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Abstract

In this paper, we study an elliptic equation with four distinct real roots and
obtain five new solutions to this type of elliptic equation. Using these ob-
tained new elliptic function solutions we can construct a series of explicit ex-
act solutions for many nonlinear evolution equations. As examples, we choose
combined KdV-MKdV equation, a fourth-order integrable nonlinear Schrédin-
ger equation and generalized Dullin-Gottwald-Holm equation to demonstrate
the effectiveness of these new elliptic function solutions. These new elliptic
function solutions can be applied to many other nonlinear evolution equa-
tions.

Keywords

Elliptic Equation, Periodic Wave Solution, Singular Wave Solution,
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1. Introduction

Nonlinear phenomena exist in many fields of natural science, such as quantum
mechanics, condensed matter, optics, electromagnetism, fluid dynamics, biology,
chemistry, geography, atmospheric circulation, etc., which are essentially go-
verned by nonlinear evolution equations. As traveling waves continue to be dis-
covered in the motion of particles, it is becoming more and more important to
find new traveling wave solutions, which may help us to explore complex physi-
cal laws and reveal the mysterious nature of matter motion. It is an important
and interesting task to study exact traveling wave solution for nonlinear evolu-

tion equations. Unfortunately, it is worth noting that there is no one unique
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method that can solve all nonlinear evolution equations, which led to appearing
a number of methods, such as the Jacobi elliptic function method [1], the op-

tional decoupling condition approach [2] the homogeneous balance method [3],

!

improved simple equation method [4], E-expansion method (5] [6] [7], Hi-

rota bilinear form [8] [9], improved E—expansion method [10], Truncation

Painleve expansion method [11], homotopy perturbation method [12], varia-
tional method [13], Backlund transformation [14] [15].

In [16], the author considered the elliptic equation as following:

9= 8\/00 +Cl(/’+cz§02 +C3§03 +C4¢74 > (1.1)

where &’ =1. The author devised a new unified algebraic method, which is called
fan sub-equation mapping method. The core of this method is to use solutions
of a general elliptic equation to construct solutions of nonlinear evolution equa-
tions. When at least two of the five parameters of ¢,, ¢, ¢,, ¢;, and ¢, are
zero, the author got a lot of results. This method has been shown to be very effi-
cient for constructing solutions to nonlinear evolution equations [17] [18] [19]
[20] [21]. In [22], the author studied the following elliptic equations
2

@ =hy+ho+he’ +he’ +he' = (r+p(p+qg02) (1.2)

and
2
(9,2 =hy +hl¢+hs¢3 +h4¢74 2(7’+p(/7+(](02) > (1.3)

where h, =r>, h =2rp, h,=2rq+p>, hy=2pq, h,=q". In [23], the au-
thors discussed the elliptic equation as follows:

¢ =Ap+Bp’ +C¢’ + Dp* + E =D(¢—71)(¢—71)(¢_72)(¢’_7_2)’

where B=-A(2-m’), C=24(1-m’), D=-A(1-m"), E=-2

4
O<m<1. y, and y, arethe complex conjugates of y,, y,, respectively. The
authors obtained four new unbounded singular solutions for Equation (1.4). In

[24], the author considered the following equation
9" =Ap(p-a)(o-a)(9-a), (15)

where ¢, <, <a;. The author got five different periodic solutions for Equa-
tion (1.5).

In this paper, we consider the elliptic equation as following:
(9/2 :A((p—al)(¢—a2)((p—a3)((o—a4), (1.6)

where ¢, <a, <a,; <a,. Obviously, Equation (1.6) is a generalization of equa-
tion Equation (1.5). Next, we will give three new periodic solutions and two new
singular solutions for Equation (1.6). In addition, we will use these new solutions
to construct traveling wave solutions for combined KdV-MKdV equation, a

fourth-order integrable nonlinear Schrodinger equation and generalized Dul-
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lin-Gottwald-Holm equation.

