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Abstract

PNP models with an arbitrary number of positively charged ion species and
one negatively charged ion species are studied in this paper under the as-
sumption that positively charged ion species have the same valence and the
permanent charge is a piecewise constant function. The permanent charge
plays the key role in many functions of an ion channel, such as selectivity and
gating. In this paper, using the geometric singular perturbation theory, a flux
ratio independent of the permanent charge is proved.
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1. Introduction

The cell membrane is a biological membrane that separates the interior of all
cells from the outside environment and protects the cell from its environment.
The cell membrane consists of a lipid bilayer that is semipermeable. It regulates
the transport of materials entering and exiting the cell. Ion channels are large
proteins embedded in cell membranes that have holes open to the inside and the
outside of cells. The charged ions flow through the open channels and represent
an electric current. These currents alter the distribution of charge and the vol-
tage across the membrane is changed. Ionic flow through ion channels can be
described mathematically by the Poisson-Nernst-Planck model [1] [2]. A statio-

nary one-dimensional Poisson-Nernst-Planck model [3] [4] [5] is

1 d ( do 0
—_ g,goh(x)—J: e(Zz.c.(x)+Q(x)}
h(x) dx dx o (L)
dJ; 1 du,
—L= v —Ji T G (X I! =1|21“1n1
dx Ji KT (x)ei )dx
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where @ is the electric potential, C; is the concentration for the ith ion spe-

cies,

is the electrochemical potential, h(x) is the area of the cross-section of the
channel, J, is the flux density, D

is the valence, Q(X) is the permanent charge of the channel, 4 (X)

is the diffusion coefficient, ¢, is the rela-
tive dielectric coefficient, g, is the vacuum permittivity, & is the Boltzmann
constant, 7'is the absolute temperature, and eis the elementary charge.

The boundary conditions are, for i=12,---,n,

®(0)=V, ¢ (0)=L; ®(1)=0, ¢(1)=R,. (1.2)
4 (X) in the classical Poisson-Nernst-Planck model takes the following form
1 (X) = z.ep(x)+KT In@ (1.3)
0

which ¢, isa constant.

The Poisson-Nernst-Planck model (1.1) is actually a simplified model which is
derived from the Maxwell-Boltzmann equations [6] [7] and the Langevin-Poisson
equations [8] [9] by capturing key features. Recently, the Poisson-Nernst-Planck
model (1.1) has been studied [10]-[17] greatly. In [18], under the assumption
Q(X) is a piecewise constant function, the boundary value problems (1.1) and
(1.2) have been analyzed based on the geometric singular perturbation theory
[19] [20] [21]. However, due to the lack of the explicit formula for individual flux,
it is difficult to analyze the properties of individual flux. In this paper, a property
of individual flux, that is, a flux ratio is independent of the permanent charge, is
identified under the following assumptions.

(Al) zy=--=2,,=2>0 and z,<0.

(A2) For O<a, <b <--<a <b <--<a, <b, <1,let Q(x)=0 for
O<x<a; Q(x)=Q, for a, <x<b; Q(x)=0 for b, <x<a; Q(x)=Q
for a <x<b; Q(x)=0 for b <x<a,;; Q(x)=Q, for a, <x<b,;
Q(x)=0 for b, <x<1;where Q,i=1---,m, are constants and m is an arbi-
trary positive integer.

By re-scaling,

b= S0 Ty, KTy T
KT KT e’ ' D
The model (1.1) is reduced to a standard singularly perturbed system of the fol-
lowing
2 d

TR a——

d d
h(x)[d—i1+ zcld—fj =-J,,

dc,_ d¢
h(x)| L=t -y
(x)( i +12C, dxj -

h(x)(%‘i‘ +17,C, j—fj =-J,,
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=g (1.4)

with the boundary condition, for j=1,---,n.
#(0)=V, ¢;(0)=L;, ¢(1)=0, ¢;(1)=R,. (1.5)

Under the assumption that the permanent charge Q(X) is small, the effects
of small permanent charges on individual flux are investigated in [22]. On the
other hand, under the assumption that the permanent charge Q(x) is large,
the effects of large permanent charges on individual flux have been also analyzed
in [23] [24]. Actually, due to the assumption that the permanent charge Q(X)
is small or large, the solutions of (1.4) and (1.5) can be expanded with respect to
Q(X), therefore, the explicit formulae for the zeroth order approximation and
the first order approximation of individual flux can be obtained. Based on these
explicit formulae, the effects of small or large permanent charges on individual
flux can be analyzed in [22] [23] [24].

