v c′ ≠ , and d 0t ≠  and d 0t′ ≠ , 
then we can rewrite Equation (5) in the form 

2 2 2 2 2 2
2 2 2 2

2 2 2 2
d d d d d dd 1 d 1

d d
x y z x y zc t c t

c t c t
   ′ ′ ′+ + + +′− = −   ′   

       (6) 

From Equation (6) we obtain the following kinematic relation for the time in-
tervals 

2

2

2

2

1d
d

1

v
t c
t v

c

′
−

=
′

−

                            (7) 

This equation gives a relation between the time rates of the time coordinates 
in the two frames S and S', which may be regarded as due to the motion of phys-
ical objects. If we consider v as being the magnitude of the velocity of a particle 
in the frame S, and v' being that of a different particle in the frame S' then Equa-
tion (7) gives either a time dilation or a time contraction depending on the rela-
tive values of the magnitudes of the velocities. If v v′>  then d dt t′>  and in 
this case we have a time dilation for the time t in S relative to the time t' in S'. On 
the other hand, if v v′<  then d dt t′<  and we have a time contraction for the 
time t relative to the time t'. In particular, there is no time dilation or contraction 
when v v′= . As an illustration, we now apply the time relation given in Equa-
tion (7) to a clock at rest in the frame S', which is defined by the spatial coordi-
nate condition 2 2 2d d d d 0x y z′ ′ ′ ′= + + =r  thus 0v′ = , and the clock is as-
sumed to move with a uniform velocity v  with respect to the frame S. Then, 
we obtain the familiar time dilation given by the relation 

d dtt tγ ′=                                (8) 

where the time dilation factor tγ  is defined as follows 

2

2

1

1
t

v
c

γ =

−

                             (9) 

This is a measure of the elapse of time in the frame S compared to the proper 
time recorded by a clock at rest in the frame S', where the frame S' is assumed to 
move with the uniform velocity v  with respect to the frame S. On the other 
hand, if 0v =  but 0v′ ≠ , then we obtain the time contraction given by the re-
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lation 
2

2d 1 dvt t
c
′

′= −                           (10) 

2.2. Relative Space Rates between the Spatial Coordinates 

Similar to the examination of the relative time rates between the temporal coor-
dinates, we can also examine the space rates between the spatial coordinates of 
the two reference frames. We first define the spatial line elements in the two 
frames S and S' as 2 2 2 2d d d dx y zχ = + +  and 2 2 2 2d d d dx y zχ′ ′ ′ ′= + + , respec-
tively. However, in the present situation, we assume the form of the Minkowski 
line element 2ds  given in Equation (4), rather than Equation (3), to be inva-
riant with respect to the two inertial reference frames. Then, we obtain the rela-
tion 

2 2 2 2 2 2 2 2 2 2d d d d d d d dc t x y z c t x y z= ′ ′ ′ ′− + + + + + +−          (11) 

We now rewrite Equation (11) in the form 

( )

( )

2 2
2 2 2

2 2 2

2 2
2 2 2

2 2 2

dd d d 1
d d d

dd d d 1
d d d

c tx y z
x y z

c tx y z
x y z

 
+ + − + + 

 ′
′ ′ ′= + + − ′ ′ ′+ + 

              (12) 

From Equation (12) we obtain the following relation for the spatial coordinate 
intervals 

2

2

2

2

1d
d

1

c
v
c
v

χ
χ

−
′=

′
−

                           (13) 

Using Equation (13) we can examine the space dilation and contraction in a 
similar way to that for the time rate relation given in Equation (7). However, for 
real analysis, the examination also requires the existence of physical transmis-
sions with speeds v c>  and v c′ > . Therefore, in order to apply Equation (13) 
into real physical events we need to assume that the Minkowski constant c is a 
minimum universal speed of physical transmissions. According to classical 
physics, the minimum speed would simply be zero. Yet, this assumption may 
not be necessary in quantum physics, for example, as in the quantum harmonic 
motion or the quantum vacuum fluctuation in quantum field theory. In Section 
4 we will discuss further these quantum physics topics when we formulate relati-
vistic classical and quantum mechanics from modified Lorentz transformations. 
From Equation (13), if we impose the condition v c′

  we then obtain the 
space dilation given by the relation 

d dsχ γ χ′=                             (14) 

where the space dilation factor sγ  is defined as 
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2

