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Abstract 
In this article, we will consider questions of G-equivalence of paths for the 
case when G was the group of the real representation of a symplectic trans-
formation in an n-dimensional quaternion vector space. In determining the 
solution of this problem, we give an explicit description of differential gene-
rators of a differential field of differential rational functions that are invariant 
under the action of this group. Necessary and sufficient conditions for the 
G-equivalence of paths in a 4n-dimensional real space are obtained with the 
help of differential generators. 
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1. Introduction 

Let V be a finite-dimensional linear space over the field K (in generally skew- 
field K), ( )GL V  be the group of all invertible transformations of space V, and 

1γ , 2γ  be two smooth curves in V. 
Curves 1γ  and 2γ  in V are said to be G-equivalent if ( )1 2σ γ γ=  for some 

Gσ ∈ , where G is a subgroup of the group ( )GL V . 
It is known that the problem on the G-equivalence of curves lying in V, i.e., to 

fiend necessary and sufficient conditions that guarantee the G-equivalence of the 
curves 1γ  and 2γ , is an important problem in the differential geometry of 
curves. 

One version of this problem was posed by E. Cartan at the beginning of the 
20th century and it is now known as Cartan’s problem. This problem consists of 
the search for all motions of the space that superpose the given curves 1γ  and 
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2γ  (see [1]). A thorough study of this problem was carried out by E. Cartan 
himself by using the method of moving frame (see [1] [2]). 

In the work of many other scientists, including Yu. Aminov [3], Blaschke [4], 
Pommaret [5], one can see a geometric approach to the solution of this problem. 
The solution of this problem using geometric methods will be clearly described 
by certain geometric notions (for example, curvature, torsion, an arc length, etc.). 
However, it is difficult to use geometric methods for the solution of the problem 
of G-equivalence of systems consisting of a large number of curves. This requires 
the use of methods of invariant theory. The methods of invariant theory are very 
useful, in particular, in solving the problem of G-equivalence of finite path sys-
tems (infinitely differentiable vector-valued functions). For this, it is necessary to 
establish the finite generators of the differential field of all G-invariant differen-
tial rational functions and find the explicit form of a rational basis of this field. 
This formulation of the problem was considered by D. Khadjiyev [6] [7], K.K. 
Muminov [8] [9], V.I. Chilin [10], R.G. Aripov [11], with respect to the action of 
various classical groups of transformations and was discussed in detail, in the 
monographs [6] [12]. In these articles, the authors obtained the effective criteria 
of G-equivalence paths with respect to the action of certain classical groups 

( )G GL V⊂ , for example, orthogonal, symplectic and pseudo-orthogonal groups. 
Currently, the results are used solution for some problems of non-euclidean 
geometries, and solution of problems in computer vision and vision-based ap-
plications, (see [13] [14] [15] [16]). 

In all the works listed above, the posed problem was studied for finite-dimen- 
sional real and complex spaces. It is known that in the classical theory of inva-
riants, in addition to real and complex spaces, linear spaces over the skew field of 
quaternion numbers are also considered and invariants with respect to the ac-
tion of subgroups invertible linear transformation in such spaces are studied. 
This is represented a special case of the theory of non-commutative invariants 
(see, for example, [17] [18] [19] [20]). 

In this article, we will consider questions of G-equivalence of paths for the 
case when G was the group of the real representation of a symplectic transfor-
mation in an n-dimensional quaternion vector space; also we show its solution 
using a G-invariant matrix function and d-generators of the d-field of a G-invariant 
d-rational function. This article is organized as follows: In Section 2, the group 
of symplectic transformations in quaternion space, the group of their real repre-
sentation, and the problem of G-equivalence of paths are introduced briefly. Al-
so, the solution of this problem will be given by G-invariant matrix functions. In 
Section 3, the ring of G-invariant polynomial is studied, and the system of its 
generators is described. Using the results of Sections 2 and 3, the system of ge-
nerators of a differential field of G-invariant differential rational functions is 
restored and expounded in detail in Section 4. Section 5 is the conclusion part, in 
which all the results obtained are summarized and necessary and sufficient con-
ditions for G-equivalence of paths are given.  
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2. Preliminaries  

This section is devoted to the main concepts of the paper, which describe the 
group of symplectic transformations and its group of real representations, as 
well as the problem G-equivalence of paths.  

2.1. Symplectic Group  

Let nH  be an n-dimensional linear space over the skew-field H, (multiplication 
of numbers is defined on the left), where H is a skew-field of quaternion num-
bers. Denote by ( )nGL H  the group of all invertible linear transformations of 
the space nH . Let ,x y  be a mapping of the Cartesian product n nH H×  
onto H and satisfies the following conditions:  

 

, , , , , , , , ;

, , ;

, 0, for every , 0

n

n

x y z x z y z H x y z H

x y y x

x x x H x

α β α β α β + = + ∈ ∈
 =


> ∈ ≠

         (1) 

where q  means the conjugate of a quaternion q a bi cj dk= + + + , i.e.  
q a bi cj dk= − − − , 2 2 2 1i j k= = = − , ij ji k= − = , jk kj i= − = , ki ik j= − = , 

, , ,a b c d R∈ . 
We obtain the linear form  

 1 1 2 2, n nx y x y x y x y= + + +                      (2) 

as a metric function ,x y . Then the symplectic group ( )Sp n  with respect to 
the metric function is defined as a subgroup of ( )nGL H  as follows:  

 ( ) ( ){ }: , ,nSp n GL H x y x yσ σ σ= ∈ =                (3) 

It is plain that for x V∀ ∈  and ( )nGL Hσ∀ ∈  the relation x xgσ ↔  is true, 
where ( ),g GL n H∈ . In this case, the symplectic group ( )Sp n  is defined as 
follows  

 ( ) ( ){ }* *, :Sp n g GL n H g g gg E= ∈ = =                (4) 

where the matrix *g  is hermitian conjugate of the matrix g, i.e., * Tg g= , E is 
identity element of the group ( ),GL n H , (see, [21]). 

It is known that the space nH  can be considered as to a 4n dimensional real 
space using the following operation:  

( )
( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

1 2

11 12 13 14 1 2 3 4

11 12 13 14 1 1 2 3 4

11 1 12 1 13 1 14 1

1 2 3 4

11 12 13 14 1 2 3 4

, , ,

, ,

, , , , , , , , ,

n

n n n n

n n n n n

n n n n n n n n

n n n n

x x x x

x x i x j x k x x i x j x k

x x i x j x k e x x i x j x k e

x e x ie x je x ke

x e x ie x je x ke

x x x x x x x x x

=

= + + + + + +

= + + + + + + + +

= + + + +

+ + + +

≈ =













 

where lmx R∈ , 1,l n= , 1,4m = . 
We conditionally call the realification of this operation and denoted by “≈”, 

(see, [22]). We are denoted by V the space of the realification nH . 
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It is obvious that as a result of applying the operation “≈”, the sum of arbitrary 
vectors , nx y H∈  turns into the sum of vectors ,x y V∈

  , where ,x y   are real 
vectors corresponding to the vectors ,x y . However, this property does not hold 
for the operation of the multiplication (on the left) of an arbitrary vector 

nx H∈  by a number Hλ ∈ . Therefore, when realification the space, the con-
cepts associated with the operation of scalar multiplication are defined with the 
help of certain conditions through their equivalent concepts. For example, li-
nearly dependent, orthogonally and other. Accordingly, we introduce the fol-
lowing definition. 

Definition 1. Vectors 1 2, , , nx x x V∈
  

  are called a strongly linearly inde-
pendent if the vectors 1 2, , , n

nx x x H∈  corresponding them by realification, 
are linearly independent in nH .  

Note. Any set of the strongly linearly independent vectors in V is of course 
linearly independent, but the converse is not always true.  

The Group of Real Representations of the Symplectic Group Sp(n)  
Let V be a space that the realification of the space nH . Then every element 

( )nGL Hϑ∈  defines a linear transformation ( )GL Vϑ′∈ , and ( )nGL H  can 
be regarded as a subgroup in ( )GL V  using the isomorphism in ϑ ϑ′→ . Then 

( )Sp n  can be regarded also a subgroup in ( )GL V . This subgroup is called the 
real representation ( )Sp n , (see, [20]). Now let’s define the definition of the 
real representation ( )Sp n . 

