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Abstract

By applying a boundary condition for vorticity [1] in addition to that for ve-
locity, a velocity distribution on a flat plate set in a parallel homogeneous flow
has been numerically obtained through a one-way calculation from surface to
infinity, without the “matching” procedure between an analysis from surface
to infinity and that from infinity to surface. The numerical results obtained
were in excellent agreement with those by Howarth [2]. The usage of the
boundary condition for vorticity has raised the accuracy of velocity distribu-
tion near a plate’s surface and made it possible to realize the one-way calcula-
tion from surface to infinity.

Keywords

Equation of Vorticity Transport, Blasius’s Equation, Boundary Condition for
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1. Introduction

It is recognized in a world of the present fluid dynamics that the boundary con-
ditions for the conventional vorticity, @ =V xU, at the interface between two
phases, say phase-A and phase-B, do not provide new information because the
difference between the vorticity flux carried into the surface of phase-A’s side of
the interface and that carried out of the surface of phase-B’s side of the interface
is a result of the baroclinic generation of vorticity in the interface where the val-
ue of density jumps in an infinitesimal distance, and the value of the baroclinic
generation is a poteriori after the flow field has been determined otherwise [3].
Here, @ and u respectively denote the conventional vorticity vector and a
velocity vector of fluid, and the word “flux” means a transporting rate of a phys-
ical quantity through a unit area of the surface in unit time.

Recently, it was found for a newly defined vorticity, @ =V x(pu), as a natu-
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ral consequence inherent in transporting phenomena of angular momentum in
fluid, that the normal component of vorticity is completely transferred from one
phase to the other due to the shear forces working at both sides of an interface,
and that the tangential components of vorticity flux are perfectly shut off at an
interface between two phases [1]. Here, @ and p respectively denote the newly
defined vorticity vector and a density of the fluid. The latter finding for the tan-
gential components of vorticity works as a boundary condition for vorticity.

The main purpose of this work is to evaluate the availability of the boundary
condition for vorticity by numerically calculating a velocity field on a flat plate
fixed in a parallel homogeneous flow, U =i,U_, where, iy, and U_ are a unit
vector along the X-axis parallel to the homogeneous flow and an X-component
of the homogeneous flow, respectively.

It is well known that the velocity distribution in a boundary layer on a flat
plate set in a parallel homogeneous flow is numerically obtained as a solution of
Blasius’s equation [4] by using the boundary condition for the velocity at a sur-
face of the plate and that in a region infinitely far from the surface. However, it
took around 30 years to refine the calculation to be capable of reliable results [2]
[4] [5] [6] [7] because it was not an easy task to combine a velocity profile far
from the plate’s surface and that in a vicinity of the surface. A long history con-
cerning the improvement of the solution is briefly summarized by Schlichting
(8].

The paper is organized as follows. In Section 2, the equation of vorticity
transport is transcribed for a two-dimensional flow on the flat plate by using a

stream function y = (vXUQ0 )0‘5 f (5,77) , to a differential equation of fwith two

0.5
) . . u . .
non-dimensional variables, £ =—=t and 7 =Y| —| ,and a non-dimensio-
X VX

v . . .
nal parameter, a = TR Here, t, x, yand v, respectively, are time, a tangential
X

distance along the X-axis from the front edge of the plate, a normal distance
from the plate’s surface and a kinematic viscosity of fluid defined as a ratio of
viscosity to density. The contents of the equation are composed of two parts; one
is with a, and the other is without a. Admitting the boundary condition for vor-
ticity, it is shown in subsection 2.1 that Blasius’s equation, which is a basic equa-
tion for a flow in a boundary layer on a flat plate, is a mathematical consequence
of the part without a.

Basic concepts for the numerical calculation are described in Section 3, focus-
ing on boundary conditions for velocity and vorticity (subsection 3.1), a frame
work for the discretization (subsection 3.2), values of fnear the plate’s surface
(subsection 3.3) and a summary of the one-way calculation route from the
plate’s surface to infinity (subsection 3.4).