2

1

1
s

c
v

γ =

−

                           (15) 

3. Derivation of Spacetime Dilation and Contraction by a  
System of Modified Lorentz Transformations 

In this section we show that a system of modified Lorentz transformations can 
be established with the space dilation factor sγ  given in Equation (15) so that 
the Minkowski line element is invariant under such coordinate transformations. 
We consider two inertial reference frames S and S' in which two Minkowski 
coordinate systems ( ), , ,t x y z  and ( ), , ,t x y z′ ′ ′ ′  are respectively defined. It is 
assumed that the x-axis and the x'-axis coincide, and the other two pairs of axes 
are parallel. It is also assumed that the frame S' moves with respect to the frame S 
with the velocity v  in the positive direction along the x-axis. However, unlike 
the usual Lorentz transformations, which are briefly presented in Appendix be-
low for comparison and reference, the required modified Lorentz transforma-
tions are assumed to be given in the following form 

2

s
cx x t
v

γ
 
′ ′= + 

 
                            (16) 

y y′=                                  (17) 

z z′=                                  (18) 

1
st t x

v
γ  ′ ′= + 
 

                             (19) 

It can be shown that the Minkowski line element given in Equation (4) is in-
variant under the coordinate transformations given by Equations (16)-(19). It is 
also observed that by comparison to the Lorentz transformations given in the 
Appendix, the two terms 2c t v′  and x v′  in the modified Lorentz transfor-
mations play inverse roles to the two terms vt′  and 2vx c′  in the Lorentz 
transformations in the sense that the terms x v′  and vt′  can be interpreted 
kinematically but the terms 2c t v′  and 2vx c′  cannot, because we do not 
know exactly what the speed 2c v  and the reciprocal speed 2v c  would 
represent in classical physics with regard to Lorentz transformations. However, 
the speed 2c v  in Equation (16) can be interpreted as the phase speed of matter 
wave motion in quantum mechanics. It is shown in relativistic mechanics that 
the momentum and energy of a free particle can be written in the relativistic 
forms, respectively, as 

2

21

m
v
c

=

−

vp                             (20) 

2

2

21

mcE
v
c

=

−

                            (21) 
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From the above formulas given for the momentum and energy, we obtain the 
relation 

2E c
p v
=                               (22) 

On the other hand, in quantum mechanics the Planck quantum energy and de 
Broglie matter wave relation are given, respectively, by 

E hν=                               (23) 

hp
λ

=                               (24) 

From Equations (22)-(24) we then obtain the relation 
2c

v
λν=                              (25) 

The quantity 2c v  is the phase velocity associated with de Broglie matter wave, 
therefore, we may associate the speed 2c v λν=  with the speed of de Broglie 
matter wave [14]. With this association, we can suggest that the physical field 
that propagates with the minimum universal speed should be a matter wave. 

The inverse transformations of the modified Lorentz transformations can also 
be found as 

2

s
cx x t
v

γ
 

′ = − 
 

                         (26) 

y y′ =                              (27) 

z z′ =                              (28) 

1
st t x

v
γ  ′ = − 
 

                         (29) 

Additionally, from the modified Lorentz transformations, we can establish the 
relativistic law of addition for velocities. If we define the components of veloci-
ties as 

d d d d d d
d d d d d dx y z x z z
x y z x y zu u u u u u
t t t t t t

′ ′ ′
′ ′ ′= = = = = =

′ ′ ′
       (30) 

then we can obtain the relativistic addition laws for velocities 
2 22

2 21 1

1 1 11 1 1

y zx

x y z

x x x

c cc u uu
v vvu u u

u u u
v v v

′ ′− −′ +
= = =

′ ′ ′+ + +
             (31) 

It is seen from the above addition laws for the velocities that the Minkowski 
constant c is in fact a minimum universal speed because if xu c′ =  then we also 
have xu c= . 