Let ( ) ( ) ( ) ( )1 , , , , , , ,i j kx y x y x y x yΩ Ω Ω Ω
         coefficients 1, , ,i j k  in “metric 

form” ,x y  respectively:  

 ( ) ( ) ( ) ( )1, , , , , ,i j kx y x y x y i x y j x y k= Ω −Ω −Ω −Ω
               (5) 

where , nx y H∈ , ( )1 2, , , nx x x x=  , ( )1 2, , , ny y y y=  ,  

1 2 3 4l l l l lx x x i x j x k= + + + , 1 2 3 4l l l l ly y y i y j y k= + + + , ,lm lmx y R∈ , 1,4m = , 
1,l n= , , ,i j k —imaginary units of quaternion numbers. 

Then, as is easily seen, 1Ω  (respectively iΩ , jΩ , kΩ ) is a symmetric (re-
spectively skew-symmetric) real-valued bilinear form on the real vector space V. 
Moreover, 1Ω  is positive defined and the bilinear forms 1Ω , iΩ , jΩ , kΩ  
are defined as follows:  

( ) ( )1 1 1 2 2 3 3 4 4
1

, ;
n

l l l l l l l l
l

x y x y x y x y x y
=

Ω = + + +∑   

( ) ( )1 2 2 1 3 4 4 3
1

, ;
n

i l l l l l l l l
l

x y x y x y x y x y
=

Ω = − + −∑   

( ) ( )1 3 3 1 4 2 2 4
1

, ;
n

j l l l l l l l l
l

x y x y x y x y x y
=

Ω = − + −∑   

( ) ( )1 4 4 1 2 3 3 2
1

, .
n

k l l l l l l l l
l

x y x y x y x y x y
=

Ω = − + −∑   

Obviously, a symplectic transformation is a transformation that leaves inva-
riant the bilinear form ,x y . Then the corresponding real transformation to it 
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be a transformation that leaves invariant those bilinear forms 1Ω , iΩ , jΩ , 

kΩ . From this property, we will have in following definition.  
Definition 2. The group of linear transformations ( )GL Vϑ′∈  is called a 

group of the real representation ( )Sp n  if it satisfies the following conditions:  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1: , , , , , ,

, , , , ,
i i

j j k k

GL V x y x y x y x y

x y x y x y x y

ϑ ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

′ ′ ′ ′ ′ ∈ Ω = Ω Ω = Ω
 ′ ′ ′ ′Ω = Ω Ω = Ω

       

       

 

It is known that each transformation ( )GL Vϑ′∈  can be uniquely represented 
by the matrix ( )4 ,g GL n R∈ . This allows us to define the group of real repre-
sentations ( )Sp n  using matrices ( )4 ,g GL n R∈ . To do this, we use from De-
finition 2 and the following equalities  

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

T T
1

T T

, ; , ;

, ; ,
i

j j

x y x y x y xI y

x y xJ y x y xK y

Ω = Ω =

Ω = Ω =

       

       

              (6) 

where  

1 1 1

1 1 1

1 1 1

, , ;

I J K
I J K

I J K

I J K

θ θ θ θ θ θ
θ θ θ θ θ θ

θ θ θ θ θ θ

     
     
     = = =
     
     
     

  

  

           

  

 

here θ  is 4th ordered zero matrix, also  

1 1 1

0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0

, , .
0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0

I J K

−     
     −     = = =
     −
     

− − −     

 

As a result, we have the following definition of the group of real representa-
tion ( )Sp n  given by the matrices ( )4 ,g GL n R∈ :  

Definition 3. The group of matrix ( )4 ,g GL n R∈  is said to be group of the 
real representation ( )Sp n , if it satisfies the following conditions:  

 ( ){ }T T T T4 , : , , , ,det 1g GL n R gg E gIg I gJg J gKg K g∈ = = = = =    (7) 

where E is 4nth ordered unit matrix.  
In what follows, we consider only the group of real representation of ( )Sp n , 

and denote it by ( )4nSp .  

2.2. Equivalence of Paths under the Action of the Group ( )n4Sp   

Let R be the field of real numbers and ( ),T a b=  be an open interval in R. 
Definition 4. A vector-valued function ( ) ( ){ }4 4

1
:

n n
l l

x t x t T R
=

= →
  is called a 

path in 4nR  if all of its coordinate functions ( ) :lx t T R→  are infinitely diffe-
rentiable (see, [6] [12]).  

The k-th derivative of a path ( ) ( ){ }4

1

n
l l

x t x t
=

=
  is the vector-valued function 

( ) ( ) ( ) ( ){ }4

1

nk k
l l

x t x t
=

=
 , where ( ) ( )k

lx t  is the k-th derivative of the coordinate 
function ( )lx t , t T∈ , 1,4l n= , k N∈ . The vector-valued function ( ) ( )kx t  
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is also path for all 1,2,k =  .  
Definition 5. A path ( )x t  in 4nR  will be called regular if first derivative of 

the path ( )x t  is non-zero for all t T∈  (see, [6] [12]).  

For any path ( ) ( ){ }4

1

n
l l

x t x t
=

=
 , we denote by ( )( )M x t  the matrix  

( ) ( )( )41

, 1

nm
l l m

x t−

=
.  

Definition 6. A path ( )x t  is said to be strongly regular if the determinant 
( )( )det M x t  is non-zero for all t T∈  (see, [6] [12]).  

It is easily seen that each strongly regular path ( )x t  is obviously a regular 
path, but the opposite is usually not true. Let G be an arbitrary subgroup of the 
group ( )4 ,GL n R .  

Definition 7. Two paths ( )x t  and ( )y t  are said to be G-equivalent if 
there exists an element g G∈  such that ( ) ( )y t x t g=

   for all t T∈  (see, [6] 
[12]).  

In this case, it is obvious that ( ) ( ) ( ) ( )r ry t x t g=
  , r N∈ , and therefore the 

G-equivalence of the paths ( )x t  and ( )y t  is equivalent to be equality  
( )( ) ( )( )M y t M x t g=
   for all t T∈ . 

Usually the problem of finding necessary and sufficient conditions for the G- 
equivalence of paths ( )x t  and ( )y t  is called the problem of G-equivalence 
of paths. The following we prove a theorem expressing the solution to this prob-
lem, which is in the case when ( )4G n=Sp  and ( ) ( ),x t y t V∈

   are strongly 
regular paths.  

Theorem 1 Two strongly regular paths ( )x t  and ( )y t  are ( )4nSp -equi- 
valent if and only if the equalities  

1) ( )( ) ( )( ) ( )( ) ( )( )1 1
M x t M x t M y t M y t

− −
   ′ ′=    ;  

2) ( )( ) ( )( ) ( )( ) ( )( )T T
M x t M x t M y t M y t   =    ;  

3) ( )( ) ( )( ) ( )( ) ( )( )T T
M x t I M x t M y t I M y t   =    ;  

4) ( )( ) ( )( ) ( )( ) ( )( )T T
M x t J M x t M y t J M y t   =    ;  

5) ( )( ) ( )( ) ( )( ) ( )( )T T
M x t K M x t M y t K M y t   =    ;  

6) ( )( ) ( )( )det detM x t M y t=   
are valid for all t T∈ .  

Proof. Suppose that the paths ( )x t  and ( )y t  are equivalent with respect to 
the action of the group ( )4nSp . Then the equality ( )( ) ( )( )M y t M x t g=

   is 
hold for them, where g is an element of ( )4nSp . In this case, it is no difficulty 
in showing that Equalities 1 - 6 hold, using the equality above. For example,  

( )( ) ( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )

1 1

1 11 .