In this paper, under the assumptions A, and A4, and without the assumption
the permanent charge Q(X) is small or large, although it seems that there is no
methods to get the explicit formula for J, , but it still can be verified that a flux
ratio is independent of Q(X) , that is,

J, _ Rk_l-keZ\7
i+ dy R1+"'+Rn—1_(|‘1+'”+Lnfl)ezv.

(1.6)

The rest of this paper is organized as follows. In Section 2, limiting fast and
slow orbits for (1.4) and (1.5) are constructed. In Section 3, limiting fast and
slow orbits for (1.4) and (1.5) in Section 2 are matched, which results in a series
of very complicated algebraic equations. The main results in this paper are pre-

sented in Section 4. Some conclusions are given in Section 5.

2. Limiting Fast and Slow Orbits for (4)-(5) over [0, 1]
Let u= gdigb , T =X, system (1.4) becomes
X

ep=u, el=-[z6++12,,+2,C,+Q(X)]-ch™(z)h (r)u,
€€, =—zcu—c¢h, (7)J,,

(2.7)

&€,y =—12¢,u—¢h (7)J, 4,
J

g€, =-z,cu—¢h_ (7)J,,
J;=0,,J, =0, 7=1
By using the rescaling X =&& , one has

¢'=u, u'=-[z¢++2¢,,+2C,+Q(x)]-eh™(z)h. (r)u,
¢ =-zcu—c¢h (7)J,,

Chy=-2C,u—¢eh (7)J,
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¢ =-z,c,u—eh (7)J,,

2.8
J/=0,--,3'=0, 7'=e¢ (2.8)

Define

B —{(V u, L1 - n! 1' ",Jn,O)eRZM:arbitraryU,Jl,“':Jn}.
(2.9)
e ={(0.U,R, R, 3y, 3,,1) € RP™ arbitrary u, 3, -+, J, .

Yy 1V

Then a solution to Equations (1.4) and (1.5) is to finding an orbit of Equation
(2.7) or (2.8) from B, to B;.

By letting & =0, we analyze the limiting fast and limiting slow orbits of Equ-
ations (2.7) and (2.8) on intervals [0,a,], [a,b ], [b.a], [a.b], [b.a.].
[ai+1,bi+l] and [bm,l] respectively due to the fact that Q(x) is a piecewise

constant function.

Let ¢(a)=¢%, c,(a)=c, -, c,(a)=c, where ¢%, ¢, -, cJ

are unknowns to be determined. Let

{(¢a' u,c el J e, J 0, ,)eRZM arbitrary u, J, ,- --,Jn}.

Let ¢(bi):¢b‘, c(b)=ct, -, c,(b)=cl, where ¢", ¢, -, c]

are unknowns to be determined. Let

{(¢ u,cl,-, ¢, ;e ,Jn,b,) ]Rzm:arbitraryu,Jl,-~~,Jn}.

Then limiting fast and slow orbits of Equation (2.7) or (2.8) from B, to Bg
will consists of several parts: limiting fast and slow orbits over the interval
[0,8,] connecting orbit from B_ to B,, > limiting fast and slow orbits over the
interval [a;,b] connecting orbit from B, to B, , limiting fast and slow or-
bits over the interval [b,,8] connecting orbit from B, to B, , limiting
fast and slow orbits over the interval [a;,b] connecting orbit from B, to

By, > limiting fast and slow orbits over the interval [b,a,;] connecting orbit
from B, to B, , limiting fast and slow orbits over the interval [ai+1lbi+1]
connecting orbit from B, ~to B, ,and limiting fast and slow orbits over the
interval [b,,1] connecting orbit from B to Bg.