Now, we consider the two events ( )1 1 1 1, , ,t x y z′ ′ ′ ′  and ( )2 2 2 2, , ,t x y z′ ′ ′ ′  in the 
frame S'. The corresponding events ( )1 1 1 1, , ,t x y z  and ( )2 2 2 2, , ,t x y z  in the 
frame S are respectively obtained from the modified Lorentz transformations as 
follows 
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2 2

1 1 1 2 2 2s s
c cx x t x x t
v v

γ γ
   
′ ′ ′ ′= + = +   

   
                (32) 

1 1 2 2y y y y′ ′= =                           (33) 

1 1 2 2z z z z′ ′= =                           (34) 

1 1 1 2 2 2
1 1

s st t x t t x
v v

γ γ   ′ ′ ′ ′= + = +   
   

                 (35) 

Then, we obtain the following results 

( )
2

2 1 2 1 2 1s
cx x x x t t
v

γ
 
′ ′ ′ ′− = − + − 

 
                  (36) 

2 1 2 1y y y y′ ′− = −                           (37) 

2 1 2 1z z z z′ ′− = −                           (38) 

( )2 1 2 1 2 1
1

st t t t x x
v

γ  ′ ′ ′ ′− = − + − 
 

                   (39) 

In the following, based on Equations (36) and (39), we will provide a mathe-
matical examination on the spacetime dilation and contraction between space-
time coordinates of the two frames S and S'. Physically, the separation of two 
events in space can be identified with the length of a physical object and the se-
paration in time can be taken as a measure of the time interval of two successive 
ticks of a clock. 

3.1. The Condition on the Spatial Coordinate of the Frame S':  
′ ′x x2 1 0− =  

This condition is equivalent to examine two events that occur at the same spatial 
position in the frame S'. By applying the spatial coordinate condition 2 1 0x x′ ′− =  
into Equations (36) and (39) we then obtain the following equations 

( )
2

2 1 2 1s
cx x t t
v

γ ′ ′− = −                        (40) 

( )2 1 2 1st t t tγ ′ ′− = −                          (41) 

Equation (41) represents the time dilation relation between the time coordi-
nates of two inertial reference frames. From Equations (40) and (41) we also ob-
tain the kinematic equation 

( )
2

2 1 2 1
cx x t t
v

− = −                         (42) 

We may interpret this equation by stating that the spatial point 2 1 0x x′ ′− =  in 
the frame S' moves with the speed 2c v  relative to the frame S in the positive 
direction along the x-axis. 

3.2. The Condition on the Time Coordinate of the Frame S':  
′ ′t t2 1 0− =  

This condition is equivalent to examine two events that occur at the same tem-
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poral position in the frame S'. By applying the temporal coordinate condition 

2 1 0t t′ ′− =  into the equations given in Equations (36) and (39) we then obtain 
the following equations 

( )2 1 2 1sx x x xγ ′ ′− = −                          (43) 

( )2 1 2 1
1

st t x x
v

γ ′ ′− = −                         (44) 

It is observed that the relation between the spatial coordinates given in Equa-
tion (43) can be interpreted as space dilation. It has the same mathematical sta-
tus as that of the time dilation given in Equation (41) for the time coordinates. 
However, from Equations (43) and (44) we obtain the kinematic equation 

( )2 1 2 1x x v t t− = −                         (45) 

Unlike the kinematic equation given in Equation (42) for the time dilation, 
Equation (45) describes the motion of a physical object with the speed v, which 
is the speed of the frame S' with respect to the frame S in this case. With regard 
to spacetime symmetry, we may state that the temporal point 2 1 0t t′ ′− =  moves 
in the frame S in the positive direction along the x-axis with the speed v. 

3.3. The Condition on the Spatial Coordinate of the Frame S:  
x x2 1 0− =  

This condition is equivalent to examine two events that occur at the same spatial 
position in the reference frame S. By applying the spatial coordinate condition 

2 1 0x x− =  into the equations given in Equations (36) and (39) then we obtain 
the following equations 

( )
2

2 1 2 10 s
cx x t t
v

γ
 
′ ′ ′ ′= − + − 

 
                     (46) 

( )2 1 2 1 2 1
1

st t t t x x
v

γ  ′ ′ ′ ′− = − + − 
 

                    (47) 

From the above relations we obtain the time contraction relation 

( )2 1 2 1
1

s

t t t t
γ

′ ′− = −                          (48) 

We can describe the situation as follows. If we locate a clock at a particular 
spatial position in the frame S and compare the time rate of the clock with the 
time rate in the frame S' then we see that the time of the clock runs faster than 
the time of the frame S'. 