2. New Solutions for Equation (1.6)

With the help of Maple, we obtain the following new solutions of Equation (1.6):

1) When 4> 0, there exist two unbounded singular solutions as follows:

a, (o, —ay,)sn’ [ﬂéﬂ,kJ—a, (e, —a4)

o(&)= 2.1)

(o, —a,)s [éﬂk} a, +a,

and

(2.2)

where ﬂ=\/(a4—az)(as—a1)’ kz\/(a3:0!z)(a4_0!1)’

p(&) e (—o0,0 |U[a,,+0). sn(--) isan elliptic integral of the first class.

2) When 4> 0, there exists one bounded periodic solution as follows:

o (a, —ay)sn’ {\/szﬁak]_az (o —a;)

(2, —a)sn’ (ffﬁ,k}—al +a,

o(&)= . (&) ela,a], (23)

where ﬂ:\/(%_az)(%_%)» k:\/(%—az)(a;;—al)'

(a4 _az)(a3 _al)

3) When A <0, there are two bounded periodic solutions as follows:

a, (e —a,)sn’® (\/;_Afﬁ,k}ral(az -a,)

(e —az)an[\/;_Afﬂ,kijaz -a,

o(¢)= o(¢)elaa] 29

and

o, (cty —t, ) sm [J_:ﬂkJ (@ —ay)

(e —a4)sn2(\/;_A§ﬂ,kJ—a2 +a,

o(&)= o) ela.a,], (25)

where ﬂ:\/(%_az)(%_oﬁ)» k:\/(a4_a3)(a2_al)'

(a4 _az)(as _al)
Interestingly, these two different periodic solutions are parametric symmetry.

That is to say, the solution (2.4) are converted to (2.5) through the mutual re-
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placement o, <> «a, and o, & a;.

3. The Elliptic Equation Method and Its Apllications
3.1. The Ellipse Equation Method

For a given nonlinear evolution equation, say in two independent variables
Q(u,ut,ux,u”,utx,uxx,um,---)=0, (3.1)
ou(x,1) ou(x,t)

where u, :6— > U, 5
t X

tions of Equation (3.1) can be expressed as follows:

u(x’t)=“(§)=g/3iso[(§), (3.2)

. We assume that the travelling wave solu-

where &=x—ct, cis wave speed. (&) satisfy Equation (1.6) and the follow-

ing equation:
" 3 34 5 A
0'(5)=249" (£)=—10" (&) + 4720 (€)= 7 (33)

where y, =a,+o,+a,+a, , v, =oa, oo to o0 Fa 0 a0,
v, =a o0+ a0, +a o0, +a,a;a,. The Nis a positive integer that can be
determined by balancing the liner term of highest order with the nonlinear
term in Equation (3.1). With the help of Maple, substituting (3.2), Equation
(1.6) and Equation (3.3) into Equation (3.1), and setting the coefficients of ¢’
in the obtained system of equations to zero, we obtain a set of algebraic equa-
tions with respectto c,4,a,,a,,0;,2,, 5, -, By . These equations can be solved
by Grobner basis elimination method. Finally, substituting each solution of these
algebraic equations into (3.2) and using the solutions of Equation (1.6), some
new parameter expressions of travelling wave solutions for Equation (3.1) can be

obtained.

3.2. Combined KdV-MKdV Equation
Combined KdV-MKdV equation [16] usually expressed in the following form:
u, (x,t) + pu (x,t)ux (x,t) + qu2 (x,t)ux (x,t) +u,, (x,t) =0, (3.4)

where p, g are constant parameters. Equation (3.4) has been studied by some
authors [16] [25] [26] [27]. In order to seek travelling wave solutions, we assume
that

u(x,t)=u(§), E=x—ct, (3.5)
where cis the wave velocity. Substituting (3.5) into Equation (3.4), we get
—cu'(§)+ pu(f)u'(§)+ qu’ (§)u'(§)+u”'(§) =0. (3.6)