M y t M y t M x t g M x t g

M x t gg M x t M x t M x t

− −

− −−

′′ =

′ ′= =

   

   

 

Suppose now that Equalities 1 - 6 be true for the paths ( )x t  and ( )y t , on 
all t T∈ . It is plain that the equality ( )1 1 1A A A A− − −′ ′= −  is true for any non- 
singular matrix A. From this statement and the operations defined matrices, 
Equalities 1 - 6 can be written as  

1’) ( )( )( ) ( )( )( )1
0M x t M y t

− ′
=

  ;  
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2’) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )T1 1
M x t M y t M x t M y t E

− −
=

   

;  

3’) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )T1 1
M x t M y t I M x t M y t I

− −
=

    ;  

4’) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )T1 1
M x t M y t J M x t M y t J

− −
=

   

;  

5’) ( )( )( ) ( )( )( ) ( )( )( ) ( )( )( )T1 1
M x t M y t K M x t M y t K

− −
=

    ;  

6’) ( )( )( ) ( )( )( )1
det 1M x t M y t

−
=

  .  
sing Equality 1’ we get ( )( )( ) ( )( ) ( )1

4 ,M x t M y t g GL n R
−

= ∈
  ; from this and 

Equalities 2’ - 6’, it follows the following  

 T T T T, , , , det 1.gg E gIg I gJg J gKg K g= = = = =  

The above equalities are true, if and only if the matrix g is an element of ( )4nSp . 
Hence, the equality ( )( )( ) ( )( ) ( )1

4M x t M y t g n
−

= ∈
 

Sp  is true. From here we 
get ( )( ) ( )( )M y t M x t g=

  , ( )4g n∈Sp . This equality shows that the paths 
( )x t  and ( )y t  are equivalent with respect to the action of the group ( )4nSp . 

Theoerem 1 is proved.                                              □ 
It is easily seen that, the matrix functions  

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1 T T
; ; ;M x t M x t M x t M x t M x t I M x t

−
     ′      

       

( )( ) ( )( ) ( )( ) ( )( ) ( )( )T T
; ; detM x t J M x t M x t K M x t M x t      

      

which given conditions of Theorem 1, is represented an invariant functions with 
respect to the action of the group ( )4nSp , and denote by  

( ) ( )( ) ( ) ( )( ) ( ) ( )( )4 4 4

, 1 , 1 , 1
; ; ;

n n n
lm lm lml m l m l m

A t a t B t b t C t c t
= = =

= = =  

( ) ( )( ) ( ) ( )( ) ( )4 4

, 1 , 1
; ; ;

n n
lm lml m l m

D t d t E t e t F t
= =

= =  

of them, respectively. Also, we define elements of this function. To do this, we 
use from the action, which a multiplication of the matrix and from the equality 

( )( ) ( )( )1
M x t M x t E

−
  = 

  . After some calculations, we would have the formula 
in the following  

( )

( )
( ) ( ) ( ) ( )( )

( )( )

4
4

1
4

0, if equality 1 is hold for 1,4 1 and 1,4 ;

1, if 1 is hold for 1,4 1 and 1,4 ;

1

det

nlm l m n
m lm

m
l n

l m l n m n

l m l n m n
a t

x t M x t
a t

M x t

+

=

 ≠ − = − =


= − = − =
= 

−
 =


∑ 



 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 , ; , ;l m l m
lm lm ib t x x c t x x= Ω = Ω

     

( ) ( ) ( )( ) ( ) ( ) ( )( ), ; , ;l m l m
lm j lm kd t x x e t x x= Ω = Ω

     

( ) ( ) ( ) ( )1 2 4 1nf t x x x x − =  
   

  

where ( ) ( ) ( )1 2 4 1nx x x x − 
 
   

  is a determinant of the matrix ( )( )M x t . 
As well, the bilinear forms ( ) ( )( ),l mx xαΩ

  , { }1, , ,i j kα ∈  represents of inva-
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riant differential polynomial with respect to the action of the group ( )4nSp . 
This makes it possible to show the solution of the problem of G-equivalence of 
paths also through G-invariant differential polynomials or G-invariant differen-
tial rational functions. In follows will be express just about this.  

3. The Ring of Invariant Polynomials with Respect to the  
Action of the Group ( )n4Sp  

In this section, we study the ring of G-invariant polynomials under the action of 
the group ( )4nSp  and describe its generators. Moreover, we define the rela-
tionship between them. 

Let V be a 4n dimensional real vector space, which the realification of nH . 
The elements of the space V will be represented as 4n dimensional row-vector, 
and denoted by x . Let be ( )4 ,G GL n R⊂ . As an action of the group G to the 
space V is defined as right multiplication of the matrix g G∈  to the row-vector 
x V∈
 , i.e., ( ),g x xg=

  . Let [ ]1 2 4, , , nR x x x  

  be the ring of real polynomials in 
4n vector arguments, where 1 2 4, , , nx x x V∈

  

 .  
Definition 8. The polynomial function [ ]1 2 4, , , nf x x x  

  is called G-invariant, 
if the equality  

[ ] [ ]1 2 4 1 2 4, , , , , ,n nf x g x g x g f x x x=
     

   

is true for any g G∈ .  
We denote the set of all invariant polynomials with [ ]1 2 4, , , G

nR x x x  

 . It is 
plain, this set is a subring of the ring [ ]1 2 4, , , G

nR x x x  

  with respect to opera-
tions defined on the ring [ ]1 2 4, , , nR x x x  

 , i.e.,  

[ ] [ ]1 2 4 1 2 4, , , , , , .G
n nR x x x R x x x⊂

     

   

Let the set { }l l
ε

∈∆
Σ =  consists of the certain elements in [ ]1 2 4, , , nR x x x  

 , 
where ∆  is a finite ordered set natural numbers.  

Definition 9. The elements 1 2, , , sε ε ε ∈Σ  are called algebraical depen-
dent, if such that exist polynomial [ ]1 2, , , sP x x x  

  in [ ]1 2 4, , , nR x x x  

 , then be 
( )1 2, , , 0sP ε ε ε = , otherwise these elements are called algebraical indepen-

dent (see, [6]).  
The set { }l l

ε
∈∆

Σ =  is called a system generators of the ring [ ]1 2 4, , , G
nR x x x  

 , 
if an arbitrary element  

[ ] [ ]1 2 4 1 2 4, , , , , , G
n nf x x x R x x x∈

     

   

can be generating by applying a finite number of operations of the ring  
[ ]1 2 4, , , G

nR x x x  

  to the elements in { }l l
ε

∈∆
Σ = . A system of algebraical inde-

pendent generators is called a integrity basis of the ring [ ]1 2 4, , , G
nR x x x  

 . In 
the following, we consider the problem of describing a system of generators in 
[ ]1 2 4, , , G

nR x x x  

  for ( )4G n=Sp . 
Let there be given several G-invariant polynomials of some vector arguments 

1 2, ,u u  , i.e.,  

 [ ] [ ]1 1 2 2 1 2, , , , , ,u u u uϕ ϕ                     (8) 
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System (8) will be a complete table of typical basic invariants for m arguments, if 
it changes into an integrity basis for invariants of m arguments 1 2, , , mx x x  

 , by 
substituting for 1 2, ,u u   these arguments in all possible combinations (repeti-
tions included). Also, for the table of typical basic invariants of a linear group of 
n-th degree to be complete with respect to any m argument, it is sufficient that it 
is true for n arguments (see, [23]). Using these facts, we prove the following 
theorem.  

Theorem 2. Let G be group ( )4nSp . Any ( )4nSp -invariant polynomial is 
expressed an integrally rational manner by the elements of the system  

( ) { }, , 1, , , ,l mx i j kα ξ αΩ ∈


                     (9) 

where lx V∈
 , *

m Vξ ∈


, *V  is the adjoint space for the space V.  
Proof. To prove Theorem 2, it suffices to show that, according to the above facts, 

the statement of the theorem is true for the sets of vectors 1 2 4, , , nx x x V∈
  

  and 
*

1 2 4, , , n Vξ ξ ξ ∈
  

 . In other, suffices to show that arbitrary ( )4nSp -invariant 
polynomial of these vector arguments, be generated through forms (9). 

Obviously, we can express any polynomial 1 2 1 2, , , ,p x x ξ ξ 
 

 

 

   by the form 

{ }l mP x ξ


 , where 
4

1

n

l m l m ln mn
n

x x xξ ξ ξ
=

= = ∑
 

  . 

Let 1 2 4 1 2 4, , , , , ,n np x x x ξ ξ ξ 
 

  

  

   be any ( )4nSp -invariant polynomial. 
Using the transformation ( )4g n∈Sp , we can pass the set of vector arguments 

1 2 4, , , nx x x V∈
  

  to the set of vectors 1 2 4, , , ne e e  

 , which the set of standard 
basic of vectors in V. 

Let be ( )4g n∈Sp . Then we have the system of equations l lx g e=
  , ( 1,4l n= ). 