3.4. The Condition on the Time Coordinate of the Frame S:  
t t2 1 0− =  

This condition is equivalent to examine two events occur at the same temporal 
position in the frame S. By applying the temporal coordinate condition 2 1 0t t− =  
into the equations given in Equations (36) and (39) then we obtain the following 
equations 
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( )
2

2 1 2 1 2 1s
cx x x x t t
v

γ
 
′ ′ ′ ′− = − + − 

 
                   (49) 

( )2 1 2 1
10 s t t x x
v

γ  ′ ′ ′ ′= − + − 
 

                      (50) 

From Equations (49) and (50), a contraction relation can be obtained for the 
spatial intervals in the two reference frames as 

( )2 1 2 1
1

s

x x x x
γ

′ ′− = −                         (51) 

This is the usual space contraction when the interval 2 1x x′ ′−  in the frame S' be-
ing observed moving with the speed v relative to the frame S and the corres-
ponding Lorentz transformed spatial coordinates in the frame S are assumed to 
be measured simultaneously. Since there are no kinematic equations of motion 
that can be established from Equations (49) and (50) between the spatial and 
temporal coordinates in the frame S therefore we cannot determine how the 
space contraction given in Equation (51) can be interpreted in terms of the ki-
nematics of the motion. However, if we rewrite Equations (50) and (51) in the 
following form 

( )2 1 2 1x x v t t′ ′ ′ ′− = − −                         (52) 

( )2 1 2 1sx x x xγ′ ′− = −                         (53) 

then we regain the situation as discussed in Subsection 3.2 in which the roles of 
the two frames are reversed. 

4. Relativistic Classical and Quantum Mechanics 

In this section we discuss the possibility to formulate the relativistic classical and 
quantum mechanics based on the Minkowski line element given in Equation (4). 
Within the framework of special relativity associated with the modified Lorentz 
transformations, we can also establish relativistic wave equations, which have 
similar forms to the relativistic Klein-Gordon and Dirac wave equation, and the 
established equations can be used to describe physical processes that involve ex-
panding or collapsing of massive quantum particles. The Minkowski line ele-
ment given in Equation (4) can be rewritten in the form 

( )
2

2 2 2 2
2d d d d 1 cs x y z

v
 

= + + − 
 

                       (54) 

where ( )2 2 2 2 2 2 2 2d d d d x y zv x y z t v v v= + + = + + . Again, for real physical analysis, 
we also assume the condition 2d 0s ≥ , that is v c> . Since we have the condition 

2d 0s ≥ , thus from Equation (54) we obtain the line element written as 

( )d 1 dss γ χ=                                (55) 

where the quantity sγ  is specified in Equation (15), and 2 2 2d d d dx y zχ = + + . 
The relativistic classical and quantum mechanics under the modified Lorentz 

transformations can be formulated by also applying the principle of least action. 
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First, we define the action for a free particle associated with the line element 
given in Equation (55) as follows 

2
2 2

2d 1 d dcS mc s mc mc v c t
v

χ= = − = −∫ ∫ ∫                (56) 

Thus, the Lagrangian takes the form 
2 2L mc v c= −                            (57) 

The momentum ( ), ,x y zp p p=p  is also assumed to be defined according to 
the formulas 

x y z
x y z

L L Lp p p
v v v
∂ ∂ ∂

= = =
∂ ∂ ∂

                     (58) 

Using the Lagrangian given in Equation (57) we then obtain 

2 2 2

2 2 21 1 1

y
x y

zx
z

mvmvc c c mvp p p
v v vc c c

v v v

= = =

− − −

            (59) 

Equation (59) can be rewritten in a vector form as 

2

21

c m
v c

v

=

−

vp                            (60) 

The energy E of the particle is also defined by the relation 
E L= ⋅ −p v                             (61) 

We then obtain 
2

2

21

c mcE
v c

v

=

−

                           (62) 

From Equations (60) and (62), a relationship between the momentum and 
energy can also be established as 

2
2 2 2

2
E p m c
c

= −                           (63) 

