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Abstract 
By applying a boundary condition for vorticity [1] in addition to that for ve-
locity, a velocity distribution on a flat plate set in a parallel homogeneous flow 
has been numerically obtained through a one-way calculation from surface to 
infinity, without the “matching” procedure between an analysis from surface 
to infinity and that from infinity to surface. The numerical results obtained 
were in excellent agreement with those by Howarth [2]. The usage of the 
boundary condition for vorticity has raised the accuracy of velocity distribu-
tion near a plate’s surface and made it possible to realize the one-way calcula-
tion from surface to infinity. 
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1. Introduction 

It is recognized in a world of the present fluid dynamics that the boundary con-
ditions for the conventional vorticity, ≡ ×uω ∇ , at the interface between two 
phases, say phase-A and phase-B, do not provide new information because the 
difference between the vorticity flux carried into the surface of phase-A’s side of 
the interface and that carried out of the surface of phase-B’s side of the interface 
is a result of the baroclinic generation of vorticity in the interface where the val-
ue of density jumps in an infinitesimal distance, and the value of the baroclinic 
generation is a poteriori after the flow field has been determined otherwise [3]. 
Here, ω  and u  respectively denote the conventional vorticity vector and a 
velocity vector of fluid, and the word “flux” means a transporting rate of a phys-
ical quantity through a unit area of the surface in unit time. 

Recently, it was found for a newly defined vorticity, ( )ρ≡ × uω ∇ , as a natu-
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ral consequence inherent in transporting phenomena of angular momentum in 
fluid, that the normal component of vorticity is completely transferred from one 
phase to the other due to the shear forces working at both sides of an interface, 
and that the tangential components of vorticity flux are perfectly shut off at an 
interface between two phases [1]. Here, ω  and ρ  respectively denote the newly 
defined vorticity vector and a density of the fluid. The latter finding for the tan-
gential components of vorticity works as a boundary condition for vorticity. 

The main purpose of this work is to evaluate the availability of the boundary 
condition for vorticity by numerically calculating a velocity field on a flat plate 
fixed in a parallel homogeneous flow, XU∞=U i , where, Xi  and U∞  are a unit 
vector along the X-axis parallel to the homogeneous flow and an X-component 
of the homogeneous flow, respectively.  

It is well known that the velocity distribution in a boundary layer on a flat 
plate set in a parallel homogeneous flow is numerically obtained as a solution of 
Blasius’s equation [4] by using the boundary condition for the velocity at a sur-
face of the plate and that in a region infinitely far from the surface. However, it 
took around 30 years to refine the calculation to be capable of reliable results [2] 
[4] [5] [6] [7] because it was not an easy task to combine a velocity profile far 
from the plate’s surface and that in a vicinity of the surface. A long history con-
cerning the improvement of the solution is briefly summarized by Schlichting 
[8]. 

The paper is organized as follows. In Section 2, the equation of vorticity 
transport is transcribed for a two-dimensional flow on the flat plate by using a 
stream function ( ) ( )0.5 ,xU fψ ν ξ η∞= , to a differential equation of f with two  

non-dimensional variables, 
U t

x
ξ ∞=  and 

0.5Uy
x

η
ν

∞ =  
 

, and a non-dimensio- 

nal parameter, 
xU
να

∞

= . Here, t, x, y and ν, respectively, are time, a tangential  

distance along the X-axis from the front edge of the plate, a normal distance 
from the plate’s surface and a kinematic viscosity of fluid defined as a ratio of 
viscosity to density. The contents of the equation are composed of two parts; one 
is with α, and the other is without α. Admitting the boundary condition for vor-
ticity, it is shown in subsection 2.1 that Blasius’s equation, which is a basic equa-
tion for a flow in a boundary layer on a flat plate, is a mathematical consequence 
of the part without α. 

Basic concepts for the numerical calculation are described in Section 3, focus-
ing on boundary conditions for velocity and vorticity (subsection 3.1), a frame 
work for the discretization (subsection 3.2), values of f near the plate’s surface 
(subsection 3.3) and a summary of the one-way calculation route from the 
plate’s surface to infinity (subsection 3.4). 