Integrating Equation (3.6) once, it follows that
1 1
—cu(§)+5pu2 (§)+§qu3(§)+u"(§)-|rc1 =0, (3.7)

where ¢, is the integral constant. According to the elliptic equation method,
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the solutions of Equation (3.7) can be expanded as follows:
N . N .
()= 289 (x1)=2 B9 (¢),
i=0 i=0

where ¢(&) satisfy Equation (1.6) and Equation (3.3). Balancing the term u (Zj )
with term «"(&) in Equation (3.7), we get N =1. Therefore Equation (3.7)

has the following solution

(3.8)

u(ég) =5 +ﬂ1¢’(§)’

where S #0. Substituting Equation (3.3) and Equation (3.7) into Equation (3.9)

(3.9)

and setting the coefficients of ¢’ (i=0,1,2,3) to zero, we obtain the following

algebraic system

1
¢73 :gqﬂﬁ +28A4=0,
0L P+ g B -2 fAy, =0
. 2 1 071 2 1 1 > (3'10)
(ﬂl :Qﬂozﬁl + ARy, + BB —cp =0,
1 1 1
¢70 1—cpy +_pﬂ02 ""_CIﬁg ——BAys+¢ =0.
2 3 2
With the help of Maple, we get
—6A4
2P¢‘171,’7 ! ]
:——, C=—— —_—— 2 —_ 2,
B 4q 2‘]ﬁ1 nhs 6Qﬂ1 72495 (3.11)
B =+ —64 v :_3‘]ﬁ02:3171 +ZQﬂ0ﬂ1272 +4q:303 +12¢,
1 - b 3 )

q ap;

where g4<0,and p,q,4,7,,7,,c, arearbitrary constants.
Substituting (3.11) into Equation (3.9), we get the following travelling wave
solutions of Equation (3.7)

—-64
2pqy, Y
u(&)=— + o(& (3.12)
(€)= ()
where ¢(&) satisfies Equation (1.6). From Equation (3.12) and (2.1)-(2.5), we
get the elliptic function solutions of Equation (3.7) as follows:

1) A>0, g<0,weobtain

2P+Q714/ —a,)s (\/Zfﬁ,kj—al(az—%)
u(¢&)= / , (3.13)
(gﬂ kJ a,+a,
2p+q714/ ( fﬂkj
u( - / , (3.14)
2[\/_ /i'kj o, +a,
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and
n* (\/Egﬂak]_az (al —0!3)

sn’ [gfﬂ,k}—al +a,

(a5 —a)(a,— )
where B=(a,-a,)(s-,), k= |—— )
’\/ 4 2 3 1 (a4_a2)(a3_al)
Taking A=6, o, =1, a,=2, =3, a,=4, p=1, g=-1, y, =1,
v, =1, 73:13758’ ¢ =1, f,=6, f,=-1, c=4, the plane images of these so-
lutions are shown in Figures 1-6, respective.

, (3.15)

—64
2 e a (e, —ay)s
u(¢)=- L
* 1 (0‘2_0‘3)

AR
||H||l|||§||

Figure 1. The 2D plot of (3.13).

Figure 2. The 3D plot of (3.13).
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T

Figure 3. The 2D plot of (3.14).

™

Figure 4. The 3D plot of (3.14).

Figure 5. The 2D plot of (3.15).
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u

u

Figure 6. The 3D plot of (3.15).

2) A<0, ¢g>0,weobtain

2p+%/ \/7

—a,)s (\/_fﬂkj+al( a4)1
(J_

, (3.16)
—¢&p, kJ+a2 -a,

—a,)s (*/_(;ﬂkJ a (a, a4)
(J_

, (3.17)
——¢&p, k} a, +a,

2p+q7u/ J—

a,)(e—a), k:\/(%—%)(az—a]).