In Section 4, numerical results are obtained through the one-way calculation
route. A solution to Blasius’s equation is obtained in subsection 4.1, which ex-

cellently agrees with the previous results by Howarth [2]. It is also illustrated in
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the subsection that the boundary condition for vorticity raises the accuracy of
the preliminarily given values of fnear the plate’s surface and makes the one-way
calculation route capable of obtaining a reliable solution. A solution to the equa-
tion of vorticity transport is obtained in subsection 4.2, which agrees well with
the solution of Blasius’s equation. Here again, the one-way calculation provides
reliable results. Velocity distributions near the front edge of the plate are first
obtained in this subsection.

A present understanding of the one-way calculation is briefly outlined in Sec-
tion 5, and the concluding remarks are summarized in Section 6.

Since the flat plate is assumed to be fixed, the shear force working at the sur-
face of the plate is a matter of a posteriors, to be calculated after the velocity field
has been obtained. A pressure field is not discussed here, but it can be obtained
by introducing the velocity distribution into the Navier-Stokes equation, if ne-

cessary.

2. Equation of Vorticity Transport

For incompressible fluid with constant viscosity, the vorticity transport equation
is given by Equation (1):
%’:p[V-{(Vxu)u}—V-{u(qu)}}+yV-[V(qu)]. (1)
Here, @ and u are the newly defined vorticity and viscosity of fluid, respec-
tively. Though the newly defined vorticity is used here, it is easily confirmed that
(1) can be obtained from the conventional equation of vorticity transport by
changing the definition of vorticity.

A velocity field on a flat plate set in a homogeneous parallel flow, U =i,U_,
becomes two-dimensional with X- and Y-components of velocity as u=i,u+i,Vv.
Here Y-axis is perpendicular to the plate’s surface, and i, and i, are unit
vector along X-and Y-axes, respectively. Equation (1) can be simplified by using
the stream function, w =(vxU, )0'5 f(&m).

The values of zand vare given by (2) and (3), respectively.

uza_'/’:(vxuw)‘)'sﬂa_”:uwf“). (2)
oy on oy
oy 0 05 05 Of On
=——1 —_f= U —(vxU o
Y OX ax{(vx <) } (rxU..) on ox
1, 05 o
35 1) ¥
Here, fmzﬂ.
on

Equation (1) is transformed to (4) for incompressible fluid with constant vis-

o|_1 o) 1 @)
%{—Za(nf —f)—(zan +1jf
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2(15f_15 (o _45
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5, 15 (@ T ace_ 1 4f(4>j (4)
16 167 16 g "

3 3 1 3 3
tal 2 @_» ﬁ(z)__ 2 i (3 _»° f(l)f(l) _9 2f(1)f(2)
a[s g’ g 8" 8"

2 3 4 0.5
Here, f(z)Eﬂ, f(B)Eﬂ f(4)56 f a=—2" > U:y(u_;j and
» v

é= UT‘”t . A calculating process leading to (4) is shown in Appendix.

Equation (4) is a differential equation for a function £ the value of which de-
pends on two variables, 77 and & and a parameter a. Since the value of a depends
solely on x, the value of fis obtained by integrating (4) with respect to two va-
riables, 7 and & keeping the value of a constant corresponding to a certain dis-
tance x from a front edge of the plate. The right-hand side of (4) is composed of
three terms. The first and second terms are accompanied with parameter a. The
third term does not contain a, and becomes dominant when o <«1.

It is seemingly necessary to integrate (4) for various values of a, but the val-
ue of a is very small in most practical cases. If we take v =1x10°m?.s™ and
v =1x10°m?-s for liquid and gas, respectively, as their representative values,
the value of @ at x=1x10?m becomes 10 and 10~ for liquid and gas, re-
spectively, for U_ =1m-s™. The more become the values of U, and x, the
smaller becomes the value of a. Then, we need not care for a contribution of a,

except when investigating very slow flow or flow near the front edge of the plate.