In Section 4, numerical results are obtained through the one-way calculation 
route. A solution to Blasius’s equation is obtained in subsection 4.1, which ex-
cellently agrees with the previous results by Howarth [2]. It is also illustrated in 
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the subsection that the boundary condition for vorticity raises the accuracy of 
the preliminarily given values of f near the plate’s surface and makes the one-way 
calculation route capable of obtaining a reliable solution. A solution to the equa-
tion of vorticity transport is obtained in subsection 4.2, which agrees well with 
the solution of Blasius’s equation. Here again, the one-way calculation provides 
reliable results. Velocity distributions near the front edge of the plate are first 
obtained in this subsection. 

A present understanding of the one-way calculation is briefly outlined in Sec-
tion 5, and the concluding remarks are summarized in Section 6. 

Since the flat plate is assumed to be fixed, the shear force working at the sur-
face of the plate is a matter of a posteriori, to be calculated after the velocity field 
has been obtained. A pressure field is not discussed here, but it can be obtained 
by introducing the velocity distribution into the Navier-Stokes equation, if ne-
cessary. 

2. Equation of Vorticity Transport 

For incompressible fluid with constant viscosity, the vorticity transport equation 
is given by Equation (1): 

( ){ } ( ){ } ( )
t

ρ µ∂  = ⋅ × − ⋅ × + ⋅ ×   ∂
u u u u uω

∇ ∇ ∇ ∇ ∇ ∇ ∇ .     (1) 

Here, ω  and µ  are the newly defined vorticity and viscosity of fluid, respec-
tively. Though the newly defined vorticity is used here, it is easily confirmed that 
(1) can be obtained from the conventional equation of vorticity transport by 
changing the definition of vorticity. 

A velocity field on a flat plate set in a homogeneous parallel flow, XU∞=U i , 
becomes two-dimensional with X- and Y-components of velocity as X Yu v= +u i i . 
Here Y-axis is perpendicular to the plate’s surface, and Xi  and Yi  are unit 
vector along X-and Y-axes, respectively. Equation (1) can be simplified by using 
the stream function, ( ) ( )0.5 ,xU fψ ν ξ η∞= . 

The values of u and v are given by (2) and (3), respectively. 

( ) ( )0.5 1fu xU U f
y y
ψ ην

η∞ ∞
∂ ∂ ∂

= = =
∂ ∂ ∂

.                 (2) 

 

( ){ } ( )

( )( )

0.5 0.5

0.5
11

2
.

fv f xU xU
x x x

U f f
x

ψ ην ν
η

ν
η

∞ ∞

∞

∂ ∂ ∂ ∂
= − = − −

∂ ∂ ∂ ∂

 = − 
 

          (3)
 

Here, ( )1 ff
η
∂

≡
∂

. 

Equation (1) is transformed to (4) for incompressible fluid with constant vis-
cosity. 

( )( ) ( )1 221 1 1
4 4

f f fα η αη
ξ
∂   − − − +  ∂   
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 42 2 3 4

1 2 3 1 1 1 22 2

2 3 4 3 1 2 42

15 15 45 7 1
16 16 16 8 16
3 3 1 3 3
8 8 8 8 8

3 5 1 1 1
2 2 2 2 2

.

f f f f f

ff ff ff f f f f

f f f ff f f f

α η η η η

α η η η η

η η

= − − − −



 
 


+ − − − −


− − − + − − −



  
  
  

   (4)

 

Here, ( )
2

2
2

ff
η
∂

≡
∂

, ( )
3

3
3

ff
η
∂

≡
∂

, ( )
4

4
4

ff
η
∂

≡
∂

, 
xU
να

∞

= , 
0.5Uy

x
η

ν
∞ =  

 
 and 

U t
x

ξ ∞= . A calculating process leading to (4) is shown in Appendix.  

Equation (4) is a differential equation for a function f, the value of which de-
pends on two variables, η and ξ, and a parameter α. Since the value of α depends 
solely on x, the value of f is obtained by integrating (4) with respect to two va-
riables, η and ξ, keeping the value of α constant corresponding to a certain dis-
tance x from a front edge of the plate. The right-hand side of (4) is composed of 
three terms. The first and second terms are accompanied with parameter α. The 
third term does not contain α, and becomes dominant when 1α  .  

It is seemingly necessary to integrate (4) for various values of α, but the val-
ue of α is very small in most practical cases. If we take 6 2 11 10 m sν − −= ⋅×  and 

5 2 11 10 m sν − −= ⋅×  for liquid and gas, respectively, as their representative values, 
the value of α at 21 10 mx −= ×  becomes 10−4 and 10−3 for liquid and gas, re-
spectively, for 11 m sU −

∞ = ⋅ . The more become the values of U∞  and x, the 
smaller becomes the value of α. Then, we need not care for a contribution of α, 
except when investigating very slow flow or flow near the front edge of the plate.  