(a4 _az)(as _al)

a,=2, a,=3, a,=4, p=1, g=1, y =1,

where ﬂ:\/(a4
Taking 4=-6, o, =1,

23
54 » =1, B=6, B

lutions are shown in Figures 7-10, respective.

v, =1, 3= =-2, c=-4, the plane images of these so-

3.3. A Fourth-Order Integrable Nonlinear Schrédinger Equation
Consider a fourth-order integrable nonlinear Schrédinger equation [28] [29]

i, 40+ 2 W+ 7 (Ve + 8l v, + 6707
(3.18)

+ayly, [+, +6ly| l//) =

where y(x,¢) is a function defined in complex, w(x,r) and (x,z) are
complex conjugates of each other, » isa non-zero real constant.

Firstly, we assume that
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Figure 8. The 3D plot of (3.16).

25
0
15
u(g)
10
5
-4 -3 -2 -1 0 1 2 3 4

Figure 9. The 2D plot of (3.17).
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Figure 10. The 3D plot of (3.17).

y(x,t)= u(§)ei5(x”), E=x—ct, S(x,t)=kx—nt, (3.19)

where cis the wave speed, u (f) is a real function, x is non-zero constant.
Substitute (3.19) to Equation (3.18), and letting the real part and imaginary

part be zero, respectively. We obtain

6yu’ +(2—12;/K2)u3 +(7]—K‘2 +7K4)u+10yuu’2

(3.20)
+10yu’u" +(1- 67k Ju" + yu = 0,
and
4ycu® +(2k =4y — c)u' + 24pu’u’ = 0, (3.21)
,_du($) . . ,
where u'= e Integrating Equation (3.21) once yields
4;/1cu"+(2k—477c3 —c)u+8}/lcu3 =0. (3.22)

Substitute Equation (3.22) to Equation (3.20), we get
1 2 3
(w2 () + 2 Ju" (&)= Zulw ()] + 50’ (£)+ Au(£) =0, (3.23)
where

_4)/K3+C—2K 5 4, 3k* 3ck 7 1 c
16Ky

- +—
A 4 4y 8y 4y 8y l6y°x

>

From Equation (3.3), Equation (1.6) can be transformed into the following

form
[0'(&)] =4(¢* (£)-10" () + 70" (&) -rs0(&)+7,).  (B.29)

where y, = a0, . According to the elliptic equation method, we know that

the solution of Equation (3.23) can be expressed as follows:

u(é)= 2@40" (x.t)= 2@-(9" (&) (3.25)
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where ¢(&) satisfy Equation (3.3) and Equation (3.24). Balancing the term
u’ (&) with term u®(&)u"(£) in Equation (3.23), we obtain N =1. There-
fore Equation (3.23) has the following solution

u(&)= B+ Be(). (3.26)

where f #0. Substituting Equation (3.3), Equation (3.24) and Equation (3.26)
into Equation (3.23) and setting the coefficients of (/)i (i = 0,1,2,3) to zero, we
get the following algebraic system

9 A+S =0,

7 15
§04 :Eﬂoﬁle_ﬁfA?/l +?ﬂoﬂ14 =0,

5 1
§03 :Z(ﬂg +ﬂ1)ﬂ1A_Eﬂoﬂ12A71 +E:B13A72 +15ﬂ02:813 =0,

3 3 (3.27)
§02 :_E(ﬂoz +ﬂ1)ﬂ1‘471 +5ﬂ0ﬂ12A72 +15ﬂg:312 =0,
1. 2 _ 1 2 _ 1 s 15 4 _
4 -(:30 +/11)181A72 Eﬂoﬂl Ay, Eﬂl A74+?:Boﬂ1+ﬂ'2ﬂ1 =0,
o, 1 1 2 3 s
4 :_E<ﬂo +/11):31A73 _Eﬁoﬂl Ay, +E:B0 +4,p,=0.
With the help of Maple, we obtain
1 1 34y?
B=t=A4, By =F-~N-Ap, A=-dy, -0,
4 4 32 (3.28)