Also, considering that 4 2 4 1t te e I+ +=
  , 4 3 4 1t te e J+ +=

  , 4 4 4 1t te e K+ +=
  , ( 0, 1t n= − ) 

and ( )4g n∈Sp , we get the system of equations  

 4 2 4 1 4 3 4 1 4 4 4 1, , .t t t t t tx x I x x J x x K+ + + + + += = =
                  (10) 

In this case, the coordinates of each vector of the set vectors { }1 2 3, , ,l l l lx x x x+ + +
     

are determined by the coordinates of the vector lx , where 4 1l t= + , 0, 1t n= − . 
In what follows, we denote by X the matrix in the form ( )4

, 1

n
lm l m

x
=

. Then, the 
matrix X with the help of Equations (10) is defined in the following form  

( )

( )

( ) ( ) ( )( )

11 15 1 4 3

51 55 5 4 3

4 3 1 4 3 5 4 3 4 3

,

n

n

n n n n

X X X

X X X
X

X X X

−

−

− − − −

 
 
 

=  
 
 
 





   



 

where lmX  will be as follows:  

1 2 3

1 3 2

2 3 1

3 2 1

.

lm lm lm lm

lm lm lm lm
lm

lm lm lm lm

lm lm lm lm

x x x x
x x x x

X
x x x x
x x x x

+ + +

+ + +

+ + +

+ + +

 
 − − =
 − −
 
− − 

 

In addition, we have the equality 1g X −=  from the equation Xg E= . Also, 
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we obtain to the equality Tg X=  from ( )4g n∈Sp . In turn, during the 
transformation the set { }1 2 4, , , nx x x  

  to the set { }1 2 4, , , ne e e  

  respectively 
the set of vectors { }1 2 4, , , nξ ξ ξ

  

  will changed into the set of vectors 

{ }1 2 4, , , nξ ξ ξ′ ′ ′
  

  and defined them as follows. 
We denote of the matrices ( )4

, 1

n
lm l m
ξ

=
 and ( )4

, 1

n
lm l m
ξ

=
′  respectively by Ξ  and 

′Ξ . Then, we have to the equation Tg X′Ξ = Ξ = Ξ . From this equation fol-
lowed of the equality ( ),lm s mxαξ ξ′ = Ω



 , where , 1, 4l m n= ,  

 

1, if 4 3, then be 1, ;

, if 4 2, then be 1, ;

, if 4 1, then be 1, ;

, if 4 , then be 1, .

l s s n

i l s s n

j l s s n

k l s s n

α

 = − =


= − =
= 

= − =
 = =

             (11) 

Then, we can see that each vector lξ ′


 is defined as an algebraic expression of 
the bilinear form ( ),s mx xαΩ

  . In addition, the equation  

[ ]1 4 1 4 1 4 1 4, , , , , , , , ,n n n n lmp x x p e e Pξ ξ ξ ξ ξ   ′ ′ ′= =   
   

   

     

is true for any ( )4nSp -invariant polynomial 1 4 1 4, , , ,n np x x ξ ξ 
 

 

 

  . Then it 
follows that any ( )4nSp -invariant polynomial 1 4 1 4, , , ,n np x x ξ ξ 

 
 

 

   alge-
braically expressed by the forms ( ),s mx xαΩ

  . Theorem 2 is proved.        □ 
It is known that the second main problem in the course of invariant theory is 

the definition of the relationship the between generators of the ring of 
G-invariant polynomials. Accordingly, below we define the relationship be-
tween the elements of System (9). 

Let the scalar product in the space nH  be given by the form , . In this case, 
consider the product  

 1 2 3 4 2 1 2, , , ,n nx x x x x x−                    (12) 

corresponding to the vectors 1 2 3 2, , , , n
nx x x x H∈ , where lx θ≠ , 1,2l n= . 

Replacing each ,  bilinear form given in Product (12) by (5), we obtain a 
formula of the following form  

 1 1 1 1, , , , , , , ,
1 2 2 1 2, , ,n n n n

n nx x x x F F i F j F kα α β β γ γ ν ν
− = + + +   

     (13) 

where  

( ) ( )1
1

, ,
1 2 2 1 2 1 2, , , 1;n

n n n nF c x x x xα α
α α α α α α−= Ω Ω ⋅ ⋅ ⋅ = ±∑

   

   

( ) ( )1
1

, ,
1 2 2 1 2 1 2, , , ;n

n n n nF c x x x x iβ β
β β β β β β−= Ω Ω ⋅ ⋅ ⋅ = ±∑

   

   

( ) ( )1
1

, ,
1 2 2 1 2 1 2, , , ;n

n n n nF c x x x x jγ γ
γ γ γ γ γ γ−= Ω Ω ⋅ ⋅ ⋅ = ±∑

   

   

( ) ( )1
1

, ,
1 2 2 1 2 1 2, , , ;n

n n n nF c x x x x kν ν
ν ν ν ν ν ν−= Ω Ω ⋅ ⋅ ⋅ = ±∑

   

   

( ) ( ) ( ) ( )1 2 1 21 , 1 ;q q
n nc sign c signα βα α α β β β= − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅   

( ) ( ) ( ) ( )1 2 1 21 , 1 ;q q
n nc sign c signγ νγ γ γ ν ν ν= − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅   

{ }, , , 1, , ,i j kα β γ ν ∈
   

, q: the number of imaginary units in the product 
{ }1 2 nω ω ω⋅ ⋅ ⋅ , { }, , ,ω α β γ ν∈

    

, 1,n= . 
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For example, (see, [24])  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2 3 4

1 1 2 1 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 1 2 3 4 1 2 1 3 4

1 2 3 4 1 2 3 4 1 1 2 3 4

1 2 1 3 4 1 2 3 4 1 2

, ,

, , , , , ,

, , , , , ,

, , , , , ,

, , , , ,

i i j j

k k i i

j k k j j

j k i i k

x x x x

x x x x x x x x x x x x

x x x x i x x x x x x x x

x x x x x x x x j x x x x

x x x x x x x x x x x

= Ω Ω −Ω Ω −Ω Ω
 −Ω Ω + −Ω Ω −Ω Ω 

 +Ω Ω −Ω Ω + −Ω Ω 
−Ω Ω +Ω Ω −Ω Ω ( )3 4, x 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )
( ) ( ) ( )
( )

1 2 1 2 1 2

1 2

1 1 2 3 4 1 2 1 3 4 1 2 3 4

1 2 3 4

, , ,
1 2 3 4 1 2 3 4 1 2 3 4

,
1 2 3 4

, , , , , ,

, ,

, , , , , , , , ,

, , , .

k k i j

j i

k x x x x x x x x x x x x

x x x x

F x x x x F x x x x i F x x x x j

F x x x x

α α β β γ γ

ν ν

+ −Ω Ω −Ω Ω +Ω Ω
−Ω Ω 

= + +

+

 

Using the above definition and formulas, we will define the relationship between 
the elements of system (10). To do this, we use an n linear independent vectors 

1, , n
nx x H∈  and the properties of the determinant of the Gram matrix com-

posed of them. Further, let us denote the Gram matrix as ( )1, , nx xΓ  . It is 
known that the Gram matrix ( )1, , nx xΓ   is a Hermitian quaternion matrix of 
order n and its determinant defines with formula in the following  

 
( ) ( )

11 1 1 1 1

1

1det , , 1 , , ,

, , ,

m m m m
n

m m m

n
l n l l l l l l

S

l l l n

x x x x x x x x

x x x x

δ

δκ κ κ κ

κ

σ
+ +

+ +

−

∈

Γ = −

× ×

∑ 

 

    (14) 

where nS  is a group of the permutation of the set { }1,2, , n , l  is number of 
rows,  

( ) ( )1 1 1 11 1, , , , , , , ,m m m m m m nl l l l l l l S
κ κ κ κδ δσ + + + += ∈    

κ  is number of cyclic; in addition, the following properties hold for the Gram 
determinant:  

Proposition 3. The vectors { }1 2, , , nx x x  is linearly independent in nH , 
then the relations ( )1det , ,l nx x RΓ ∈  and ( )1det , , 0l nx xΓ ≠  hold, where 
l  is the number of rows;  

Proposition 4. Let { }1, , ,nx x x  be a set of the first n linearly independent 
vectors in the space nH . Then for the Gram matrix consisting of them the 
equality ( )1det , , , 0l nx x xΓ =  is true, where 

