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Abstract

In this paper, we observe the generalized Harmonic numbers H,, (a,f).
Using generating function, we investigate some new identities involving ge-
neralized Harmonic numbers H,,  (a,8) with Changhee sequences, Dae-
hee sequences, Degenerate Changhee-Genoocchi sequences, Two kinds of
degenerate Stirling numbers. Using Riordan arrays, we explore interesting
relations between these polynomials, Apostol Bernoulli sequences, Apostol
Euler sequences, Apostol Genoocchi sequences.

Keywords
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1. Introduction

The harmonic numbers play an important role in combinatorial problem and
numbers theory, and they also frequently appear in the analysis of algorithms
and probabilistic statistical calculation. The objective of this paper is using
Riordan arrays and generating function to discover identities on the generalized
harmonic numbers. The harmonic numbers H,(n>0) are defined by

Hy=0, H =Y~ (k=12-).
ik
and the generating function of H, is
® —In(1-t)
Ht'=————=.
nZ_o " 1-t
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The first few harmonic numbers are 1, E E § 13—7

2'6'12' 60"

H, have been generalized by several authors. For other generalizations of the

. The harmonic numbers

harmonic numbers, one can consult [1] [2]. One of them is the generalized
H,i,(a,B) defined by see [3] [4]: k,r>1 are integers,
a,f arereal numbers,and af=0.

(~In(1-at))

n;‘;anr( )=—(1_ﬂt)k - (1)

For convenience, we recall some definitions involved in the paper as following
[5]-[17].

High order Changhee polynomial of the first kind Chrsk) (x) and the second
kind Ch" (x) has the following generating function

ST ch (x )t" [ﬁ}k (1+1), @

1+t

iéhg”(x)ﬂ:(MJ (1+1)". 3)

= nt ((1+t)+1

harmonic numbers

when x=0, Chl* =Chl(0) and Chi*) = Ch) (0) are called the high order
Changhee numbers of the first kind and the second kind.

High order Daehee polynomial of the first kind D{*)(x) and the second kind
D) (x) has the following generating function

ioﬁwx)‘n—}[M]k (L), @

20 t

iﬁr(lk)( )tn (ij(l+t)x_ (5)

>

t

when x=0, DY =D (0) and D® =D (0) are called the high order
Daehee numbers of the first kind and the second kind.
High order Apostol Changhee polynomial Ch,ﬁk)(x:/l) has the following

generating function

ot o) 400 ©

when x=0, Ch)(1)=Ch{(0:4) are called the high order Apostol Chang-
hee numbers.
High order Apostol Daehee polynomial D,Ek) (x:1) has the following gene-

rating function

o n!

>

iDﬁk)(x:l)ﬂ:[%] (L+1)". ?)

when x=0, D{'(1)=D"(0:2) are called the high order Apostol Daehee

numbers.
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High order Apostol Bernoulli polynomial Br(]k) (X : ﬂ) has the following ge-

nerating function

g t" t Y
BY (x:2)—= —j C 8
z n ( ) /16‘ —1 ( )
when x=0, B (2)=B!" (0:1) are called the high order Apostol Bernoulli
numbers.

High order Apostol Euler polynomial E,(]k) (x:4) has the following generat-

ing function

w n k
ZEgk)(x:ﬂ)t ( 2 )ex‘. 9)

= nt (Ze' +1

when x=0, EX(2)=EX(0:1) are called the high order Apostol Euler
numbers.
High order Apostol Genocchi polynomial Gr(]k) (x:4) has the following ge-

nerating function

2 t" 2t
GM (x: 4 —:[ j e 10
nZ:O v (x:4) nt (Je'+1 (10)
when x=0, G\ (2)=G{ (0:1) are called the high order Apostol Genocchi
numbers.
When A4 =1 in (10), we get the generating function of high order Genocchi
polynomials G/ (x)

w n k
ZGS‘)(X)t (i) e, (11)

= n e+t
The degenerate Changhee polynomials of the second kind Ch, , (X) have the
following generating function

Sch,, (x)5 = 2 (1+aIn(1+)). (12)
n=0

" (1A

The degenerate Euler polynomial E_,(X) has the following generating func-

tion
Z t" 2 X
SE, (X) s =S (1 at): (13)
n-o lr(rat)

The degenerate Genocchi polynomial G, ,(x) has the following generating

function
iGM(x)t—ﬁLl(lMt)f (14)
-0 "L+ at)

The degenerate Changhee-Genocchi polynomial of the second kind CG, , ()

has the following generating function

* n 2In(1+t X
ZCGM(x)t—lz nL+) —(1+AIn(1+t))%. (15)
"o T (L4 AIn(L4t))

DOI: 10.4236/jamp.2022.105111 1604 Journal of Applied Mathematics and Physics


https://doi.org/10.4236/jamp.2022.105111

R. Wang, Wuyungaowa

The degenerate stirling numbers of first kind and second kind have following

S (n k) G((htf _1)jk

n>k k !

generating function

, (16)

Sy . ((1%)1 _1jk.