11( ., 5 ,, 1, 154%y}
7/4:_5?[‘4 7 _gA 717/2_514 nyst 1281 +44, |,

where 4<0, y,,7,,7;,4, are arbitrary constants. Substituting (3.28) into Eq-

uation (3.26), we get the following travelling wave solutions of Equation (3.23)
1
u(§)=F N—Ay t=Ap(£), (3.29)

where ¢(&) satisfy Equation (3.3) and Equation (3.24). From (2.4), (2.5) and
Equation (3.29), we get the elliptic function solutions of Equation (3.23) as fol-

lows:
| a4(al—a2)sn2[;Agﬂ,kj+al(a2 a,)
u(/j):izx/—A;/li\/—A N , (3.30)
(a,—a,)sn’ T.fﬂ,k +a,—-a,
and
| az(a3—a4)sn2(;A§,B,kj a (o, —ay)
=F—+-Ay, £-4 3.31
u(§)=F V-tV Ny, . (331)
(o —a,)sn’ Tfﬂ,k a, +a,
(as—as)(a,—a)
h = s k=
where / \/(% az)(% 0‘1) \/(a4—a2)(a3 al)
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To the best of our knowledge, the solutions (3.30) and (3.31) have not been

obtained in other papers.

3.4. Generalized Dullin-Gottwald-Holm Equation
We consider generalized Dullin-Gottwald-Holm equation [30] [31] [32] [33]
u, —au_, +2bu, +cu'u, +du_ =a (2uxuxx +uu,, ) (3.32)

In [33], the authors studied the bifurcation of Equation (3.32) and obtained
some travelling wave solutions by the modified simplest equation method. To
our knowledge, there is no study on the exact solutions for Equation (3.32) other
than [33]. Using (2.1)-(2.5), we will get some new traveling wave solutions to
Equation (3.32).

Firstly, we introduce the traveling wave transformation
u(x,t)zu(é), E=x—pt (3.33)

Substituting (3.33) into (3.32), integrating once and letting the integration

constant be zero, we get

" 1 !
Alu(&)-plu (§)+5/1u 2(&)-au(E)-ut(£)=0, (3.34)
where « =M, y/j zi—y , A :ﬂ, A#0. We assume the solutions
c a c
of Equation (3.34) as follows:

u(&)= S ko' (x1) = gkyi (&). (3.35)

i=0

Substituting (3.35) into Equation (3.34) and balancing the term u' (gg) with
term u(&)u"(£) in Equation (3.34), we obtain N =1. Therefore Equation (3.34)

has the following solution
u(&)=ko +kp($), (3.36)

where k # 0. Substituting Equation (3.3), Equation (3.24) and Equation (3.36)
into Equation (3.34), and taking the coefficients of (pi(i :O,1,2,3,4) to zero,

we get the following system of algebraic equations

¥ :zika—kf‘ =0,
2

4

¢3 121(_ﬁ+k0)k1‘4_21k12‘471 _4k0k13 =0,

9’ 3_31(_ﬂ+k0)k1‘471 +%lk12‘472 ~6ksk =0, (3.37)
9 21(_ﬂ+k0)k1‘472 — Ak} Ay - aky —4ksk, =0,

¢’ :—%i(—mko)kl/ln +%ﬂka74 ~ak,~k =0.

With the help of Grobner basis elimination method and Maple, we obtain the
following travelling wave solutions:

Case: If k, =0, y,,k,A and A are non-zero constants, we get
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k0=0, 722712’ k1=—£’
g (3.38)
28 a__glf(?f—h) '
57121’ }/4 7/17/37 5 7/13 >

where A,f,7,,y, are arbitrary constants. Substituting (3.38) into Equation (3.36),

we get the following travelling wave solutions of Equation (3.34)

u(€)=-Lo(e). (3.39)
7
where ¢(&) satisfy Equation (3.3) and Equation (3.24). From (2.4), (2.5) and
Equation (3.29), we get the elliptic function solutions of Equation (3.23) as fol-
lows:

1) A>0, we obtain

a, (o, —ay)sn’ [\/Efﬂ,kJ—al (o, —a,)
u(§)=_£ = , (3.40)
h (a1_a4)sn2(214§ﬂ9k}_a2+a4
a, (o, —a,)sn’ (\/Efﬂ’kJ_Oﬁ (o —ay)
u(@)=-2£ = : (3.41)
h —0!4)S"2[;§,3,k}—%+%

and

o (a, —ay)sn’ (\/zzfﬂ,kJ—az (a—)

B

u(\f) __b , (3.42)
£ (az—as)snz(\/zzfﬁakJ_al"'as

o —o, )\a,—Q
2) A<0,weget

ﬂ(Z4(a1_az)snz[\/;_Agﬂ9kJ+al(a2_a4)

u(f) __B , (3.43)
N (al—az)snz{\/;_Aéﬁ,kJ+a2—a4

and
0!2(053_a4)sn2£\/;7§ﬂ:kJ_a3(a2_a4)
u(cf) _ _ﬁ (3.44)

e (as—a4)sn2(\/;_’4§ﬁ,k}—a2+a4
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where ﬁz\/(azt_az)(%—al), k:\/(a4_a3)(a2_m)

(a4_a2)(a3_al) ‘

CaseII: If A4>0, k, 1isanon-zero constant, we get

1 514 514 B +3 Pk, +6k;
koz_z(ﬁiyl T], klzi 2 ) 722 klzo 0 s

2 2 4 6 8
a:_gk1373 _E'BS _§ﬁ2k0 _gﬂk(? _§k39 (3.45)

1
Va =_F(ﬁk1373 +k0k1373 +2ﬁ3k0 +4ﬂ2k§ +6'Bk3 +3kg)’
1

where A4,A4,p,y,,y, are arbitrary constants. From Equation (3.36), Equation
(3.38) and (2.1)-(2.5), we obtain
1) A>0, A>0,we get

az(al—a4)sn2[\/22§ﬁ,kJ—a,(a2—a4)
u(f)z—%(ﬂiy, /SiA}_r 5’;A , (3.46)
(al—a4)sn2(2A§/3,kJ—az+a4
(N4
| Y Y o, (o, —ay)sn [2§ﬁ,k —a, (o —ay)
u(f):—z{ﬂiy]/ > }_r 5 , (3.47)
(e an{jfﬂ,k} o +a,
and
o (a, aﬁsn{?éﬁ,k} a, (o —ay)
u(§)=—%[ﬂim/5iflji 512/1 N , (3.48)
(az—a3)sn2{;§ﬁ,kj—al+a3
o —a,)(a, -
where ﬂz\/(a4—a2)(a3—al), k:\/g%_%;i%_al;.
2) A>0, A>0,itfollows that
oy - a4(a1—az)snz[\/;_Aéﬂ,kJ+al(a2—a4)
u(é)=—{/3i71./52 Ji,/szA Nay , (3.49)
(a]—az)snz[;‘lfﬁ,kJ+a2—a4
and
az(a3—@)sn{?fﬁ,k}—a}(az—a4)
u(«f)=—%{ﬂim/5if1]i 542/1 Ny , (3.50)
(a3—a4)sn2(;A§ﬁ,kJ—a2+a4
where
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ﬁ:\/(a4_az)(0!3 —a), k:\/(a4_a3)(a2_al)

(a4—a2)(a3—al) '

The solutions (3.46)-(3.50) have not been obtained in [33], they are new ones.

4. Conclusion

In summary, we have obtained five new solutions for Equation (1.6), including
three periodic solutions and two singular solutions. These solutions are not ob-
tained in other papers. These new solutions are applied to three differential equ-
ations, including combined KdV-MKdV equation, a fourth-order integrable non-
linear Schrédinger equation and generalized Dullin-Gottwald-Holm equation,

we have obtained new travelling wave solutions for these equations, respectively.
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