Blasius’s Equation 

Assuming 1α  , (5) is obtained from (4) for a stationary flow. 

( ) ( ) ( ) ( )3 1 2 41 10
2 2

ff f f f= + + .                    (5) 

Equation (6) is obtained by integrating (5) with respect to η. 
( ) ( )2 32ff f A+ = .                          (6) 

Here, A is an integral constant. 
The boundary condition for vorticity is given by (7) [1]. 

0 ω= ×n F , on an interface.                     (7) 

Here, n  is a unit normal vector at an interface, and ωF  is a total vorticity flux 
at an interface, given by (8).  

( )( ){ } ( )( ){ } ( ){ }ω ρ ρ µ = ⋅ × − × + × F n u u u u u∇ ∇ ∇ ∇ .       (8) 

A vorticity flux is an amount of vorticity transported through a unit area in 
unit time. Equation (7) means that tangential components of vorticity do not go 
through an interface between two phases. 

Let us transform (8) and (7) for a present target by using the stream function, 
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( ) ( )0.5 ,xU fψ ν ξ η∞= .  

( )( ){ } ( )( ){ } ( ){ }

( ) ( ){ }

2 2 2 2

2 2

2 2

2

Y Z X X Z Z Y Y Z

X Z Y Z

Z

v u u v
x y

v u v u
x y x yx y

v u v uv v
x y x y y

ω ρ ρ µ

ρ

µ

ρ µ

 = ⋅ × − × + × 
   ∂ ∂ = ⋅ − − + −   ∂ ∂    

   ∂ ∂ ∂ ∂
+ − + −   ∂ ∂ ∂ ∂∂ ∂   

   ∂ ∂ ∂ ∂ = − − + −   ∂ ∂

  
 

 

∂ ∂ ∂   

 

 



F n u u u u u

i i i i i i i i i

i i i i

i

∇ ∇ ∇ ∇

.         (9)

 

2 2

2

2 2

2 at

0

0.

Y Z

X

v u v uv v
x y x y y

v u v uv v y
x y x y y

ω

ρ µ

ρ

= ×

    ∂ ∂ ∂ ∂ = × − − + −    ∂ ∂ ∂ ∂ ∂      
   ∂ ∂ ∂ ∂ = − − + − =   ∂ ∂ ∂ ∂ ∂     

n F

i i

i             (10)

 

Following relations are obtained from (2) and (3). 

( ) ( )1 2
2

1
4

v y fU f f
x x

η
η∞
 ∂

= − − 
∂  

.                 (11) 

( )
0.5

2Uu U f
y xν

∞
∞

∂  =  ∂  
.                     (12) 

( ) ( ){ }
2

2 32
2

1 1 3
4

v U f f
x y x

η η∞
∂

= − −
∂ ∂

.               (13) 

( )
2

3
2

Uu U f
xy ν
∞

∞
∂

=
∂

.                      (14) 

Equation (15) is obtained by introducing (11), (12), (13) and (14) into (10). 

( ) ( )2 321 10
8 2

f ff fα= − + + , at 0η = .             (15) 

Equation (15) is the boundary condition for vorticity.  
For a case where 1α  , (16) is obtained. 

( ) ( )2 310
2

ff f= + , at 0η = .                 (16) 

Then, the value of the integral constant in (6) is zero, and the Blasius’s equation 
is obtained. 

( ) ( )2 32 0ff f+ = .                       (17) 

3. Basic Concepts for Numerical Calculation 
3.1. Boundary Conditions for Velocity and Vorticity 

Equations (18) and (19) hold because the values of u and v are zero at a surface 
of the plate. 
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0f = , at 0η = .                      (18) 

( )1 0f = , at 0η = .                      (19) 

Equation (20) is obtained by introducing (18) into the boundary condition for 
vorticity, (15). 

 ( )3 0f = , at 0η = .                      (20) 

Another boundary condition is given by (21), because the flow field should 
coincide with the original flow, XU∞=U i , in a region infinitely far from the 
plate. 