Blasius’s Equation

Assuming o <1, (5) is obtained from (4) for a stationary flow.
o=tge lios@ @ 5)
2 2

Equation (6) is obtained by integrating (5) with respect to 7.
ff® 210 = A, (6)
Here, A is an integral constant.

The boundary condition for vorticity is given by (7) [1].

0=nxF_, on an interface. (7)

Here, n is a unit normal vector at an interface, and F_ is a total vorticity flux

at an interface, given by (8).
F = n[{(Vx u)(pu)f={(pu)(Vxu)}+v{v x(yu)}} . (8)

A vorticity flux is an amount of vorticity transported through a unit area in
unit time. Equation (7) means that tangential components of vorticity do not go
through an interface between two phases.

Let us transform (8) and (7) for a present target by using the stream function,
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w=(vxU, )0'5 f(¢,

).
F, = ”'E{(VXU)(pU)}—{(PU)(VXU)}+V{VX(HU)}J
—i, .{p{[%_%uj{u(izix iy )+ (igy —yi )}}

Mo " axay ) < axay oy? )"

—J_ V@_Va_u + 8_2\/_@ i (9)
7P oy My o [
0=nxF,
=i, x|{— vﬂ—va—u+ _azv —@ i
Y 1% x oy H oxoy oy z
v ou o’v  dlu)|.
Lolvaioy o oo "
Following relations are obtained from (2) and (3).
%:%uwx—i{%—f“)—m@}. (11)
0.5
%:Uw[%j @, (12)
ov 1, 1
_axay =Zuw7{—3nf(2) —nzf(s)} . (13)
2
2y—f=quVJ—;f<3>. (14)

Equation (15) is obtained by introducing (11), (12), (13) and (14) into (10).
0=—%af2+%ff(2)+f(3),at n=0. (15)

Equation (15) is the boundary condition for vorticity.
For a case where «a <1, (16) is obtained.

O:%ff(2)+f(3),at n=0. (16)

Then, the value of the integral constant in (6) is zero, and the Blasius’s equation

is obtained.

ff@ 420 0. (17)

3. Basic Concepts for Numerical Calculation

3.1. Boundary Conditions for Velocity and Vorticity

Equations (18) and (19) hold because the values of z and vare zero at a surface
of the plate.
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f=0,at n=0. (18)

f9=0,at 7=0. (19)

Equation (20) is obtained by introducing (18) into the boundary condition for
vorticity, (15).

£ =0,at n=0. (20)

Another boundary condition is given by (21), because the flow field should

coincide with the original flow, U =i,U_, in a region infinitely far from the

plate.
fO 51 (7> w). (1)

3.2. Discretization

Let us set lattice points along 7 axis denoting the value of fat 7= jo as f;.
Here, Jis a distance between two adjacent lattice points. Equations (22)-(26) are

obtained as Taylor expansions of faround a point 7= jJ.

2 3 4 5
f. —f.—ﬁfﬂ%(w) f.<2>—(25) f.(3)+(25) f.(4)—(2§) £ +06°. (22)

T 21 31 T 51
e S g 89,8 w8 e, age
fjfl_fj_ﬁfj +Efj —Efj +Efj __|fl +00°. (23)
2 3 4 5
fia=1; +éf-(1)+6—f-(2)+5—f-(3)+5— f-(4)+5—f.(5)+056. (24)
* LA YR A T B TR B TR
25Y 25Y’ 25) 25Y
= f, 42250, 20 ¢ (20) (@ (29) fu (29) (o1, 050 (25)
* 1 21 31 41 51

2 3 4 5
f = fj +£ fj(1) + (35) fj(z) + (35) fl_(3) 4 (35) fj(4) " (35) fj(5) +06°. (26)
1! 2! 3! 41 51!

y  df g d°f g  Of
Here, f;=f] ;> i()Ed_ : fi()Ed 2| > fi()Ed_3 )
M5 T lp-is T ly=is
4f 5f
fj(4) - d - and f j(s) Ed—5 ,and O8° is a sum of residual terms the
d’] n=jé n n=js
value of which is an order of &°. By using (22)-(26), the values of fj(l) , fj(z) s
fj(s) and fj(4) can be approximated in terms of f,_,, f,,, f,, f_,, f,,
and f;,,.
m_1 2
£ _%(—fjfl+ fi,1)+065%. 27)
2 1 2
fj():?(fj_l—2f1+fj+l)+05 . (28)
3 1 )
fl_()=2—53<—fj72+2fj71—2fj+1+fj+2)+o5 : (29)
1
== (f,—4f, +6f,—4f, +f,)+05". (30)
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Here, 052 isa sum of residual terms with an order of §2.