For convenience, let H J h

2.1. Limiting Fast and Slow Orbits on [0,a,] Where Q(x)=

In this section, we will construct limiting fast and slow orbits that connects B
to Bal by letting &£ =0 in Equations (2.7) and (2.8). As shown in [25], limiting
fast and slow orbits that connect B, to B, are satisfied by:

J++J3

01L+"'+Crl1_—1_(cfl’l+"'+Cr?1_'1l> 1 (¢L_¢a1'l>

H(a,) cl Ypegch |
C1 +- +Cn 1
DOI: 10.4236/jamp.2023.111001 4 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2023.111001

G.J. Lin

e (e eora )] o (¢ -e)

n = —

a,l al |’
z,H(a) Incl1 4ot ciy
el
2 gt —g!
J _ e —cre (#h-e™)

Z¢L7¢al,l !
‘J1+ +‘Jn—1 Cf‘l!l+...+C:17’1|_(C1L+...+Cr|]-71)e( )

where k=1,---,n-1 and

z

L _ _ZnLn #n
“ = Ll[Z(L1+'--+ Ln_l)} '

z

7L -7,
L — L Zn n ,
Coa n1|:Z(L1+"'+Ln_1)}

Zn

-7 L z-1,
L:L Zn n ,
G rl[Z(L1+---+Ln_l)

R T
-z, z(L+-+L,)

z

a 7-7,
Cal,l A _chnl '
e N ALY ;
Z{C* +---+C

z

a z-17,
ca1,| _ Ca1 _chn
n-1 n-1 a a '
Z(Cl +'”+Cn—1)

Zn
a z-7,
Cal,l _ Cal _chnl !
n  ~ “n a a !
Z(C* +---+CL

a
¢al,l :¢al _ 1 _chnl
z

In ,
-z, z(clal +-~-+cj{1)

0(0)=san ("~ )2 L+ L (ot +-+ct) ]
U () =san (7~ ) 2 o o (e et )]

(2.10)

(2.11)

2.2. Limiting Fast and Slow Orbits on [b,_;,a;] Where Q(x)=0

In this section, we will construct limiting fast and slow orbits that connects B

to B, byletting £=0 in Equations (2.7) and (2.8). Limiting fast and slow or-

bits that connects B, ~to B, are satisfied by:

@ ey () o )

J++d =

H(ai)_H(bi—l) _|n

Y
bjg.r big.r
(e SRS o
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Lo e -rrsar ] e

‘Jn: - : al ’

zn[H(ai)—H(bi_l)} In ¢ 4y
e ekl | (2.12)

A 2o
‘]k Cl?ivl _CEI—Iyr ( )

e

- _ o g1 —gail)
Do et (e )T

where k=1,---,n-1, i=2,---,m and

i _ b1 —z—zn
chur = Cfi—l Z,Cy
1 I bi_y '
Z({C'™ +--+C o
_ _
_ by z-1,
Cq,l,r — Cb"l chnI
n-1 1 big biy '
z(ct +---+ it
— Zn
_ by z-1,
cblflvr cbm Z,Cy
n n 1
z(cf‘*l +---+ch)
_7 ¢t
¢bi,1,r :¢lh,1 _ 1 In ZnCnI
2-7, 2+ 40 )
z
a 7-2
a4l _ g _ZnCnl !
G =G 3 3 :
z(ch +- ey
z
a z-7,
3l _ Aq _chnI !
Cy =CL|—F—F/————~ '
n n ] Cai
2(cH 4o+l
Zn
a z-7,
Cai,l =cd —Z,C ’
nooTn | T e L e '
z(ch 4l
a
¢aiv| :¢ai _ 1 In _ZnCnI

z-1, Z(Clai +...+C§11)’
u, (bi—l) _ Sgn(¢bi4~f _¢bi71 )\/z[clbl—l R Cr‘]’-—l _(Cfuvf +...+C:i—1vr ):|

u, (ai)zsgn(gﬁai _¢ai~')\/2[cfn +oeetCl _(wa' TS )}

(2.13)