( ) ( )1 1f η→ →∞ .                     (21) 

3.2. Discretization 

Let us set lattice points along η axis denoting the value of f at jη δ=  as jf . 
Here, δ is a distance between two adjacent lattice points. Equations (22)-(26) are 
obtained as Taylor expansions of f around a point jη δ= .  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5

1 2 3 4 5 6
2

2 2 2 22
1! 2! 3! 4! 5!j j j j j j jf f f f f f f O

δ δ δ δδ δ− = − + − + − + . (22) 

( ) ( ) ( ) ( ) ( )
2 3 4 5

1 2 3 4 5 6
1 1! 2! 3! 4! 5!j j j j j j jf f f f f f f Oδ δ δ δ δ δ− = − + − + − + .      (23) 

( ) ( ) ( ) ( ) ( )
2 3 4 5

1 2 3 4 5 6
1 1! 2! 3! 4! 5!j j j j j j jf f f f f f f Oδ δ δ δ δ δ+ = + + + + + + .      (24) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5

1 2 3 4 5 6
2

2 2 2 22
1! 2! 3! 4! 5!j j j j j j jf f f f f f f O

δ δ δ δδ δ+ = + + + + + + . (25) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 3 4 5

1 2 3 4 5 6
3

3 3 3 33
1! 2! 3! 4! 5!j j j j j j jf f f f f f f O

δ δ δ δδ δ+ = + + + + + + . (26) 

Here, j jf f
η δ=

≡ , ( )1 d
d j

j
ff

η δη =

≡ , ( )
2

2
2 d

dj
j

ff
η δη =

≡ , ( )
3

3
3 d

dj
j

ff
η δη =

≡ ,  

( )
4

4
4 d

dj
j

ff
η δη =

≡  and ( )
5

5
5 d

dj
j

ff
η δη =

≡ , and 6Oδ  is a sum of residual terms the  

value of which is an order of 6δ . By using (22)-(26), the values of ( )1
jf , ( )2

jf , 
( )3
jf  and ( )4

jf  can be approximated in terms of 2jf − , 1jf − , jf , 1jf + , 2jf +  
and 3jf + . 

( ) ( )1 1
1 21

2 j jjf f f Oδ
δ − += − + + .                   (27) 

( ) ( ) 2
2

2
1 1

1 2j j jjf f f f Oδ
δ − += − + + .                (28) 

( ) ( ) 2
2 1 1 23

3 1 2 2
2 j j jj jf f f f f Oδ
δ − − + += − + − + + .           (29) 

 ( ) ( ) 2
1

4
2 1 24

1 4 6 4j j j j jjf f f f f f Oδ
δ − − + += − + − + + .         (30) 
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Here, 2Oδ  is a sum of residual terms with an order of 2δ . 

3.3. Velocity Distribution near Plate’s Surface 

Equations (31)-(33) are obtained from (24)-(26), by applying the boundary con-
ditions (18)-(20). 

( )
0

4
1

221
2

f f Oδ δ= + .                      (31) 

( )
0

2 4
2

22f f Oδ δ= + .                      (32) 

( )
0

4
3

229
2

f f Oδ δ= + .                      (33) 

The values of 1f , 2f  and 3f  are respectively given by ( )2 2
0

1
2

fδ , ( )2
0

22 fδ  

and ( )2 2
0

9
2

fδ , with a relative error 2Oδ , that is 1% for 0.1δ = . 

3.4. Calculating Route 

We already know that 0 0f = , ( )
01

221
2

f fδ= , ( )
02

222f fδ=  and ( )
03

229
2

f fδ= .  

Then, the value of jf  for 4j ≥  are to be obtained by using a discretized equa-
tion of vorticity transport. Our target has thus come down to iteratively determine 
the value of ( )2

0f  which leads to a numerical sequence, 0 1 2 1, , , ,, ,j jf f f f f +  ,  

satisfying a relation, ( ) 2
1 1

1 1
2 j jf f Oδ
δ − +− + = + , for sufficiently large j. 

4. Numerical Results 
4.1. Blasius’s Equation 

Let us obtain a numerical solution to Blasius’s equation first. Equation (34) is 
obtained as Blasius’s equation discretized at a lattice point jη δ= .  

( ) ( )2 30 2j j jf f f= + .                        (34) 

By using (28) and (29), the right-hand side of (34) can be given in terms of 

2jf − , 1jf − , jf , 1jf +  and 2jf + , and (35) is obtained. 