3.3. Velocity Distribution near Plate’s Surface

Equations (31)-(33) are obtained from (24)-(26), by applying the boundary con-
ditions (18)-(20).
1

f = 552 £ +05*. (31)
f, =262 % +065*. (32)
f = %52 £2 405" . (33)

The values of f,, f, and f; are respectively given by %52 fo(z), 267 fo(z)

and %52 fo(z) , with a relative error O&?, thatis 1% for & =0.1.

3.4. Calculating Route

1
We already know that f, =0, f = 552 fO(Z) , f,=25° fo(z) and f, = %52 fo(z) .

Then, the value of f; for j>4 are to be obtained by using a discretized equa-
tion of vorticity transport. Our target has thus come down to iteratively determine
the value of fo(z) which leads to a numerical sequence, fy, f;, f,,---, f;, f;,;,--,

satisfying a relation, %(— fo+f M) =1+062, for sufficiently large /.

4. Numerical Results

4.1. Blasius’s Equation

Let us obtain a numerical solution to Blasius’s equation first. Equation (34) is

obtained as Blasius’s equation discretized at a lattice point 7= jJ.
0=f,f%+2£0. (34)

By using (28) and (29), the right-hand side of (34) can be given in terms of

2> fi4> £, f, and f;,,,and (35) is obtained.

J J
flo="f—2f +2f, —5(f 0 -2 f+ff,). (35)

f

The values of f,, f;, f, and f, aregiven by (18), (31), (32) and (33). Then, the
value of f,(j>4) can be obtained by iteratively using (35) for arbitrary values
of % and 5.

In Figure 1, numerical results of fO for fo(z) =0.2, 0.3 and 0.4 are shown.
Obviously, the value of £ s approaching to a constant value corresponding
to each value of fo(z). If we suppose that f, ,=1f,-28, f =1 -p and

f

Then, once fj_z, fj—l’ f

ju = f;+ B, it is easily confirmed that (35) gives a relation f, ,=f,+25.

; and f, , areon a straight line in a figure of £vs. 7,
the following value of f; (i > j+1) isalso on the same straight line. Hence, the
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F fo? =04
e rf
1 0 ; o4 fO(Z) 0 3_‘
{ @ =02
'll' / ‘/ - T
l" v 7
0.5 v ’
/ / /
; /
! /
! /
l" /
i
I’l /
II L
I |
0 ——>
0 5 10 n

Figure 1. Dependence of numerical results on the value of f(?, for §=0.1.

values of f j(l) in the final stage of the calculation generally satisfy a relation,
f j(l) = f+00°, for several consecutive lattice numbers. In this work, the value
of B for each assumed value of fo(z) was determined when the condition,
f j(l) = f+006?, was satisfied for 5 or more consecutive lattice numbers. The ex-
act value of f? was fixed by the try-and-error method to realize f=1.

Numerical values are shown in Table 1, together with the previous results by
Howarth cited in Boundary Layer Theory [8]. Obviously, the numerical results
of this work and those by Howarth excellently agree with each other.

Blasius first presented Blasius’s equation and obtained its solution by
matching a series expansion around 7 =0 and an asymptotic expansion for
n very large [4]. It was not an easy task to obtain a solution of Blasius’s equa-
tion and various researchers attempted to improve the analytical approach in
following several decades, as briefly reviewed in Boundary Layer Theory [8], in
which Howarth’s solution [2] was cited as one of the most precise work among
them.

Considering that the calculation route taken here is very simple, it is astonishing
that the numerical results of this work excellently agree with those by Howarth.

