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Abstract 
The purpose of this research is to investigate the sinuosity of major rivers in 
the United States and the world, and to compare them to that predicted by 
the existing theories. It is shown that the average sinuosity of meandering 
rivers deviates considerably from what has been reported previously as π. 
Calculations of the mean value of actual sinuosities of major rivers in the 
United States and in the World show that this average is very close to 2. Exact 
models as well as a Monte Carlo simulation for meandering rivers that is 
based on Gaussian probability distribution function are also presented, and 
the possibility of composite meandering is discussed. 
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1. Introduction 

As a river or stream flows, as a result of various disturbances it normally does 
not flow in a straight path, but winds snakelike so that the curvilinear length 
(actual length along the curve) of the river L is longer than its Euclidean distance 
(straight end-to-end distance) D. This phenomenon is known as “meandering” 
[1]. 

The dynamics of meandering rivers have been a subject of interest to geolo-
gists and geographers alike. However, due to the complexity of the phenomenon 
and nonlinearity of the governing equations, understanding the process from 
theoretical and computational points of view has remained a challenge. Never-
theless, many computational models have been developed to simulate the dy-
namics of such rivers involving various assumptions and approximations [2]- 
[10]. 
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Various aspects of meandering rivers have been subject of discussions for many 
years. For example, the fractal nature of these rivers has been suggested by Man-
delbrot [11] and further studied by Snow [12], Montgomery [13], and Stolum 
[14]. Another characteristic of a river is its sinuosity s, defined as the ratio L/D, 

Ls
D

=                                (1) 

where, clearly 1s ≥ . 
The actual profile of a river can have infinitely many shapes, and its sinuosity 

can have any value greater than or equal to unity. However, various models have 
been suggested to approximate the shape of a river. This includes circular and 
other types of smooth curves [15], as well as simulation models [16] [17] [18]. 
Based on the assumption of fractal geometry and computer simulations, it has 
been suggested that the mean sinuosity of rivers should have a value of π [18]. 
However, this result has not been verified by the actual sinuosities of rivers. In 
fact, a simple examination of the data reveals that, on the average, sinuosity of 
major rivers is substantially different from π. 

In this article, we evaluate the actual sinuosities of major rivers in the United 
States and around the World, and calculate their average. We then suggest two 
Monte Carlo models, a parabolic and a zig-zag model, each involving a single- 
parameter Gaussian probability density function to calculate the average theo-
retical sinuosity of rivers. The parameter of the models is then adjusted to pro-
duce the observed mean sinuosity of the rivers in each case. 

2. Observed Sinuosities of Rivers 

Using the available data for the major US and World rivers, as well as the infor-
mation obtained from the Google Maps, we calculate the sinuosity of each river, 
and then we find the average value of the sinuosities for each category. 

2.1. Major US Rivers 

Table 1 shows the curvilinear lengths, Euclidean distances, and the sinuosities of 
major rivers in the United States [19]. Figure 1 shows sinuosity as a function of 
river number as listed in Table 1. Since curvilinear lengths of the rivers decrease 
with river number, we see from the figure that there is no correlation between 
curvilinear length and sinuosity of the rivers. The mean and the standard devia-
tion of these sinuosities are 2.10 0.49s = ± . This mean value is shown by the 
horizontal line in Figure 1. 

2.2. Major World Rivers 

Table 2 shows the curvilinear lengths, Euclidean distances, and the sinuosities of 
major rivers in the World, including some of those in the United States listed in 
Table 1 [20]. The sinuosities of these rivers as a function of river number are 
shown in Figure 2. Since according to Table 2, curvilinear length of the rivers 
decrease with river number, Figure 2 shows that again there is no correlation  
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Table 1. Major rivers of the United States and their lengths L, straight end-to-end dis-
tances D, and sinuosities L/D. 