2.3. Limiting Fast and Slow Orbits on [a;,b;] Where Q(x)=Q

In this section, we will construct limiting fast and slow orbits that connects B,
to B, byletting £=0 in Equations (2.7) and (2.8). Limiting fast and slow or-
bits that connect B, to B, are satisfied by:
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Ji+-4+d, .+,
(z-2,)| " +~--+c*n’ti—(cf‘”+-~-+c:t{)}+Qi (' -¢*")
z,[H(b)-H(a)] H(b)-H(a)

2(J 4+ 3,4)+12,9,

#r =g - 22, (3, +---+1,) @214
o z(J1+~--+Jn)(c1”'" +---+c:‘_{)+Qi(J1+---+Jn_1)
z(J1+---+Jn)(cf"r+---+cfj‘[‘1’)+Qi(J1+---+JH)'
J, o —cf""ez(WW)
I+t d e +"'+C:i!1—(°fi'r +,,_+C§31r)ez(¢ai*“¢"“') ,
where k=1---,n-1, i=1---,m and
ch = cf'ez(‘éai 7¢aivr),---,cna';{ = cna‘;lez(w ﬂﬁivr),cna*'r = cf,‘iezn(a’ai 7¢aivr),
¢ = G _¢bi'|),-~-,03‘_’1 _ Cg_lez(¢"‘ ) ¢ = b )
e ez(qﬁai ) s chj‘[lez(‘ﬁai ), z,che” ) Q =0,
bl e g ) g g o

U, (3) =san (97 =" ) 2 4 e~ (G o r i) -Qy (4% -2 |
() =sgn(g” =g ) 2l +-cl = (e el )-Q (47— )|

2.4. Limiting Fast and Slow Orbits on [b,1] Where Q(x)=0

In this section, we will construct limiting fast and slow orbits that connects B,

to B; byletting ¢ =0 in Equations (2.7) and (2.8). Limiting fast and slow or-
bits that connect B, to By are satisfied by:

r

G vl

(cf+---+c§i1)1 z(g" - ¢")

J,++J = _ ,
' " H(1)-H (b,) R
e e CPm

; :Z|:C1R+...+cril_(clbm-r+...+c:Tlvr):| . Zn(¢b’"'r—¢R)

, 2.16
" ACIOECTCS] e, |
ey
bm.r _ 4R
J, B o —cfm"ez(¢ #)
‘]1+'“+‘]n—1 - Z(¢bm’r*¢R),

R R by 1 by 1
Cf 4l = (e ki e

where k=1---,n-1 and

z

_Z Cbm -1y
o =g | ,
by b
z(c] +---+cn_1)
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R -z,R 2
R —R | "% ,
i "IL(R1+--~+RH)}
PR
Z(Ri++R)
1 -Z,R,

¢ :_z—zn In z(R++R,)’

0 (0n) s =g ) 2 s (e e

u(l):sgn(—¢R)\/2[R1+---+ R, —(cf +---+cnR)].

o
Il

3. Matching Limiting Fast and Slow Orbits on [0,1]

Based on Sections 2.1-2.4, to obtain limiting fast and slow orbits from B, to
By » the following algebraic equations should holds simultaneously:
u(a)=u(a),
u (b)=u,(b),

AP (R e . 2(4" -¢*')

J1+---+Jn_1: H(ai) _Inclal,l_i_‘“_i_csl_,ll
4t
Cfi-l'r +...+Crt]’ij"' —(Clai’l +"'+Cr?i’1l) Z(¢bi—1:r _¢ai,|)
B H(a,)—H (b,) G e
Gy
G e (e rel) | 2 )
B H(1)-H (b,) I

by . r by, 1
R
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n— a,l a,l
ZnH (ai) |n (:11 +”'+Cn1_1

L L
C Gy

B e i G | N

J

z[cfi" ety — (P +---+c§ﬁ;§r)} b (¢ )

Zn[H(ai)_H(bi_l)] In Cfi'|+~--+cr?i:ll
e

2,[H(1)-H(b,)] iRt
o e gy

oo v (o eovety)]| n (e -)