1 1 2 2 n nx x x xλ λ λ= + + + ;  

Proposition 5. Let { }1 1 2, , ,n nx x x+ +  be a set of the first n linearly indepen-
dent vectors in the space nH . Then, the minor determinant 2,1nM +  of order 
( )1n + -th of ( )1 1 2det , , , ,l n n nx x x x+ +Γ   is equal zero, i.e.,  

( ) 

11 1 1 1 1
1 1

1

1
2,1 1 11 , , ,

, ,

0

m m m m
n

m m m m

n
n l l l l

S

l l l l

M x x x x x x

x x x x

δ

δκ κ κ κ κ

κ

σ
+ +

+

+ +

+ −
+

′∈

= −

×

=

∑  
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where the permutation 1σ ′  and the set 1nS +  are obtained as follows: 
Let 2nSσ +′∈  be a permutation in form as the follows  

( ) ( )1 1 1 12 1 ;m m m m mn l l l l l
κ κ κ κδ δσ + + +′ = +     

denote by 1σ ′  that the decomposition  

( ) ( )1 1 1 11 m m m m ml l l l l
κ κ κ κδ δ+ + +    

Also, we denote by 1nS +  that the set of all the decomposition 1σ ′ ;  


1 1 1 11 2, ,
m ml l nx x x x

δ δ+ + += .  
Proposition 3 - 5 follows from the properties of Hermitian quaternion ma-

trices (see, [25]). 
Now, we define the relations corresponding to Propositions 3 - 5 for the set of 

strongly linearly independent vectors 1, , nx x 

  given in space V. 
Let a set { }1 1, 2, ,B n=   and a permutation group nS , consisting of ele-

ments of the set 1B  be given. It is known that any permutation  

1 1 1

1 1 1 1

1

1
m m m

n
m m m m

l l l n
S

l l l l
κ

κ κ

δ
σ

+

+ +

 
= ∈  
 

   

   

 

can be represented as a decomposition  

 ( )( ) ( )1 1 1 2 2 2 21 11, , , , , , , , ,m m m m m m ml l l l l l l n
κ κδ δ+ + + +            (15) 

where 1,
s sml nδ+ = , 0s Zδ +∈ , 1,s κ= , 

2 3m m ml l l
κ

< < < , κ  is number of 
cyclic. We denote by υ  the set of ordered pairs corresponding to decomposi-
tion (15), i.e.,  

( ) ( ) ( ) ( ){ }1 1 1 11, , , ,1 , , , , , , ,m m m m ml l l l n l
κ κ κδ+ +    

and denote by ρ  a bijective mapping from 1B  to υ . We also denote the set 
of all mappings ρ  by Aρ  and by 1 , , nF

τ

α α
ρ

  the product  

( ) ( ) ( )1 21 1 2 2
, , , ,

m m m m n m ms s s s s sn n
l l l l l lx x x x x xα α α′ ′ ′Ω Ω ⋅ ⋅Ω
     

  

where { }1, , 1, , ,n i j kα α ∈ , { } ( )1,
s sm m sl l mτρ

−′ = , 
s sm ml l′< , 1sm B∈ , 1, !nτ = .  

Lemma 6. Let { }1 2, , , nx x x  

  be a set of strong linearly independent vectors 
in V. If the condition 1 2 1nα α α⋅ ⋅ = ±  holds, then the relation  

 ( ) ( ) 1 2
1 2, , , 1 0nn

n
A

F x x x c F
τ τ

τ ρ

κ α α αα
ρ ρ

ρ

− ⋅ ⋅

∈

= − ≠∑ 

  

         (16) 

is valid for the set of vectors 1 2, , , nx x x  

  where κ  is number of the permuta-
tion τσ  ( τ τυ σ↔ ), also  

( ) { }

( ) ( ) ( ){ }1 2 21 1 2 2

1 21

, , , ,
m m m m m ms s s s s sn n

q
n

l l l l l l

c sign

sign x x x x x x

τ

α
ρ

α α α

α α α

′ ′ ′

= − ⋅ ⋅ ⋅

× Ω Ω ⋅ ⋅Ω



     



 

q is number of imaginary units in the product 1 2 nα α α⋅ ⋅ ⋅ .  
Proof. To prove Lemma 6, we use Proposition 3 and equality (14). According 

to Proposition 3, the relations ( )1 2det , , ,l nx x x RΓ ∈  and  
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( )1 2det , , , 0l nx x xΓ ≠  are valid for the linearly independent vectors  

1 2, , , n
nx x x H∈ ; from equality (14) we have that, for 1l = , the formula  

 ( ) ( )
11 1 11 1 1det , , 1 , , , .

m m m m
n

n
n l l l l n

S
x x x x x x x x

κ δκ

κ

σ
+ +

−

∈

Γ = − ⋅ ⋅∑      (17) 

Taking into account the definition of the mapping ρ  and the equality  

( ) ( ) ( ) ( )1 11 1, , , , , ,
m m m m m m m ml l l l l l l lx x x x x x x x
κ κ κ κ κ κ κ κα α′ ′ ′ ′Ω = Ω Ω = −Ω  

{ }( )1 , ,i j kα ∈  we obtain the following relation by applying equality (14) to the 
right of formula (17):  

 
( ) ( ) ( )

( ) ( )

1 1

1 1

1 1det , , 1 1

1 1 ,

n n

n n

n n
n

A A

n n

A A

x x c F i c F

j c F k c F

τ ττ τ
τ ρ τ ρ

τ ττ τ
τ ρ τ ρ

κ κα α β βα β
ρ ρρ ρ

ρ ρ

κ κγ γ ν νγ ν
ρ ρρ ρ

ρ ρ

− −⋅ ⋅ ⋅ ⋅

∈ ∈

− −⋅ ⋅ ⋅ ⋅

∈ ∈

Γ = − + −

+ − + −

∑ ∑

∑ ∑

 

 



 (18) 

where the vectors 1, , nx x 

  corresponds to the vectors 1, , nx x  with respect 
to the action of realification. 

In this case, since the vectors 1, , nx x  are linearly independent, it is clear 
that the vectors 1, , nx x 

  are strongly linearly independent; since  
( )1 1det , , nx x RΓ ∈ , in equality (18) the coefficients in front of the imaginary 

units , ,i j k  are equal to zero; From ( )1 1det , , 0nx xΓ ≠  it follows that state-
ments of Lemma 6.                                                □ 

Lemma 7. Let { } 1

1

n
l l

x +

=



 be a sequence of vectors 1 2 1, , , ,n nx x x x +
   

 , the firs n of 
which are strongly linearly independent. If the condition 1 2 1 1nα α α +⋅ ⋅ = ±  
holds, then the relation  

 ( ) ( ) 1 2 11
1 2 1, , , 1 0nn

n
A

F x x x c F
τ τ

τ ρ

κ α α αα
ρ ρ

ρ

++ − ⋅ ⋅
+

∈

= − =∑ 

  

            (19) 

is valid for the sequence { } 1

1

n
l l

x +

=



, where κ  is a number of cycles in permuta-
tion σ , which the corresponding to the mapping τρ , also  

( ) { } ( ) ( ){ }1 11 1 1 11 11 , , .
m m n m mn n

q
n l l l lc sign sign x x x x

τ

α
ρ α αα α

+ + +
′ ′+= − ⋅ ⋅ × Ω ⋅ ⋅Ω   

The statement of Lemma 7 follows from Proposition 4, equalities (14) and 
(18). Only in this case is considered the permutation of 1nSσ +∈ , the corres-
ponding set υ  that it, and the set of mapping { }: 1, 2, , 1nρ υ+ → . 

Let us now define the relation that follows from Proposition 5. 
Let a set { }2 1, 2, , 1, 2B n n= + +  and a group 2nS +  be the permutation 

group consisting of the elements of 2B  be given. We obtain the elements of the 
group 2nS +  in the following form  

1 2 1

2 1 2 1
.1

s s snm m m

n n
l l lσ

+

+ + 
=   
 





 

Also, we can be represented of this permutations in form decomposition of in-
dependent cycles, i.e.,  

 ( ) ( )1 1 1 12,1, , , , , , ,m m m m mn l l l l l
κ κ κ κδ δσ + + += +            (20) 
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where 1, 2
s sml nδ+ = + , 0s Zδ +∈ , 1,s κ= , 

2 3m m ml l l
κ

< < < , κ  is the num-
ber of cycles. 