( )2 2 1 1 1 12 2 2j j j j j j j j j jf f f f f f f f f fδ+ − − + − += − + − − + .        (35) 

The values of 0f , 1f , 2f  and 3f  are given by (18), (31), (32) and (33). Then, the 
value of ( )4jf j ≥  can be obtained by iteratively using (35) for arbitrary values 
of ( )2f  and δ . 

In Figure 1, numerical results of ( )1f  for ( )2
0 0.2f = , 0.3 and 0.4 are shown. 

Obviously, the value of ( )1f  is approaching to a constant value corresponding 
to each value of ( )2

0f . If we suppose that 2 2j jf f β− = − , 1j jf f β− = −  and 

1j jf f β+ = + , it is easily confirmed that (35) gives a relation 2 2j jf f β+ = + . 
Then, once 2jf − , 1jf − , jf  and 1jf +  are on a straight line in a figure of f vs. η, 
the following value of ( )1if i j> +  is also on the same straight line. Hence, the 
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Figure 1. Dependence of numerical results on the value of ( )2
0f , for 0.1δ = . 

 
values of ( )1

jf  in the final stage of the calculation generally satisfy a relation, 
( ) 21
jf Oβ δ= + , for several consecutive lattice numbers. In this work, the value 

of β  for each assumed value of ( )2
0f  was determined when the condition, 

( ) 21
jf Oβ δ= + , was satisfied for 5 or more consecutive lattice numbers. The ex-

act value of ( )2f  was fixed by the try-and-error method to realize 1β = .  
Numerical values are shown in Table 1, together with the previous results by 

Howarth cited in Boundary Layer Theory [8]. Obviously, the numerical results 
of this work and those by Howarth excellently agree with each other.  

Blasius first presented Blasius’s equation and obtained its solution by 
matching a series expansion around 0η =  and an asymptotic expansion for 
η  very large [4]. It was not an easy task to obtain a solution of Blasius’s equa-
tion and various researchers attempted to improve the analytical approach in 
following several decades, as briefly reviewed in Boundary Layer Theory [8], in 
which Howarth’s solution [2] was cited as one of the most precise work among 
them. 

Considering that the calculation route taken here is very simple, it is astonishing 
that the numerical results of this work excellently agree with those by Howarth. 
The calculation route in this work is straightforward. It starts from preliminarily  

given values 0 0f = , ( )
01

221
2

f fδ= , ( )
02

222f fδ=  and ( )
03

229
2

f fδ= , and calc-  

ulates the values of ( )4if i ≥  by iteratively using discretized Blasius’s equation. 
The matching process between an analysis from the plate’s surface to infinity 
and that from infinity to the surface is not necessary at all. The boundary condi-
tion for vorticity has been applied here in addition to the boundary conditions 
for velocity, and sufficiently accurate numerical values of 0f , 1f , 2f  and 3f  
have been preliminarily given. This is the reason why such a simple and straight- 
forward calculation route leads to the accurate numerical values. If the boundary  

0
0
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Table 1. Numerical results for 0.1δ =  and ( )2
0 0.332f = . 

η 
f  ( )1f  

Howarth this work Howarth this work 

0.4 0.02656 0.02656 0.13277 0.13278 

0.8 0.10611 0.10611 0.26471 0.26470 

1.2 0.23795 0.23796 0.39378 0.39377 

1.6 0.42032 0.42037 0.51676 0.51676 

2.0 0.65003 0.65012 0.62977 0.62977 

2.4 0.92230 0.92245 0.72899 0.72898 

2.8 1.23099 1.23121 0.81152 0.81149 

3.2 1.56911 1.56939 0.87609 0.87604 

3.6 1.92954 1.92986 0.92333 0.92326 

4.0 2.30576 2.30611 0.95552 0.95543 

4.4 2.69238 2.69273 0.97587 0.97577 

4.8 3.08534 3.08567 0.98779 0.98770 

5.2 3.48189 3.48221 0.99425 0.99417 

5.6 3.88031 3.88061 0.99838 0.99742 

6.0 4.27964 4.27993 0.99898 0.99894 

6.4 4.67938 4.67964 0.99961 0.99961 

6.8 5.07928 5.07951 0.99987 0.99993 

7.2 5.47925 5.47940 0.99996 1.00021 

7.6 5.87924 5.87918 0.99999 1.00086 

8.0 6.27923 6.27846 1.00000 1.00314 

 
condition for vorticity was known at the beginning of 20th century, the solution 
of the Blasius’s equation could have been easily obtained. 