No. Name L (km) D (km) L/D 

1 Missouri River 3768 1913 1.970 

2 Mississippi River 3544 2041 1.736 

3 Yukon River 3190 1681 1.898 

4 Rio Grande 2830 1652 1.713 

5 Colorado River 2330 1254 1.858 

6 Arkansas River 2322 1490 1.558 

7 Columbia River 2000 755 2.649 

8 Red River 1811 864 2.096 

9 Snake River 1674 726 2.306 

10 Ohio River 1575 877 1.796 

11 Colorado River of Texas 1560 710 2.197 

12 Tennessee River 1504 441 3.410 

13 Canadian River 1458 917 1.590 

14 Brazos River 1390 660 2.106 

15 Green River 1230 548 2.245 

16 Pecos River 1175 794 1.480 

17 White River 1159 312 3.715 

18 James River 1140 550 2.073 

19 Kuskokwim River 1130 532 2.124 

20 Cimarron River 1123 606 1.853 

21 Cumberland River 1120 452 2.478 

22 Yellowstone River 1091 638 1.710 

23 North Platte River 1070 483 2.215 

24 Milk River 1005 504 1.994 

25 Gila River 960 593 1.619 

26 Sheyenne River 951 288 3.302 

27 Tanana River 940 540 1.741 

28 Smoky Hill River 927 497 1.865 

29 Niobrara River 914 540 1.693 

30 Little Missouri River 900 382 2.356 

31 Sabine River 890 373 2.386 

32 Red River of the North 890 464 1.918 

33 Des Moines River 845 458 1.845 

34 White River (Missouri River) 815 374 2.197 

35 Trinity River 815 401 2.032 

36 Wabash River 810 400 2.025 
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Table 2. Major rivers of the world and their curvilinear lengths L, Euclidean distances D, 
and sinuosities L/D. 