We denote by υ  the set of ordered pairs corresponding to Decomposition 
(20), i.e.,  

( )( ) ( ) ( ) ( ){ }1 1 1 12,1 1, , , , 2 , , , , , , ,m m m m m mn l l n l l l l
κ κ κ κ κδ δ+ + ++ +    

also, denote by υ′  that the subset υ  in the form  

( ) ( ) ( ) ( ){ }1 1 1 11, , , , 2 , , , , , , .m m m m m ml l n l l l l
κ κ κ κ κδ δ+ + ++    

Further, we denote the bijective mapping from the set { }1,2, , 1n +  to σ ′  by 
ρ′ , and also by Aρ′  the set of all mappings ρ′  that define.  

Lemma 8. Let { } 2

1

n
l l

x +

=



 be a sequence of vectors 1 2 1 2, , , ,n nx x x x+ +
   

 , the first 
n of which are strongly linearly independent. If the product 1 2 1nωω ω +⋅ ⋅  is 
equal to one of the values 1; ; ;i j k± ± ± ± , then the relation  

 ( ) ( ) 1 2 11 , , ,
1 1 2, , , 1 0nn

n n
A

F x x x c F
τ τ

τ ρ

κ ω ω ωω
ρ ρ

ρ

+

′

+ −
′ ′+ +

′ ∈

= − =∑ 

  

         (21) 

is valid for the sequence { } 2

1

n
l l

x +

=



, where  

( ) { }

( ) ( ){ }1 11 1 1 1

1 2 11

, , ,
m m n m ms s s sn n

q
n

l l l l

c sign

sign x x x x

ω
ρ

ω ω

ω ω ω

+ + +

′ +

′ ′

= − ⋅ ⋅ ⋅

× Ω ⋅ ⋅Ω



   



 

q is the number of imaginary units in the product 1 2 1nω ω ω +⋅ ⋅ ⋅ ,  
{ }1, , ,i j kω ∈



, { } ( ) ( )1,
s sm m sl l mτρ

−′ ′= , 
s sm ml l′< , 1, 1!nτ = + , 1, 1sm n= + .  

Lemma 8 proves by Proposition 3, formula (14), and the definition of the bi-
jective mapping Aτ ρρ ′′ ∈ . From in above theorem and lemmas, we obtain a co-
rollary the following:  

Corollary 1. System 9 is a complete table of typical basic invariants for the 
group ( )4G n=Sp  and the statements of Lemmas 6-8 are represented the rela-
tions between of them.  

4. The Differential Field ( )n4Sp -Invariant Rational  
Functions  

In this section, we study the differential ring that the corresponding to the ring 
( )4

1 2, , , 4
n

R x x n  


 



Sp

. Also, we solve the problems describing the system of 
d-generators and finding the relations in between of them. 

Let   be a commutative ring and d a derivation in  , i.e.,  

( ) ( ) ( ) ( ) ( ) ( ),d x y d x d y d x y d x y x d y+ = + ⋅ = ⋅ + ⋅  

for any ,x y∈ . 
It is known ([13]) that a derivation d in an integral domain   admits a 

unique extension to a derivation of the corresponding field of fractions. 
A commutative ring   with unity (respectively, a field  ) in which a fixed 

derivation is specified is called a differential ring (d-ring), (respectively a diffe-
rential field, d-field). A subfield   in a d-field   is called a d-subfield if 
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( )d ⊂  . 
We will use the following examples of d-rings and d-fields. 
We fix a natural number 4n N∈  and consider the ring of polynomials of 

countable number of variables  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1 1 1
1 2 4 1 2 4 1 2 4, , , , , , , , , , , , , , 0,1, 2,r r r

n n nx x x x x x x x x r =       

of the form  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 1 1 1
1 2 4 1 2 4 1 2 4, , , , , , , , , , , , ,r r r

n n nR x x x x x x x x x 
       

with coefficients from the field of real numbers R; we denote this ring by { }R x  
(we assume that ( )0

l lx x= , 1,4l n= ). We set ( )( ) ( )1r r
l ld x x += , ( ) 0d c = , c R∈ , 

for all 1,4l n= , 0r Z +∈ . The mapping d can be uniquely extended to a differen-
tiation d  in the ring { }R x . Then this ring becomes a differential ring, its ele-
ments are called d-polynomials; we denote them { }f x , where { }4

1

n
l l

x x V
=

= ∈


. 
We denote by R x  the field of fractions for the ring by { }R x , i.e., R x  

is the field of all rational functions of the same variables ( )r
lx , 0r Z +∈ , 1,4l n= . 

Also, the differentiation d  can be naturally extended from the ring { }R x  to a 
differentiation on the field R x . Then this field becomes a differential field, 
and elements of the d-field R x  are called d-rational functions; we denote 
them f x . 

Let G be a subgroup of the group ( )4 ,GL n R .  
Definition 10. A differential polynomial { }f x  (respectively, a d-rational 

function f x ) is said to be G-invariant if  

{ } { } ( ),f xg f x f xg f x= =
     

for all g G∈ , (see, [14]).  
The set of all G-invariant d-polynomials (respectively, G-invariant d-rational 

functions) is denoted by { }GR x  (respectively, GR x ). It is known that 
{ } { }GR x R x⊂
   (respectively, GR x R x⊂

  ). 
Let the set { }= l l L

ε
∈

′ ′Σ  is consisted from elements of { }GR x , where L is a 
set in finite number, the ordered of natural number. 

A subset ′Σ  of GR x  is called a generating system of the d-field GR x  
if an arbitrary element f x  of GR x  can be generating by applying a finite 
number of operations of the d-field GR x  to the elements of ′Σ , and the ele-
ments of ′Σ  are called d-generators of the d-field GR x . 

Elements { }1 2, , , sε ε ε′ ′ ′
  of ′Σ  are said to be d-algebraical dependent over 

d-field GR x  if there exists a non zero d-polynomial { } { }1 2, , , sP y y y R x∈


  
such that { }1 2, , , 0sP ε ε ε′ ′ ′ = . Otherwise, the system of elements 1 2, , , sε ε ε′ ′ ′

  
is said to be d-algebraically independent over GR x . Also, a finite system of 
d-generators in GR x  that is d-algebraically independent is called d-rational 
basis of the d-generators of the d-field GR x  (see, [14]). 

We consider the following problem constructing a finite system of d-gene- 
rators of the d-field GR x  in case ( )4G n=Sp .  

Theorem 9. A system of d-generators of the d-field ( )4nR x Sp  is formed be 
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the polynomials  

 ( ) ( )( ) ( ) ( )( ) { }( )1

1
1 1, , , , 0, 1, , , .r r r rx x x x r n i j kα α+Ω Ω = − ∈
            (22) 

Proof. To prove Theorem 9, we use the following claims and propositions.  
Claim 1. Any ( )4nSp -invariant d-rational function is the ratio of two 
( )4nSp -invariant d-polynomials.  

This claim follows from Proposition 1 in [6] (see, also the proof of Theorem 
2.1.1 in [14]).  