4.2. Equation of Vorticity Transport 

Equation (36) is the equation of vorticity transport for a stationary flow discre-
tized at a lattice point jη δ= . 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 42 3 4

1 2 3 1 1 1 22 2

2 3 42

3

3 1 4

2

2

15 15 45 7 10
16 16 16 8 16
3 3 1 3 3
8 8 8 8 8

3 5 1 1 1
2 2 2 2 2

.

j j j j j j

j j j j j j j j

j j j

j j j j j

j

j

j j j j j j jj j

f f f f f

f f f f f f f f f f

f f f f f f f f

α η η η η

α η η η η

η η

= − − − −

+ − − − −

− −

 
 
 




  
  
 

− + −


− −

 (36)

 

By using (27)-(30), the right-hand side of (36) can be given in terms of 2jf − , 

1jf − , jf , 1jf +  and 2jf + , and (37) is obtained. Then, a calculation route for 
the equation of vorticity transport becomes similar with that for Blasius’s equ-
ation. 
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The value of 2jf +  given by (37) is with 2Oδ  error, because the residual terms, 
2Oδ , in (27)-(30) have been neglected. We already have the values of 0f , 1f , 2f   

and 3f  as 0, ( )2 2
0

1
2

fδ , ( )2
0

22 fδ  and ( )2 2
0

9
2

fδ , respectively. Then, the value  

of ( )4jf j ≥  can be obtained by iteratively using (37) for arbitrary values of 
( )2f  and δ .  
As for the judgement of the final stage of the numerical calculation, we need 

to separately treat two cases; 0α =  and 0α ≠ . 
when α = 0, 
Equation (37) is simplified to (38). 

2 2 1 1

2 1 1 1 1 1 1

1 4 6 4
11
4

1 1 1 .
4 4 4

j j j j j

j

j j j j j j j j j j

f f f f f
f

f f f f f f f f f f

δ

δ

+ − − +

− − − − + + +


= × −



+ − +
+


+ + − + − 

 




    (38)

 

If we suppose that 2 2j jf f β− = − , 1j jf f β− = −  and 1j jf f β+ = + , it is easily 
confirmed that (38) gives a relation 2 2j jf f β+ = + . This means that 2jf +  is 
also on the same straight line in a figure of f vs. η . Then, the value of ( )2

0f  can 
be determined so as to realize a condition, ( )1 21jf Oδ= + , just like the numerical 
calculation for Blasius’s equation. Numerical results agree with those for Blasius’s 
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equation as shown in Table 2.  
Numerical results for the equation of vorticity transport are rather scattered 

but agree well with those for Blasius’s equation. The preliminarily given values 
of 0f , 1f , 2f  and 3f  are thus shown to be sufficiently accurate to hold the 
one-way calculating route for the equation of vorticity transport. 

when α ≠ 0, 
The condition, ( ) ( )1 1f η→ →∞ , means that the values of 2jf − , 1jf − , jf  

and 1jf +  can be given by 2jf δ− , jf δ− , jf  and jf δ+ , respectively in 
the final stage of the calculation. Let us examine whether (37) fits to the condi-
tion, ( ) ( )1 1f η→ →∞ . 

Equation (39) is obtained by introducing 2 2j jf f δ− = − , 1j jf f δ− = − , 

1j jf f δ+ = + , and 2 2j jf f β+ = +  into (37).  

( )

( )

4

2 2 4 3 2

3

15 3
16 8

1 1 1 7 5 2
8 2 8

.

8 2

1

j j

j j j j j j

f

f

O

η α α
β δ δ

αη δ δ α η η δ α η δ η

δ δ

 − + 
 = +

   + + + + + 
 
 

+   
   

= +  (39)

 

 
Table 2. Numerical data for 0α =  ( 0.1δ = ).    