The calculation route in this work is straightforward. It starts from preliminarily
1 9
given values f, =0, f, = 552 fo(z) , T, =267 fo(z) and f; = 552 fo(z) , and calc-

ulates the values of f; (i >4) by iteratively using discretized Blasius’s equation.
The matching process between an analysis from the plate’s surface to infinity
and that from infinity to the surface is not necessary at all. The boundary condi-
tion for vorticity has been applied here in addition to the boundary conditions
for velocity, and sufficiently accurate numerical values of f,, f, f, and f,
have been preliminarily given. This is the reason why such a simple and straight-

forward calculation route leads to the accurate numerical values. If the boundary
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Table 1. Numerical results for 6§ =0.1 and ¥ =0.332.

f f ()

7 Howarth this work Howarth this work
0.4 0.02656 0.02656 0.13277 0.13278
0.8 0.10611 0.10611 0.26471 0.26470
1.2 0.23795 0.23796 0.39378 0.39377
1.6 0.42032 0.42037 0.51676 0.51676
2.0 0.65003 0.65012 0.62977 0.62977
2.4 0.92230 0.92245 0.72899 0.72898
2.8 1.23099 1.23121 0.81152 0.81149
3.2 1.56911 1.56939 0.87609 0.87604
3.6 1.92954 1.92986 0.92333 0.92326
4.0 2.30576 2.30611 0.95552 0.95543
4.4 2.69238 2.69273 0.97587 0.97577
4.8 3.08534 3.08567 0.98779 0.98770
5.2 3.48189 3.48221 0.99425 0.99417
5.6 3.88031 3.88061 0.99838 0.99742
6.0 4.27964 4.27993 0.99898 0.99894
6.4 4.67938 4.67964 0.99961 0.99961
6.8 5.07928 5.07951 0.99987 0.99993
7.2 5.47925 5.47940 0.99996 1.00021
7.6 5.87924 5.87918 0.99999 1.00086
8.0 6.27923 6.27846 1.00000 1.00314

condition for vorticity was known at the beginning of 20th century, the solution

of the Blasius’s equation could have been easily obtained.

4.2. Equation of Vorticity Transport

Equation (36) is the equation of vorticity transport for a stationary flow discre-

tized at a lattice point 7= jJ .

_( P B 45 o) 1o 1 oac
O=a (16 f 167 f 167 f gl f 167 fi (36)
3w 3 @_1 2cc@_ 3 0w _3 2:m¢)
+0‘(8 fif; 8’7jfjfj gl fi f; 877,-f,- f; g/l fif;
3f@ 0 @ 1 2c leso liwe@_ @

By using (27)-(30), the right-hand side of (36) can be given in terms of fjf2 R
f f.
J bl

the equation of vorticity transport becomes similar with that for Blasius’s equ-

i1 f,,, and f,,, and (37) is obtained. Then, a calculation route for

ation.
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_ 37)
Iz 7 1 5 1 1 (
a’ (77?5+n?j+a(n15+nfj+l+(anf +j5fj

7 1 5 1
xHaz (Brﬁﬁ—ﬁn}‘j+a(znj5—§77jzj—l} fi

15 45 7,01
(B 50 Bt Toss Lo
{ 3217 T1671% Tglio Ty

+a[—%52 —gnj5+2qu+4} fiy

15 , 45 3
+{a2 (554 +§qfa‘2 —gq;‘jm(saz —377].2)—6} f.

15 45 7,1
+ia?| -=n0*——nis’ +=nls+=n’
{ 32117 T1g"h% TR

32,5 2 1 ,. 1
+a(—55 +E77](5+277jj+4}fj+l+(aEnj§+Z5 foj

3 3 1
+{a(_§n]5+ﬁnfj+2}5fjlfjl

3 3 1 3
+{a(—ﬁé‘z —gnjé‘—gnjzj—l}é‘fj_lfj +aEnj52 fj_1 fj+1

3 2 3 2 3 1 2
+azryj5 fjfj+{a[ﬁé' —5771-5+577j +1p0f,f,,

3 3 1
+{a(—§ﬂj5—5ﬂ?j—z}5ﬁ-+lfi+l:|.