No. Name L (km) D (km) L/D 

1 Nile 6650 3619 1.838 

2 Amazon 6400 3001 2.133 

3 Yangtze 6300 2597 2.426 

4 Yenisei 5539 2501 2.215 

5 Yellow River 5464 2068 2.642 

6 Congo-Chambeshi 4700 1500 3.133 

7 Amur-Argun-Kherlen 4444 2285 1.945 

8 Lena 4400 2235 1.969 

9 Mekong 4350 2879 1.511 

10 Mackenzie 4241 1225 3.462 

11 Niger 4200 1178 3.565 

12 Volga 3647 1669 2.185 

13 Indus 3610 2136 1.690 

14 Purus 3211 1384 2.320 

15 Yukon 3185 1709 1.864 

16 San Francisco 3180 821 3.873 

17 Syr Darya-Naryn 3078 1051 2.929 

18 Salween 3060 1920 1.594 

19 Saint Lawrence 3058 1090 2.806 

20 Rio Grande 3057 1658 1.844 

21 Lower Tunguska 2989 837 3.571 

22 Danube-Breg 2888 1677 1.722 

23 Irrawddy River 2809 1455 1.931 

24 Zambezi 2740 1526 1.796 

25 Vilyuy 2720 1081 2.516 

26 Ganges-Hooghly-Padma 2704 1448 1.867 

27 Amu Darya-Panj 2620 1379 1.900 

28 Japura 2615 2017 1.296 

29 Paraguay 2549 1605 1.588 

30 Kolyma 2513 999 2.516 

31 Ishim 2450 723 3.389 

32 Ural 2428 1582 1.535 

33 Arkansas 2348 1484 1.582 

34 Colorado (western US) 2333 1254 1.860 

35 Olenyok 2292 806 2.844 

36 Dnieper 2287 1056 2.166 
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Continued 

37 Aldan 2273 824 2.758 

38 Ubangi-Uele 2270 1292 1.757 

39 Negro 2250 1263 1.781 

40 Columbia 2250 755 2.980 

41 Red (USA) 2188 866 2.527 

42 Ohio-Allegheny 2102 1109 1.895 

43 Orinoco 2101 715 2.938 

44 Tarim 2100 967 2.172 

45 Orange 2092 1167 1.793 

46 Vitim 1978 637 3.105 

47 Tigris 1950 1102 1.770 

48 Don 1870 776 2.410 

49 Pechora 1809 713 2.537 

50 Limpopo 1800 731 2.462 

51 Guapore 1749 721 2.426 

52 Indigirka 1726 666 2.592 

53 Snake 1670 731 2.285 

54 Uruguay 1610 966 1.667 

55 Churchill 1600 893 1.792 

56 Tobol 1591 995 1.599 

57 Alazeya 1590 909 1.749 

58 Ica 1575 1139 1.383 

59 Magdalena 1550 734 2.112 

60 Han 1532 764 2.005 

61 Kura 1515 581 2.608 

62 Oka 1500 671 2.235 

63 Guaviare 1497 1046 1.431 

64 Pecos 1490 798 1.867 

65 Murrumbidgee River 1485 501 2.964 

66 Godavari 1465 930 1.575 

67 Colorado (Texas) 1438 716 2.008 

68 Upper Tocantins 1427 375 3.805 

69 Belaya 1420 377 3.767 

70 Dniester 1411 396 3.563 

71 Benue 1400 1086 1.289 

72 Fraser 1368 523 2.616 

73 Lachlan River 1339 1088 1.231 
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Continued 

74 Olyokma 1320 766 1.723 

75 Krishna 1300 821 1.583 

76 Narmada 1289 1004 1.284 

77 Ottawa 1271 449 2.831 

78 Rhine 1233 789 1.563 

79 Athabasca 1231 880 1.399 

80 Canadian 1223 732 1.671 

81 Vaal 1210 566 2.138 

82 Shire 1200 595 2.017 

83 Ogooué (or Ogowe) 1200 586 2.048 

84 Nen 1190 338 3.521 

85 Green 1175 568 2.069 

86 White 1162 340 3.418 

87 Wu 1150 393 2.926 

88 Red (Asia) 1149 1112 1.033 

89 James (Dakotas) 1143 727 1.572 

90 Kapuas 1143 476 2.401 

91 Madre De Dios 1130 745 1.517 

92 Tiete 1130 668 1.692 

93 Sepik 1126 338 3.331 

94 Cimarron 1123 605 1.856 

95 Anadyr 1120 346 3.237 

96 Liard 1115 554 2.013 

97 Cumberland 1105 454 2.434 

98 Gambia 1094 526 2.080 

99 Chenab 1086 719 1.510 

100 Yellowstone 1080 639 1.690 

101 Ghaghara 1080 632 1.709 

102 Aras 1072 579 1.851 

103 Chu River 1067 715 1.492 

104 Seversky Donets 1053 475 2.217 

105 Fly 1050 472 2.225 

106 Kuskokwim 1050 528 1.989 

107 Tennessee 1049 439 2.390 

108 Oder-Warta 1045 502 2.082 

109 Aruwimi 1030 826 1.247 

110 Daugava 1020 571 1.786 
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Continued 

111 Gila 1015 599 1.694 

112 Loire 1012 566 1.788 

113 Essequibo 1010 586 1.724 

114 Tagus 1006 658 1.529 

115 Flinders River 1004 505 1.988 

 

 
Figure 1. Sinuosities of major rivers in the United States as a function of river number 
(circles) according to Table 1. The horizontal line represents the mean value of the si-
nuosities. 
 

 
Figure 2. Sinuosities of major World rivers as a function of river number (circles) ac-
cording to Table 2. The horizontal line represents the mean value of the sinuosities. 
 
between the curvilinear length and the sinuosity of these rivers. The mean and 
the standard deviation of these sinuosities are 2.17 0.65s = ± . This mean val-
ue is shown by the horizontal line in Figure 2. 
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3. Stochastic Models and Monte Carlo Simulations 
3.1. Zig-Zag Paths 

The zig-zag path of a meandering river is simulated by a Monte Carlo method 
[21], using random numbers drawn from a Gaussian (or normal) probability den-
sity function [22] [23],  

( ) ( )2

2

1 exp
22

y
f y

µ
σσ

 −
= − 

  π
                   (2) 

with 0µ = , and adjustable standard deviation σ . 
We choose a river with straight end-to-end distance of 2000 km, and a unit 

length of 1 km. We draw random numbers according to the Gaussian probabili-
ty density function, which can be done by either the Box-Muller method or the 
acceptance-rejection method [24]. These random numbers are taken to be the 
heights h in Figure 3. Then the length of each section of the zig-zag, and hence 
the total length of the river L is calculated. Finally, if D is the straight-line dis-
tance between the two ends of the river, the sinuosity of the river is calculated 
from  

Ls
D

=                              (3) 

We repeat this Monte Carlo experiment 1000 times and calculate the average 
value of the sinuosity s , and adjust the value of σ to obtain the observed value 
of the sinuosity. The results are shown in Table 3 for the United States and 
World rivers along with the corresponding adjusted value of σ in each case. 
 

 
Figure 3. A zig-zag path model for meandering rivers. 

 
Table 3. The observed and simulated (MC) values of sinuosities of the United States and 
World rivers. The simulated values are based on the zig-zag model with the Gaussian 
standard deviations σ shown. 

Rivers s (observed) s (simulation) σ (zig-zag) σ (parabolic) 

United States 2.10 ± 0.49 2.10 1.86 1.03 

World 2.17 ± 0.65 2.17 1.92 1.08 

https://doi.org/10.4236/jamp.2022.107161


P. Mohazzabi, Q. Luo 
 

 

DOI: 10.4236/jamp.2022.107161 2376 Journal of Applied Mathematics and Physics 
 

3.2. Parabolic Paths 

Consider a parabolic curve shown in Figure 4, whose equation is  

( )1y ax x= −                           (4) 

where a is a constant. But in terms of the height of the parabola h, the equation 
of this parabolic curve can be written as  

( )4 1y hx x= − −                           (5) 

The length of the parabolic curve described above is given by [25]  

( )
2

1 1 22
0 0

d1 d 1 16 2 1 d
d
yl x h x x
x

 = + = + − 
 ∫ ∫              (6) 

Evaluation of this integral gives  

( )2 21 11 16 ln 4 1 16
2 8

l h h h
h

= + − − + +                (7) 