It is observed that the relation between the momentum and energy in Equa-
tion (63) differs from the familiar relation 2 2 2 2 2E c p m c= +  under the Lo-
rentz transformations by the negative 2 2m c . In fact, this difference has pro-
found effects on physical processes of quantum particles. If we replace the mass 
m in Equation (63) by the imaginary mass im, then the relation given in Equa-
tion (63) can be rewritten in the form 

( )
2

22 2
2

E p im c
c

= +                         (64) 

When the energy and momentum in the energy-momentum relation in Equa-
tion (64) are replaced by the differential operators [15] [16] [17], respectively, as 

E i
t
∂

→
∂
                             (65) 
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i→−p ∇                               (66) 

then we obtain a wave equation similar to the Klein-Gordon equation given by 

( )2 22 2 2 2

2 2 2 2 2 2 0
im c

c t x y z
ψ

 ∂ ∂ ∂ ∂ − − − + =
 ∂ ∂ ∂ ∂ 

               (67) 

Solutions to Equation (67) for free particles can be found as 

( )exp iN Etψ  = − − ⋅  
p r



                      (68) 

In particular, for particles at rest in which 0=p , then from Equation (64) we 
obtain the relation 2E imc= ± , and Equation (68) reduces to 

2

exp mcN tψ
 

= ± 
 

                         (69) 

Since the exponential of Equation (68) is real, therefore we may interpret the 
obtained solutions as physical processes that involve an expansion or collapsing 
of quantum particles. 

On the other hand, also by using the energy-momentum relation given by 
Equation (64) with an imaginary mass, an equation similar to the Dirac relativis-
tic equation can be constructed for massive spin-half particles as 

( ) 0i imcµ
µγ ψ∂ − =                         (70) 

where the wavefunction ψ  is the four-component vector ( )T
1 2 3 4, , ,ψ ψ ψ ψ ψ= , 

and the µγ  matrices are defined in terms of the Pauli matrices kσ  and the 
unit matrix as 

0 01 0
00 1

kk

k

σ
γ γ

σ
  

= =    −−   
                  (71) 

From Equation (70), particular solutions for spin-half quantum particles at rest, 
0=p , can be found as 

2 2 2 2

1 2 3 4

1 0 0 0
0 1 0 0

e e e e
0 0 1 0
0 0 0 1

mc mc mc mct t t t
ψ ψ ψ ψ

− −

       
       
       = = = =
       
       
       

         (72) 

Since the exponentials of Equation (72) are all real, therefore, as in the case 
with the Klein-Gordon equation, we may also attempt to interpret the solutions 
given in Equation (72) as physical processes that involve an expansion or col-
lapsing of massive spin-half quantum particles. 

5. Conclusion 

We have analyzed possible mathematical conditions imposed on the Minkowski 
line element, the modified Lorentz transformations, and the Lorentz transfor-
mations for the derivation of spacetime dilation and contraction in the theory of 
special relativity. We have shown that the Minkowski universal constant in the 
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theory of special relativity can be identified either as the maximum universal 
speed of physical transmissions, which is normally identified with the speed of 
light in vacuum, or the minimum universal speed of physical transmissions. For 
the case of identifying the Minkowski constant as the minimum universal speed, 
we have shown that it is possible to establish modified Lorentz transformations 
that also leave the Minkowski line element invariant. We have also shown that it 
is possible to identify the minimum universal speed with the phase speed of de 
Broglie matter wave. Within the framework of special relativity associated with 
the modified Lorentz transformations, we have also established relativistic wave 
equations, which have similar forms to the relativistic Klein-Gordon and Dirac 
wave equation, that describe physical processes that involve expanding or col-
lapsing of massive quantum particles. 
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Appendix. Derivation of Spacetime Dilation and Contraction  
Using Lorentz Transformations 

This section briefly presents the derivation of spacetime dilation and contraction 
by using the well-known Lorentz transformations in the theory of special relativ-
ity [8] [9]. The purpose of the presentation is for comparison and reference to 
what have been examined in the previous section with the modified Lorentz 
transformations. Because the resulted equations are almost identical to those 
obtained from the modified Lorentz transformations therefore we will only list 
the results without further interpretations, even though there are new features 
that emerge from the mathematical examination that are worth being examined 
thoroughly. 