The value of f; , given by (37) is with Oo ? error, because the residual terms,
062, in (27)-(30) have been neglected. We already have the valuesof f,, f,, f,

1 9
and f; as 0, 552 fo(z), 26° fo(z) and 552 fo(z), respectively. Then, the value

of f,(j>4) can be obtained by iteratively using (37) for arbitrary values of
f® and 5.
As for the judgement of the final stage of the numerical calculation, we need
to separately treat two cases; o =0 and a#0.
when a =0,
Equation (37) is simplified to (38).
fm:;x{—fj_z+4fj_1—6fj+4fj+1 (38)

1+15f4
4 ]

1 1 1

+6(Z fi,f, +Z fof - +ff, 2 fj+1fj+1j}'
If we suppose that f, , =f,-248, f,,
confirmed that (38) gives a relation f

=f,—p and f,, =1 +p,itiseasily
= f, +24 . This means that f; , is
also on the same straight line in a figure of fvs. 7. Then, the value of fo(z) can

j+2

be determined so as to realize a condition, f ]-(1) =1+062, just like the numerical

calculation for Blasius’s equation. Numerical results agree with those for Blasius’s
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equation as shown in Table 2.

Numerical results for the equation of vorticity transport are rather scattered
but agree well with those for Blasius’s equation. The preliminarily given values
of f,, f,, f, and f; are thus shown to be sufficiently accurate to hold the
one-way calculating route for the equation of vorticity transport.

when a # 0,

The condition, f® —1(5 — ), means that the values of fio fis 1

and f;,, can be given by f;-26, f;-&, f; and f;+5, respectively in

the final stage of the calculation. Let us examine whether (37) fits to the condi-
tion, " —1(n—>®).

Equation (39) is obtained by introducing f;, ,=1f;-25, f,,=1;-5,
fo=f;+d,and f,,=1 +28 into(37).
(f;-n )(15“ +3ja
p=o+—r 1 1 167 ; 5 a
f; (8a771-25+25)+ a’ (877;‘ +8nf5j+a(2qj5+77j2)+ 2
=5(1+06°). (39)
Table 2. Numerical data for ¢ =0 (J=0.1).
a=0
7 Equation (38) ( f? =0.332) Equation (35) ( f? =0.332)
f @ f O
0.4 0.02656 0.13277 0.02656 0.13278
0.8 0.10613 0.26481 0.10611 0.26470
1.2 0.23807 0.39407 0.23796 0.39377
1.6 0.42064 0.51732 0.42037 0.51676
2.0 0.65068 0.63065 0.65012 0.62977
2.4 0.92343 0.73019 0.92245 0.72898
2.8 1.23274 0.81302 1.23121 0.81149
3.2 1.57159 0.87788 1.56939 0.87604
3.6 1.93290 0.92546 1.92986 0.92326
4.0 2.31008 0.95806 2.30611 0.95543
4.4 2.69785 0.97890 2.69273 0.97577
4.8 3.09215 0.99132 3.08567 0.98770
5.2 3.49023 0.99834 3.48221 0.99417
5.6 3.89045 1.00232 3.88061 0.99742
6.0 4.29186 1.00451 4.27993 0.99894
6.4 4.69395 1.00584 4.67964 0.99961
6.8 5.09649 1.00677 5.07951 0.99993
7.2 5.49932 1.00736 5.47940 1.00021
7.6 5.90233 1.00760 5.87918 1.00086
8.0 6.30534 1.00739 6.27846 1.00314
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Here, O5° on the right-hand side is an error term, which is sufficiently small

to assure that once f,,, f;;, f, and f,, are on a straight line with gra-

dient unity in a figure of fvs. 5, {che values of f,(i> j+1) are on the same
straight line. Then, the value of fo(z) can be determined so as to realize a condi-
tion, f j(l) =1+06?, for several consecutive lattice points.