Claim 2. Any ( )4nSp -invariant d-polynomial is represented by the d-poly- 
nomials  

( ) ( )( ) { }( ), , 1, , , .l mx x i j kα αΩ ∈
   

Claim 2 is differential analogy of Theorem 2.  
Claim 3. If { }1, , ,i j kα ∈  and x V∈

 , then the following affirmations are 
hold for the ( )4nSp -invariant d-polynomials ( ) ( )( ),l mx xαΩ

  :  
i1) any d-polynomial ( ) ( )( )1 0, , ,l mx x l m Z +Ω ∈

   is expressed in terms of the d- 
polynomials ( ) ( )( )1 1

1 ,r rx xΩ
   with use of finite number of operations in the d-ring  

{ } ( )4nR x Sp , where 1 2
l mr + ≤   

; 

i2) any d-polynomial ( ) ( )( )1 1
1 ,r rx xΩ
   is expressed d-rational by the d-polyno- 

mials ( ) ( )( )1 1
1 ,r rx x′ ′Ω
  , where 1 4r n≥ , 1 0, 4 1r n′ = − ; 

i3) any d-polynomial ( ) ( )( ) 0, , , ,l m
i x x l m Z l m+Ω ∈ <
   is expressed in terms of 

the d-polynomials ( ) ( )( )2 2 1,r r
i x x +Ω
   with the use of finite number of operations 

in the d-ring { } ( )4nR x Sp , where 22 1l m r+ ≥ + ; 
i4) any d-polynomial ( ) ( )( )2 2 1

2, , 4r r
i x x r n+Ω ≥
   is expressed d-rationally in 

term of the d-polynomials ( ) ( )( )2 2 1,r r
i x x′ ′ +Ω
  , where 2 0, 4 1r n′ = − ; 

i5) any d-polynomials ( ) ( )( ),l m
j x xΩ
   and ( ) ( )( ) 0, , , ,l m

k x x l m Z l m+Ω ∈ <
   are 

expressed in terms of the d-polynomials ( ) ( )( )3 3 1,r r
j x x +Ω
   and ( ) ( )( )3 2 1,r r

k x x +Ω
   

with the use of finite number of operations in the d-ring { } ( )4nR x Sp , where 

32 1l m r+ ≥ + ; 
i6) any d-polynomial ( ) ( )( )3 3 1,r r

j x x +Ω
   and ( ) ( )( )3 3 1

3, , 4r r
k x x r n+Ω ≥
   is ex-

pressed d-rationally in term of the d-polynomials ( ) ( )( )3 3 1,r r
j x x′ ′ +Ω
   and  

( ) ( )( )3 3 1,r r
k x x′ ′ +Ω
   where 3 0, 4 1r n′ = − .  

Parts i1) and i2) of Claim 3 have been proved by Aripov R.G and Xadjiyev Dj 
[11] in case generally; parts i3) and i4) was proved by Muminov K.K [14]; parts i5) 
and i6) are follow by applying the equalities  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 2 2, , and , ,l m l m l m l m
j i k ix x x A x A x x x A x AΩ = Ω Ω = Ω
         

to the proof of parts i3) and i4).  
Note. Since the equality ( ) ( )( ) ( ) ( )( ), ,l m m lx x x xα αΩ = −Ω

     is hold, the case 
l m>  of parts i3) - i6) follows from those case l m< . From Claims 1 - 3, we get 
the following corollary for the ( )4nSp -invariant d-polynomial ( ) ( )( ),l mx xαΩ

  .  
Corollary 2. Any ( )4nSp -invariant d-rational function is expressed d-ration- 

ally with d-polynomials  
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 ( ) ( )( ) ( ) ( )( ) { }
1

1
1 1, , , , 0, 4 1, , , .r r r rx x x x r n i j kα α′ ′ ′ ′+ ′Ω Ω = − ∈
          (23) 

It follows from Corollary 2 that to prove Theorem 2 it suffices to show that 
elements of System (23) will be d-rationally expressed by elements of system (22). 
In other words, we study the problem of minimizing the number of elements of 
the system (23). To do this, we widely use the following propositions:  

Proposition 10. For any non-zero ( )4nSp -invariant d-polynomial  
( ) ( )( ),l mx xαΩ
  , { }( )1, , ,i j kα ∈ , the following equality holds:  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1, , , ;l m l m l md x x x x x xα α α
+ + Ω = Ω +Ω 

              (24) 

where { }( )1, , ,i j kα ∈ .  
Proposition 11. For any sequence of the strong linear independent vectors 
( ) ( )1 1, , , nx x x −  

  in V, the following relation is true:  

 ( ) ( )( ) ( ) 1 21 1 , , ,, , , 1 0;nnn

A
F x x x c F

τ τ
τ ρ

κ α α αα
ρ ρ

ρ

−−

∈

= − ≠∑ 

  

         (25) 

where 1 2 1nα α α⋅ ⋅ ⋅ = ± , { }1, , ,s i j kα ∈ ,  

( ) { } { }1 21 21 ... ;
n

q
nc sign sign

τ

α
ρ α α αα α α= − ⋅ ⋅ ⋅ × Ω ⋅Ω ⋅ ⋅Ω  

Proposition 12. Let be a set ( ) ( ){ }1 1, , , nx x x −  

  of strong linearly independent 
vectors in V. Then, the following relation  

 ( ) ( )( ) ( ) 1 2 111 , , ,, , , 1 0nnn

A
F x x x c F

τ τ
τ ρ

κ α α αα
ρ ρ

ρ

++ −

∈

= − =∑ 

  

         (26) 

is true for any sequence of vectors ( ) ( )1, , , nx x x  

  in V, where  

1 2 1 1nα α α +⋅ ⋅ ⋅ = ± , { }1, , ,s i j kα ∈ ,  

( ) { } { }1 21 21 ;
n

q
nc sign sign

τ

α
ρ α α αα α α= − ⋅ ⋅ ⋅ × Ω ⋅Ω ⋅ ⋅Ω   

Proposition 13. Let be a set ( ) ( ){ }1 1, , , nx x x −  

  of strong linearly independent 
vectors in V. Then, the following relation  

 ( ) ( ) ( )( ) ( ) 1 2 111 2 1 , , ,, , , , 1 0nnn

A
F x x x x c F

τ τ
τ ρ

κ ω ω ωω
ρ ρ

ρ

+

′

+ −+
′ ′

′ ∈

= − =∑ 

   

     (27) 

is true for the ( ) ( ) ( )1 1, , , ,n nx x x x +   

  in V, where 1 2 nw w w β⋅ ⋅ ⋅ = ,  
{ }1, , ,i j kβ ∈ ± ± ± ± ,  

( ) { } { }1 2 11 2 11 .
n

qw
n w w wc sign w w w sign

τρ ++= − ⋅ ⋅ ⋅ × Ω ⋅Ω ⋅ ⋅Ω   

Proposition 10 follows from definition of the operation differential; Proposi-
tions 11 - 13 represents the differential analogy of Lemmas 6 - 8. 

We first minimize the number of d-polynomials ( ) ( )( )1 ,r rx x′ ′Ω
  , ( 0,4 1r n′ = − ) 

using the above propositions and claims. To do this, we use the method of ma-
thematical induction: 

Step 1. Let be 0, 1r n′ = − . Then the d-polynomials ( ) ( )( )1 ,r rx x′ ′Ω
   is ele-

ments of System (22); 
Step 2. Let be r n′ = . There expressing equality (26) of Proposition 12 in the 

form  
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( )( ) ( )( ) ( ) ( )( ) ( )( )1
1 1, , , , , , , 0,n n n n nF x x F x x x x F x x −= +Ω =

       

    

we obtain the following  

 ( ) ( )( )
( )( )

( )( )
1

1 1

, ,
, ,

, ,

n
n n

n

F x x
x x

F x x −
Ω = −

 



 

 



               (28) 

where the expression ( )( )1 , , nF x x 

  will be the sum of such terms of the ex-
pression ( )( ), , nF x x 

  that it doesn’t contain d-polynomial ( )( ) ( )
1 ,n nx xΩ
  ; it is 

known from Proposition 11 that ( )( )1, , nF x x − 

  isn’t equal to zero; therefore the 
fraction is well defined, which on the right side of formula (28); also the expression 

( )( )1 , , nF x x 

  and ( )( )1, , nF x x − 

  consist of d-polynomials ( ) ( )( ),l mx xαΩ
  , 

, 0,l m n= , { }1, , ,i j kα ∈ ; In this case, under the conditions i1), i2), i3) of Claim 
3, we have that the ( ) ( )( )1 1

1 ,r rx xΩ
  , ( ) ( )( )2 2

1

1,r rx xα
+Ω

  , ( { }1 , ,i j kα ∈ ) are ex-
pressed d-rationally in terms of elements of System (22), since  

{ }max 2 1l m l m n+ ≤ + = − ,  

1 1
2 1 1 1 0, 1;

2 2
nr n n r n−   ≤ = − = − ⇒ = −      

 

2 2 22 1 2 1 1 0, 1.r n r n r n+ ≤ − ⇒ ≤ − ⇒ = −  

Hence, the expressions ( )( )1 , , nF x x 

  and ( )( )1, , nF x x − 

  are also expressed 
d-rationally in terms of elements of System (22). From this and the equality (28) 
follows that d-polynomial ( ) ( )( )1 ,n nx xΩ

   is also expressed d-rationally by the 
elements of System (22); 

Now, we shall show that the ( )4nSp -invariant d-polynomials  
( ) ( )( ) { }( )1