η 

α = 0  

Equation (38) ( ( )2
0f  = 0.332) Equation (35) ( ( )2

0f  = 0.332) 

f  ( )1f  f  ( )1f  

0.4 0.02656 0.13277 0.02656 0.13278 

0.8 0.10613 0.26481 0.10611 0.26470 

1.2 0.23807 0.39407 0.23796 0.39377 

1.6 0.42064 0.51732 0.42037 0.51676 

2.0 0.65068 0.63065 0.65012 0.62977 

2.4 0.92343 0.73019 0.92245 0.72898 

2.8 1.23274 0.81302 1.23121 0.81149 

3.2 1.57159 0.87788 1.56939 0.87604 

3.6 1.93290 0.92546 1.92986 0.92326 

4.0 2.31008 0.95806 2.30611 0.95543 

4.4 2.69785 0.97890 2.69273 0.97577 

4.8 3.09215 0.99132 3.08567 0.98770 

5.2 3.49023 0.99834 3.48221 0.99417 

5.6 3.89045 1.00232 3.88061 0.99742 

6.0 4.29186 1.00451 4.27993 0.99894 

6.4 4.69395 1.00584 4.67964 0.99961 

6.8 5.09649 1.00677 5.07951 0.99993 

7.2 5.49932 1.00736 5.47940 1.00021 

7.6 5.90233 1.00760 5.87918 1.00086 

8.0 6.30534 1.00739 6.27846 1.00314 
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Here, 3Oδ  on the right-hand side is an error term, which is sufficiently small 
to assure that once 2jf − , 1jf − , jf  and 1jf +  are on a straight line with gra-
dient unity in a figure of f vs. η, the values of ( )1if i j> +  are on the same 
straight line. Then, the value of ( )2

0f  can be determined so as to realize a condi-
tion, ( )1 21jf Oδ= + , for several consecutive lattice points. 

Numerical results for 0.1α =  and 1.0α =  are shown in Figure 2 together 
with those for 0α = . Since ( )2

0f  is closely related to a shear force at the plate’s  

surface as ( )
0

0

2
0

.5

s
y

Uu U f
y x

τ µ µ
ν

∞
∞

=

∂  = =  ∂  
, it is easily seen in Figure 2 that the  

shear force becomes greater for a larger value of α, that is, in the vicinity of the 
front edge of the plate. Numerical data are tabulated in Table 3. These are the 
first obtained velocity distributions in the vicinity of the front edge of the plate. 
Velocity distributions for an arbitrary value of α can be easily obtained in the 
same way, if necessary. 
 
Table 3. Numerical results for 0.1α = , 1.0α =  ( 0.1δ = ). 

η 
α = 0 ( )( )2

0 0.332f =  α = 0.1 ( )( )2
0 0.48f =  α = 1.0 ( )( )2

0 1.01f =  

f  ( )1f  f  ( )1f  f  ( )1f  

0.4 0.02656 0.13277 0.03839 0.19176 0.08063 0.39980 

0.8 0.10613 0.26481 0.15287 0.37911 0.31168 0.73474 

1.2 0.23807 0.39407 0.34009 0.55371 0.65135 0.93650 

1.6 0.42064 0.51732 0.59308 0.70631 1.04457 1.00984 

2.0 0.65068 0.63065 0.90140 0.82913 1.44976 1.00707 

2.4 0.92343 0.73019 1.25213 0.91812 
  

2.8 1.23274 0.81302 1.63173 0.97401 
  

3.2 1.57159 0.87788 2.02780 1.00177 
  

3.6 1.93290 0.92546 2.43054 1.00864 
  

4.0 2.31008 0.95806 2.83300 1.00172 
  

4.4 2.69785 0.97890 
    

4.8 3.09215 0.99132 
    

5.2 3.49023 0.99834 
    

5.6 3.89045 1.00232 
    

6.0 4.29186 1.00451 
    

6.4 4.69395 1.00584 
    

6.8 5.09649 1.00677 
    

7.2 5.49932 1.00736 
    

7.6 5.90233 1.00760 
    

8.0 6.30534 1.00739 
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Figure 2. Velocity distributions for 0α = , 0.1α =  and 1.0α = . 

5. One-Way Calculation Route from Surface to Infinity 

The matching procedure between an analysis from surface to infinity and that 
from infinity to the surface has been believed to be a theoretical core in studying 
force acting on the surface or a velocity distribution near the surface. For in-
stance, the Saffman force acting on a spherical particle set in a shear flow was 
obtained by matching the inner expansion and the outer expansion of a flow 
field [9], and the matching procedure was inevitable for previous works on the 
numerical solution of the Blasius’s equation briefly illustrated in Boundary Layer 
Theory [8]. However, a reliable numerical solution of Blasius’s equation, which 
excellently coincides with Howarth’s solution, has been obtained in this work 
following a one-way calculation route from surface to infinity without the match-
ing process.  