Numerical results for ¢ =0.1 and o =1.0 are shown in Figure 2 together

with those for a =0. Since fo(z) is closely related to a shear force at the plate’s

05
ou u
surfaceas 7,=pu— =uU_ (—‘”j fo(z) , it is easily seen in Figure 2 that the

VX

y=0
shear force becomes greater for a larger value of g, that is, in the vicinity of the
front edge of the plate. Numerical data are tabulated in Table 3. These are the
first obtained velocity distributions in the vicinity of the front edge of the plate.
Velocity distributions for an arbitrary value of a can be easily obtained in the

same way, if necessary.

Table 3. Numerical results for ¢ =0.1, =10 (6=0.1).

a=0 (,7=0332) a=01 (f,”=048) a=10 (f,%=101)

7 f @ f @ f O
0.4 0.02656 0.13277 0.03839 0.19176 0.08063 0.39980
0.8 0.10613 0.26481 0.15287 0.37911 0.31168 0.73474
1.2 0.23807 0.39407 0.34009 0.55371 0.65135 0.93650
1.6 0.42064 0.51732 0.59308 0.70631 1.04457 1.00984
2.0 0.65068 0.63065 0.90140 0.82913 1.44976 1.00707
2.4 0.92343 0.73019 1.25213 0.91812
2.8 1.23274 0.81302 1.63173 0.97401
3.2 1.57159 0.87788 2.02780 1.00177
3.6 1.93290 0.92546 2.43054 1.00864
4.0 2.31008 0.95806 2.83300 1.00172
4.4 2.69785 0.97890
4.8 3.09215 0.99132
5.2 3.49023 0.99834
5.6 3.89045 1.00232
6.0 4.29186 1.00451
6.4 4.69395 1.00584
6.8 5.09649 1.00677
7.2 5.49932 1.00736
7.6 5.90233 1.00760
8.0 6.30534 1.00739
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Figure 2. Velocity distributions for ¢ =0, a=0.1 and a=1.0.

5. One-Way Calculation Route from Surface to Infinity

The matching procedure between an analysis from surface to infinity and that
from infinity to the surface has been believed to be a theoretical core in studying
force acting on the surface or a velocity distribution near the surface. For in-
stance, the Saffman force acting on a spherical particle set in a shear flow was
obtained by matching the inner expansion and the outer expansion of a flow
field [9], and the matching procedure was inevitable for previous works on the
numerical solution of the Blasius’s equation briefly illustrated in Boundary Layer
Theory [8]. However, a reliable numerical solution of Blasius’s equation, which
excellently coincides with Howarth’s solution, has been obtained in this work
following a one-way calculation route from surface to infinity without the match-
ing process.
The one-way calculation taken here is composed of four steps. The first step is
to arbitrarily set the values of § and fo(z) . Since the numerical values treated

here are involving O&? relative error, the value of & should be sufficiently
smaller than unity. The second step is to give the values of f,, f, f, and f,

1 9
as 0, 552 fo(z) , 267 fo(z) and 552 fo(z) , respectively, on the basis of boundary

conditions for velocity and vorticity. The third step is to obtain the value of f;

for j>4 by iteratively using the discretized basic equation, and the final step is

to fix the value of fo(z) so as to satisfy the remaining boundary condition,
£ —>1(n—> o).

Considering that the value of fo(z) is directly related to the shear force on the
plate’s surface, these aspects of the one-way calculation seem to reflect a given
nature of a flow field, that is, the velocity distribution in a vicinity of a surface is
exactly corresponding to a flow field far from the surface through the basic equ-
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ation governing the flow field. We may become capable of obtaining the velocity
distribution on the basis of the equation of vorticity transport and the boundary

conditions for velocity and vorticity without the help of the matching procedure.