Ji+-+d .+,

-7 Clbi’I C:',’l— ar ... C;‘ij i bil _ gair
(2o ) ey (e +r et )| Qo' —g%)
z,[H(b)-H(a)] H(b)-H(a)
2(J+-+3,4)+ 12,9, (3.18)
2z, (3, +---+1,)
Z(‘]1+"'+‘]n)(clbi’|+'”+C:i!i)+Qi(‘]1+"'+‘]n71)
z(J1+-~-+Jn)(cf"'+~--+c§‘;'1r)+Qi(J1+---+JH)

¢b,,| =¢a,,r _

xIn

and

3, Csl'l _Cli_ez(¢L_¢a1,|)

- 7(g- g
‘]1+ +Jn—1 Clal'l+'”+Cr?l!1l_(ClL+'”+CrI1_,1)e( )
b1l

) Csi'l —CEH'reZ((ﬁI 1r_ g )

T . . 2 g2 g
g (@ gy )]

(3.19)
bm.r_ 4R
_ o —c.fm”ez(¢ #)

- R R by r 2(gm T —g*
o ooy — (i e oy )e( )

_ ¢ — cf‘"ez(wf"’b' )

o . . ez
Clb"l+"'+C:|,’i—(clal’r+"‘+Cr?','1r)e( )

Note that the total number of the unknown parameters
$ ,Cfi '...,csi ,¢bi ,Clb‘ '...,csi Ji=1---m
and
I d,

is 2m(n+1)+n. Also, the total number of Equations (3.18) and (3.19) is exactly
2m(n +1) + N, which matches the total number of the unknown parameters.
It can be seen that Equations (3.18) and (3.19) are very complicated nonlinear

algebraic equations, which are intricately difficult to be solved, however, alge-
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braic Equations (3.19) can be solved in the next section.

4. Main Results

In this section, the main results of this paper, that is, the ratio of J, to
Jy+++-+J,, isindependent of the permanent charge Q(X), will be proved. As
shown in the following, to justify the main results, it is sufficient that only Equa-
tions (3.19) are used.
Theorem 4.1. Under the assumptions A, and A,, let ¢ =0 in Equations (2.7)
and (2.8), then one has
J, R -Le?

= —, (4.20)
J++d, R++R—(L++L,,)e”

where K =1,---,n—-1, which indicates that the ratio of J, to J,+---+J,, is
independent of the permanent charge Q(X).

Proof Substitute the formulae for
o, cit ol et et of gt gt g i =1, mik =1 -1

in Equations (2.11), (2.13), (2.15) and (2.17) into algebraic Equations (3.19),

then direct calculations show that

(01ai +---+c§‘i_l)(Rk - LkeN)

cd = —
k Ri+-+R,—(L++L,,)e”
+(Rl+...+Rn71)Lk—(H+"'+Ln71)Rkez(\77¢a‘)
R+ 4R —(L+tL )& '
(e @2y
o[ )R )

Ri++R  —(L++L,,)e”

+(R1 +o R L (L -+ Ln_l)iRk ez(\7—¢bi)
Ri+-+R—(L++L,,)e"

where k=1,---,n-1 and i=1---,m.

Again, substitute the formulae for
c,eli=1---,mk=1--,n-1

in Equations (4.21) into algebraic Equations (3.19), then the statement in Theo-
rem 4.1 can be obtained. O

Remark 4.2. The remain parameters C +---+¢%,, %, cM +-..+ch,, c7,
J++J3. 4, J,» o, ¢b‘ Ji=1---,m, are determined by nonlinear algebraic
Egquations (3.18), and it seems that it is extremely difficult to get the explicit

formulae for these parameters.

5. Conclusion

In this paper, PNP models with an arbitrary number of positively charged ion
species and one negatively charged ion species are investigated under the as-

sumptions A4, and A,. By using the geometric singular perturbation theory and
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solving Equations (3.19), it is proved that the ratio of J, to J, +---+J, , is
independent of the permanent charge Q(X). Also, it can be seen that although
Equations (3.18) are not used in the proof of Theorem 4.1, the number of solu-
tions to the boundary value problems (1.1) and (1.2) is determined by Equations
(3.18). However, due to the fact that Equations (3.18) are very sophisticated al-
gebraic equations, it is very challenging to solve Equations (3.18).
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