1
1, , , ,n nx x i j kα α+Ω =

   are expressed d-rationally in terms of elements 
of the system (22). To do this we use Equality (25), as a result we have the sys-
tem,  

 

( )

( )

( )

( )

1 1

1 1

1 1

1 1

1
1 1

1
1 1

1
1 1

1
1 1

1 0, 1;

1 0, ;

1 0, ;

1 0,

n

n

n

n

n
n

A

n
n

A

n
n

A

n
n

A

c F

c F i

c F j

c F k

τ τ
τ ρ

τ τ
τ ρ

τ τ
τ ρ

τ τ
τ ρ

κ α αα
ρ ρ

ρ

κ β ββ
ρ ρ

ρ

κ γ γγ
ρ ρ

ρ

κ ν νν
ρ ρ

ρ

α α

β β

γ γ

ν ν

+

′

+

′

+

′

+

′

+ − ⋅ ⋅
′ ′ +

′ ∈

+ − ⋅ ⋅
′ ′ +

′ ∈

+ − ⋅ ⋅
′ ′ +

′ ∈

+ − ⋅ ⋅
′ ′ +

′ ∈

 − = ⋅ ⋅ = ±


 − = ⋅ ⋅ = ±


− = ⋅ ⋅ = ±

− = ⋅ ⋅ = ±

∑

∑

∑

∑

























        (29) 

where { }, , , 1, , ,i j kα β γ ν ∈
   

, 1, 1l n= + . 
Let us system (29) with respect to the polynomials ( ) ( )( )1,n nx xα

+Ω
    

{ }( )1, , ,i j kα ∈ . To do this, denote by τρ′′  a bijective mapping that satisfies the 
conditions ( )( ) ( ) { }1 1 , 1n n nτρ

−′ + = + , and we obtain the following  
( ) ( )( )1 1 1

1

1, , , , ,n n
n

n nF F x x
τ τ

ω ω ω ω
ωρ ρ

+
+

+
′′ ′′= Ω 

   

where { }, , ,ω α β γ ν∈
    

; 
Also, we introduce notations in the following: 

( ) ( )( ) ( ) ( )( )1 1
1 1 2, , , ,n n n n

iz x x z x x+ += Ω = Ω
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( ) ( )( ) ( ) ( )( )1 1
3 4, , ,n n n n

j kz x x z x x+ += Ω = Ω
     

( ) ( )11 , ,
1 11 , 1 ;nn

n
A

D c F
τ τ

τ ρ

κ α αα
ρ ρ

ρ
α α

′

+ −
′′ ′′

′′∈

= − ⋅ ⋅ = ±∑ 

  

( ) ( )11 , ,
2 11 , ;nn

n
A

D c F i
τ τ

τ ρ

κ β ββ
ρ ρ

ρ
β β

′

+ −
′′ ′′

′′∈

= − ⋅ ⋅ = ±∑ 

  

( ) ( )11 , ,
3 11 , ;nn

n
A

D c F j
τ τ

τ ρ

κ γ γγ
ρ ρ

ρ
γ γ

′

+ −
′′ ′′

′′∈

= − ⋅ ⋅ = ±∑ 

  

( ) ( )11 , ,
4 11 , ;nn

n
A

D c F k
τ τ

τ ρ

κ ν νν
ρ ρ

ρ
ν ν

′

+ −
′′ ′′

′′∈

= − ⋅ ⋅ = ±∑ 

  

Moreover, we denote by 1N , 2N , 3N , 4N  the sum of the products 1 1, , nF
τ

ω ω
ρ

+
′
  

corresponding to the mapping Aτ ρρ ′′ ∈  that satisfies the conditions  
( )( ) ( ) { }1 1 , 1n n nτρ

−′ + ≠ + . From these notations and from system (29), we have a 
system of the following form:  

 

1 1 2 2 3 3 4 4 1

2 1 1 2 4 3 3 4 2

3 1 4 2 1 3 2 4 3

4 1 3 2 2 3 1 4 4 .

D z D z D z D z N
D z D z D z D z N
D z D z D z D z N
D z D z D z D z N

− + + + =
 + + − =
 − + + =
 + − + =

               (30) 

It is easily shown that a determinant of coefficient matrix of System (30) is de-
fined by formula  

( )22 2 2 2
1 2 3 4 ,D D D D′∆ = − + + +  

where ′∆  is determinant of coefficient matrix. 
Hence, the equal 0′∆ =  is true if and only if 1 2 3 4 0D D D D= = = = . Ac-

cording to Lemme 6, at least one of the coefficients 1D , 2D , 3D , 4D  is non-zero. 
Hence, 0′∆ ≠ , and System (30) has a unique solution. In this case, we can be 
represented by d-polynomials ( ) ( )( )1,n nx xω

+Ω
  , { }( )1, , ,i j kω∈  in terms of 1D , 

2D , 3D , 4D  and ( )1,4tN t =  in a unique form. It is easily shown that the 
conditions 2l m n+ ≤  is hold for the d-polynomials in these expressions. From 
this and from i3) it is follows that d-polynomials ( ) ( )( ),l mx xωΩ

  , { }( )1, , ,i j kω∈  
are expressed d-rationally in terms of the elements of System (22). This shown 
that the d-polynomials ( ) ( )( )1,n nx xω

+Ω
  , { }( )1, , ,i j kω∈  are also expressed d- 

rationally by the elements of System (23). 
Step 3. Let be ( ), 2,3 2r n s s n′ = + = − . In this case, we assume that the state-

ment of Theorem 9 is true; 
Now, we prove that the statement of Theorem 9 is true by using the above as-

sumption, for 1 4 1r n s n′ = + + = − . To do this, we write of equality (26) in 
Proposition 12 for a set of vectors ( ) ( )3 1 4 1, ,n nx x− − 

 , and have to the following  
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

3 1 4 1

3 1 4 1 4 1 4 1 3 1 4 2
1 1

, ,

, , , , ,

0

n n

n n n n n n

F x x

F x x x x F x x

− −

− − − − − −= +Ω

=

 



     

   

From the above equality, it follows  
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( ) ( )( )
( ) ( )( )
( ) ( )( )

3 1 4 1
14 1 4 1

1 3 1 4 2

, ,
, ,

, ,

n n
n n

n n

F x x
x x

F x x

− −

− −

− −
Ω = −

 



 

 



 

( ) ( )( )( )3 1 4 2, , 0.n nF x x− − ≠
 

  

The d-polynomials ( ) ( )( ),l mx xαΩ
   in the expressions ( ) ( )( )3 1 4 1

1 , ,n nF x x− − 

  and 
( ) ( )( )3 1 4 2, ,n nF x x− − 

 , are expressed d-rationally in terms of the elements of Sys-
tem (22) under Claim 3 and the assumption, because , 3 1, 4 1l m n n= − − . This 
implies that the d-polynomials ( ) ( )( )4 1 4 1

1 ,n nx x− −Ω
   is also expressed d-rationally 

in terms of the elements of System (22); 
As above, it can be shown that the d-polynomials ( ) ( )( )1

4 1 4,n nx xα
−Ω

   are also 
expressed d-rationally of the elements of System (22) in accordance with Claim 3 
and assumption. To do this, it suffices to repeat the calculation for d-polynomial 

( ) ( )( )1

1,n nx xα
+Ω

   by a set of vectors ( ) ( )3 1 4, ,n nx x− 

 . Hence, from the principle of 
Mathematical Induction, it follows that the d-polynomials ( ) ( )( )1 ,r rx x′ ′Ω

  ,  
( ) ( )( )1

1,r rx xα
′ ′+Ω

   are expressed d-rationally of the elements of the System (22) 
for all values of 0,4 1r n′ = − . That is exactly what we wanted to show. Theorem 
9 is proved.                                                      □ 

5. Conclusions  

In conclusion, we can state the following corollary from Theorems 1 and 9.  
Corollary 3. Two strongly regular paths ( )x t  and ( )y t  are ( )4nSp -equi- 

valent if and only if the equalities  
1) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1, ,r r r rx t x t y t y tΩ = Ω

    ;  
2) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 1

1 1, ,r r r rx t x t y t y tα α
+ +Ω = Ω

      
are valid for all t T∈ , where 0, 1r n= − , { }1 , ,i j kα ∈ .  
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