1
It may be meaningful to point out here that the same values, 55 2 fo(z) , 26° fo(z)

9
and 552 fo(z) for f,, f, and f,, respectively, can also be obtained as appro-

ximated values with relative error O, by applying (24), (25) and (26) for
j =0. Then, it is mathematically possible without a help of the boundary condi-
tion for vorticity to take the same simple calculation route as that taken in this
work. The reason why no one has tried this before is that the values of f,, f,
and f, thus given are involving OJ relative error, which does not fit the fol-

lowing more precise calculation with O&” relative error. The boundary con-
1 9

dition for vorticity made us believe the values, Eé‘ 2 fo(z) , 267 fo(z) and 55 2 fo(z)

respectively for f,, f, and f, are with OS> relative error, and encouraged

us to take a simple and straightforward calculation route from surface to infinity,

with O8° relative error.

6. Concluding Remarks

By admitting the boundary condition for vorticity, the following results have
been obtained.

1) Blasius’s equation, which is a basic equation for a flow in a boundary layer
on a flat plate, is a mathematical consequence of the equation of vorticity

v
transport for a case where o = U < 1.
X

2) A velocity field in a boundary layer can be easily obtained by one-way cal-
culation from the surface of the plate to infinity, without the “matching” proce-
dure between an analysis from surface to infinity and that from infinity to sur-
face.

3) Numerical results for Blasius’s equation excellently agreed with Howarth’s
results [2] cited in Boundary Layer Theory [8].

4) When « =0, the numerical solution of the equation of vorticity transport
well coincides with those for Blasius’s equation.

5) Velocity profiles for a=0.1 and a =1.0, which are velocity profiles in
the vicinity of the front edge of the plate, were obtained.

It has been confirmed that the boundary condition for vorticity raises the pre-
cision of a preliminarily given velocity profile near an interface and considerably
improves numerical calculations as shown in this work for Blasius’s equation
and the equation of vorticity transport. As for the analytical approach, the boun-
dary condition for vorticity played a conclusive role in determining the values of
integral constants in a general solution representing a flow field surrounding a
fluid particle set in a simple shear flow [1].

The boundary condition for vorticity is expected to help us in investigating
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flow fields under the influence of surfaces of the container, conduit, rotating
blade, dispersed particles and so on. It should also play an important role in
pursuing a shape of deforming interface between two fluids. Furthermore, a new
approach may be developed in the near future, where a velocity distribution is
obtained first as a solution to the equation of vorticity transport by using boun-
dary conditions for velocity and vorticity and a pressure field next by introduc-

ing the velocity distribution into the Navier-Stokes equation.
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Appendix
Basic relations
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0 05 os df On
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o l1(w \°
w_vYlz ® f(l)_f
OX ax{z( X j (77 )}

U A LI B LN IV R
4% " 4\ vx XU,
05
a_u:i{uwf(l)}zuw(uij £ (A6)
oy oy VX

Hence;

05
@_@:(U_wj u, 1 (nf(l)_f)_ 1L,72+1 fOL (A7)
ox oy VX 4 xU 4 xU

By introducing Equation (A7) into Equation (A4);

b0 (U Y .. of[ 1 1
Zopl==| Ui, —|{-=a(nt¥ -t -(— 2+1)f(2) A8
at p(vxj “atH 2e(nfO 1) e (49)

1%
Here, a =——.
xU

0

Vxu=i, (%—%j

(qu)u:{iz[@_a_uj}(ile‘ivv):izixu(@_a_uj"'izivv[g_a_uj
ox oy ox oy ox oy

.. fov ou) .. (ov au
u(Vxu)=iyiu| ——— |+iyi,v| ———
ox oy ox oy
Hence;

Then;
V{(Vxu)u-u(Vxu)}

{ 8[8v auj a(av auﬂ
=i, |[U=—| ——— [+V—| ——— (A9)
ox\ ox oy oy\ox oy

By introducing (2), (3) and (A7) into (A9);
V-{(Vxu)u-u(Vxu)}
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S T U 2C A - R SRS P JC B A T SR P
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Here, (A2) and (A3) have been used.
By introducing (A11) and (A12) into (A10);
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Here, (A2) and (A3) have been used.
By introducing (A15) and (A16) into (A14);
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By introducing (A8), (A13) and (A18) into (1);
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Hence, (4) is obtained.
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Here, o =

0
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