For the Lorentz transformations, we also consider two inertial reference 
frames in which the frame S' moves with the velocity v  relative to the frame S 
in the positive direction along the x-axis. Then, it can be verified that the inva-
riance of the Minkowski line element given in Equation (3) is satisfied under the 
Lorentz transformations given by 

( )tx x vtγ ′ ′= +                            (73) 

y y′=                               (74) 

z z′=                               (75) 

2t
vt t x
c

γ  ′ ′= + 
 

                          (76) 

where the time dilation factor tγ  is given in Equation (9). We next consider the 
two events ( )1 1 1 1, , ,t x y z′ ′ ′ ′  and ( )2 2 2 2, , ,t x y z′ ′ ′ ′  in the frame S'. The corresponding 
events ( )1 1 1 1, , ,t x y z  and ( )2 2 2 2, , ,t x y z  in the frame S are obtained, respective-
ly, as follows 

( ) ( )1 1 1 2 2 2t tx x vt x x vtγ γ′ ′ ′ ′= + = +                   (77) 

1 1 2 2y y y y′ ′= =                           (78) 

1 1 2 2z z z z′ ′= =                           (79) 

1 1 1 2 2 22 2t t
v vt t x t t x
c c

γ γ   ′ ′ ′ ′= + = +   
   

                (80) 

Consequently, we obtain the following results 

( )( )2 1 2 1 2 1tx x x x v t tγ ′ ′ ′ ′− = − + −                   (81) 

2 1 2 1y y y y′ ′− = −                           (82) 

2 1 2 1z z z z′ ′− = −                           (83) 

( )2 1 2 1 2 12t
vt t t t x x
c

γ  ′ ′ ′ ′− = − + − 
 

                  (84) 

By imposing different mathematical conditions on the transformation equa-
tions given in Equation (81) and (84), we obtain the results listed below. 
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A1. Imposing the Condition ′ ′x x2 1 0− =  

When we impose the spatial condition 2 1 0x x′ ′− =  into Equations (81) and (84) 
then we obtain the following kinematic equations 

( )2 1 2 1tx x v t tγ ′ ′− = −                          (85) 

( )2 1 2 1tt t t tγ ′ ′− = −                           (86) 

( )2 1 2 1x x v t t− = −                           (87) 

These equations are similar to Equations (40), (41), and (42) in Subsection 3.1, 
respectively, for the modified Lorentz transformations. 

A2. Imposing the Condition ′ ′t t2 1 0− =  

When we impose the temporal condition 2 1 0t t′ ′− =  into Equations (81) and (84) 
then we obtain the following kinematic equations 

( )2 1 2 1tx x x xγ ′ ′− = −                          (88) 

( )2 1 2 12t
vt t x x
c

γ ′ ′− = −                         (89) 

( )
2

2 1 2 1
cx x t t
v

− = −                          (90) 

These equations are similar to Equations (43), (44), and (45) in Subsection 3.2, 
respectively. 

A3. Imposing the Condition x x2 1 0− =  

When we impose the spatial condition 2 1 0x x− =  into Equations (81) and (84) 
then we obtain the following kinematic equations 

( )( )2 1 2 10 t x x v t tγ ′ ′ ′ ′= − + −                       (91) 

( )2 1 2 1 2 12t
vt t t t x x
c

γ  ′ ′ ′ ′− = − + − 
 

                    (92) 

( )2 1 2 1
1

t

t t t t
γ

′ ′− = −                          (93) 

These equations are similar to Equations (46), (47), and (48) in Subsection 3.2, 
respectively. 

A4. Imposing the Condition t t2 1 0− =  

When we impose the temporal condition 2 1 0t t− =  into Equations (81) and (84) 
then we obtain the following kinematic equations 

( )( )2 1 2 1 2 1tx x x x v t tγ ′ ′ ′ ′− = − + −                     (94) 

( )2 1 2 120 t
vt t x x
c

γ  ′ ′ ′ ′= − + − 
 

                     (95) 

( )2 1 2 1
1

t

x x x x
γ

′ ′− = −                         (96) 
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These equations are similar to Equations (49), (50), and (51) in Subsection 3.4, 
respectively. 
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