The one-way calculation taken here is composed of four steps. The first step is 
to arbitrarily set the values of δ  and ( )2

0f . Since the numerical values treated 
here are involving 2Oδ  relative error, the value of δ should be sufficiently 
smaller than unity. The second step is to give the values of 0f , 1f , 2f  and 3f   

as 0, ( )2 2
0

1
2

fδ , ( )2
0

22 fδ  and ( )2 2
0

9
2

fδ , respectively, on the basis of boundary  

conditions for velocity and vorticity. The third step is to obtain the value of jf  
for 4j ≥  by iteratively using the discretized basic equation, and the final step is 
to fix the value of ( )2

0f  so as to satisfy the remaining boundary condition, 
( ) ( )1 1f η→ →∞ .  
Considering that the value of ( )2

0f  is directly related to the shear force on the 
plate’s surface, these aspects of the one-way calculation seem to reflect a given 
nature of a flow field, that is, the velocity distribution in a vicinity of a surface is 
exactly corresponding to a flow field far from the surface through the basic equ-

0
0
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ation governing the flow field. We may become capable of obtaining the velocity 
distribution on the basis of the equation of vorticity transport and the boundary 
conditions for velocity and vorticity without the help of the matching procedure.  

It may be meaningful to point out here that the same values, ( )2 2
0

1
2

fδ , ( )2
0

22 fδ  

and ( )2 2
0

9
2

fδ  for 1f , 2f  and 3f , respectively, can also be obtained as appro-  

ximated values with relative error Oδ , by applying (24), (25) and (26) for 
0j = . Then, it is mathematically possible without a help of the boundary condi-

tion for vorticity to take the same simple calculation route as that taken in this 
work. The reason why no one has tried this before is that the values of 1f , 2f  
and 3f  thus given are involving Oδ  relative error, which does not fit the fol-
lowing more precise calculation with 2Oδ  relative error. The boundary con-  

dition for vorticity made us believe the values, ( )2 2
0

1
2

fδ , ( )2
0

22 fδ  and ( )2 2
0

9
2

fδ   

respectively for 1f , 2f  and 3f  are with 2Oδ  relative error, and encouraged 
us to take a simple and straightforward calculation route from surface to infinity, 
with 2Oδ  relative error. 

6. Concluding Remarks 

By admitting the boundary condition for vorticity, the following results have 
been obtained. 

1) Blasius’s equation, which is a basic equation for a flow in a boundary layer 
on a flat plate, is a mathematical consequence of the equation of vorticity  

transport for a case where 1
xU
να

∞

=  . 

2) A velocity field in a boundary layer can be easily obtained by one-way cal-
culation from the surface of the plate to infinity, without the “matching” proce-
dure between an analysis from surface to infinity and that from infinity to sur-
face.  

3) Numerical results for Blasius’s equation excellently agreed with Howarth’s 
results [2] cited in Boundary Layer Theory [8]. 

4) When 0α = , the numerical solution of the equation of vorticity transport 
well coincides with those for Blasius’s equation.  

5) Velocity profiles for 0.1α =  and 1.0α = , which are velocity profiles in 
the vicinity of the front edge of the plate, were obtained. 

It has been confirmed that the boundary condition for vorticity raises the pre-
cision of a preliminarily given velocity profile near an interface and considerably 
improves numerical calculations as shown in this work for Blasius’s equation 
and the equation of vorticity transport. As for the analytical approach, the boun-
dary condition for vorticity played a conclusive role in determining the values of 
integral constants in a general solution representing a flow field surrounding a 
fluid particle set in a simple shear flow [1]. 

The boundary condition for vorticity is expected to help us in investigating 
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flow fields under the influence of surfaces of the container, conduit, rotating 
blade, dispersed particles and so on. It should also play an important role in 
pursuing a shape of deforming interface between two fluids. Furthermore, a new 
approach may be developed in the near future, where a velocity distribution is 
obtained first as a solution to the equation of vorticity transport by using boun-
dary conditions for velocity and vorticity and a pressure field next by introduc-
ing the velocity distribution into the Navier-Stokes equation.  
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By introducing Equation (A7) into Equation (A4); 
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By introducing (2), (3) and (A7) into (A9); 
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Here, (A2) and (A3) have been used. 
By introducing (A11) and (A12) into (A10); 
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From (A7); 
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Here, (A2) and (A3) have been used. 
By introducing (A15) and (A16) into (A14); 
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Then; 
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By introducing (A8), (A13) and (A18) into (1); 
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Hence, (4) is obtained. 
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