We choose a river of length 2000 km, and take the unit of length to be 1 km. 
We assume that the river meanders on a parabolic curve of height h in each unit 
of distance along the straight line from the beginning to the end of the river, as 
shown in Figure 4. The height of the parabolic curve in each step h is randomly 
chosen from the Gaussian distribution function,  

( )
2

2

1 exp
22
hf h
σσ


=

π


− 
 

                    (8) 

The sinuosity of the river is then calculated by adding the length of the parabolic 
curves in each step and dividing it by the straight end-to-end distance of the riv-
er. This Monte Carlo experiment is then repeated 1000 times and the average 
sinuosity of the river is calculated which, of course, a function of the parameter σ 
of the Gaussian probability density function (8). We then adjust the value of σ to 
obtain the observed value of the sinuosity. The results are shown in Table 3 for 
the United States and the World rivers along with the corresponding adjusted 
value of σ in each case. 
 

 
Figure 4. A parabolic curve with equation  

( )4 1y hx x= − − . 
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4. Exact Models 

A meandering river can also be modeled by a deterministic curve that repeats it-
self. Consider a function ( )y f x=  defined on the interval [ ]0,d  as shown in 
Figure 5(a). The length of this curve is given by  

2

0

d1 d
d

d yl x
x

 = +  
 ∫                           (9) 

If this curve (called the basis) repeats itself, alternating on two sides of a straight 
line, it generates the profile of a meandering river, as shown in Figure 5(b). If 
the river consists of n basis, its sinuosity is given by  

2

0

1 d1 d
d

dnl l ys x
nd d d x

 = = = +  
 ∫                    (10) 

Analytical evaluation of the integral in Equation (10) is not always possible. 
Nevertheless, it can always be evaluated numerically. However, in simple cases, 
the sinuosity can be obtained in closed form [15]. For example, consider a basis 
consisting of a circular arc as shown in Figure 6(a). The length of this arc is 
l rθ= , where r is the radius of the circular arc, and its Euclidean end-to-end 
distance is obtained from the cosine law,  

( )2 1 cosd r θ= −                         (11) 

Therefore, the sinuosity of a river obtained from this basis, shown in Figure 6(b), 
is given by  

( )2 1 cos
ls
d

θ
θ

= =
−

                      (12) 

which is independent of the radius of the circular arc. If the sinuosity of a river is  
 

 
Figure 5. An exact model for meandering rivers. The profile of the river 
(b) is generated by alternating the basis curve (a) on two sides of a straight 
line. 
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Figure 6. Circular model for meandering rivers. 

 
known, this equation can be solved numerically for θ . For the major rivers of 
the United States and of the World with a mean sinuosity of about 2.0, we find 

rad3.79 217θ = =  . 

5. Discussion and Conclusions 

The analysis of the data for major rivers in the United States and in the World 
shows that the mean sinuosity of rivers is not π as suggested previously [18]. In-
stead, the data for both classes of rivers show that the mean sinuosity is closer to 
2. This is further evidenced by the fact that π does not fall within one standard 
deviation from the mean sinuosities of the major United States and World riv-
ers. 

Monte Carlo simulations using random numbers from a Gaussian probability 
distribution, with fairly small standard deviations, generate the observed mean 
sinuosity of the rivers with either a zig-zag model or a parabolic model as exam-
ples. Exact curves can also be used to model meandering rivers, as we have shown 
by simple circular curves. 

In the calculation of sinuosities, there were a couple of rivers with sinuosities 
greater than 4. We ignored those rivers in our calculations due to the fact that 
large sinuosities are caused by higher composite meandering effects. To see this, 
consider a river shown in Figure 7, where a small-scale meandering is superim-
posed on a large-scale one. The total sinuosity is given by  

L L ds
D d D

= =                             (13) 

where d is the length of the curve shown by the dotted line in the Figure 7. But 

1L d s=  where 1s  is the sinuosity of the small-scale meandering, and  

2d D s=  where 2s  is the sinuosity of the large-scale meandering. Therefore, we 
have  

1 2s s s=                                (14) 

Examples of high composite meandering rivers are Kama River [26] and Kizi-
lirmak River [27], with composite sinuosity of 6.78 and 4.66, respectively. It is, of 
course, possible for a river to have even higher composite sinuosity. 
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Figure 7. Composite meandering. 
 

In conclusion, the observed sinuosities of major rivers in the United States 
and in the World have a mean value of about 2 (or more accurately 2.1 which is 
very close to 2π/3), and not π that has been suggested based on the assumption 
of fractal geometry and idealizing the river geometry as a perfectly symmetrical 
sequence of bends. 

These meandering rivers can be modeled by either stochastic simulations or 
by exact curves. In each case, a parameter in the governing equation needs to be 
adjusted to reproduce the observed mean sinuosity. 
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