17
2 m (17)

Generalized Harmonic polynomial H!”(z) has the following generating

function

:; HO (2)t" = (=h@-1) IT((i:tt)))

with H{”(z)=1, and we also obtain when r=0,z=0, H'”(0)=H, (n>1).
Let n>k+r, the combinatorial numbers P(r, n+k, k) has the following

(1-t)". (18)

n

generating function

i( j (r, n+k,k)t”:M. (19)

"0 (1-t)*

Lemma 1. If D(g(t), f (t)) z(dn,k )n.keN

generating function of the sequence {(hk )

is a Riordan array and h(t) is the

. } , then we have ([18])

>d,.h, =[t"]a(®)n(f (1)) 20)

k=0

2. Some Identities Involving Generalized Harmonic Numbers

Hn,k,r (a’ﬂ)

In this part, using generating functions and coefficient method we discuss some
interesting relationships of generalized harmonic numbers H,, (o, /).

Theorem 2.1. Let nis a nonnegative integer, we have

" -2p)"" ch"
SH,. (o f >L

n (n J)I = Hn,k+m,r (a7ﬂ)l (21)
j=0 )

S0 S o [ ). 22

i=0 (n—j)! i=0
Proof. By (1) and (2), we get

" (-28)"’chm | (=In(-at))
sz::‘)Hj‘k‘r(a’ﬂ) (n—j)! v (1-pt

Comparing the coefficients of t" in both sides of the last equation, we get the

M

n

identity. (22) can be obtained in the same way.

Corollary 2.1. For m=1 in Theorem 2.1, we obtain the following identities
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: (_Zﬂ)nij Chn—j
]Z:(:)HJ o (@0 )W

3, () 2

= Hn,k+1,r(a’ﬂ)’ (23)

= Hujar (a,ﬂ)— 2PH (avﬂ)- (24)

j=0 (n—1j)!
Corollary 2.2. For f=a in Corollary 2.1, we obtain the following identities
0 (<2)" Hy,, (a@)Ch_;  (n+k
= P(r,n+k k), 25
L (o)) )P ) (29)

(—2)"7’- HJ o (@, a)éh

n-j

>
( _J) (26)
n+k-1

JO[ J rn+k,k)—2ﬂ[ ) JP(r,nJrk—l,k).

Theorem 2.2. Let nis a nonnegative integer, we have

» (-2a)"chlm

2 s @A e
n k . -A )
2 %[E)Fﬂ)“ H (a,ﬂ)(z()—c):hl

(28)

(—2a)"" chi™

ni Zn: Zk:(lr(,](_ﬂ)h Hikr (“’ﬂ)T)!th

) (1-at)" - g Ho o (@)t

Comparing the coefficients of t" in both sides of the last equation, we get the
identity. (28) can be obtained in the same way.
Corollary 2.3 For m=1 in Theorem 2.2, we obtain the following identities

:0 :ZO(EJ(—ﬂ)“ H e (a,ﬂ)(_zz[z_—j;h” =a"H(n,r-1), (29)
n Kk (k h (—20{)nfj(§hn_j
35 () o

=a"(H(n,r-1)-2aH (n-1r-1)).

For f=a=m=1 in(27), the Theorem 2.3 in [5] is as follows

n nk Ch, n+k-1
> (-2) (n—J)( 1 JP(r,n+k—1,k—1)

j=0
(n+k+r -1

(31)

j (rn+k+r-Lk+r-1).
k+r-1
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Theorem 2.3. Let 1 be a nonnegative integer, we have

- (_a)nij D:IT} _ Hn+m,k,r+m (alﬂ)

Jgonkr( ) (n—j)! = o ) (32)
. (_a)n_j 69} N i pemei [ M
O (AL I URES

Proof. By (1) and (4), we get

© ARG (e at) (I (Legt) )"
S, ) Dk CRE ] (0=t

t =
—-at

(n-) (1-pt)
1 (In(-at)" 1 g n
- (at)m (1_ﬁt)k N a™ rgn Hn+m,k,r+m (a,ﬂ)t

Comparing the coefficients of t" in both sides of the last equation, we get the

identity. (33) can be obtained in the same way.
Corollary 2.4. For m=1 in Theorem 2.3, we obtain the following identities

iHJkr( )(_a) .Dn—j _ Hn+1,k,r+1(a'ﬂ) , (34)

j=0 (n=i) a

( O('/)_ JI)Dnj _ Hn+l,k,r+1(a,ﬂ) _Hnykyr+l(alﬂ)- (35)

o
Corollary 2.5. For f=a in Corollary 2.4, we obtain the following identities

Nk

HJkT(aﬂ)

1l
o

i

- ( a)nJDn—j _.n n+k

Z(:)ijr(a a)—— eI =" P(r+Ln+k,k-1), (36)
n nJ 3 . _
SHi(a a)( @) D, —a”(n+k 1}P(r+1,n+k—1,k—2). (37)
= (n—j)t k-2

Theorem 2.4. Let n be a nonnegative integer, we have

()" D™ (x

Zn: Zk:[:,(]j(_ﬂ)h Hj—h,k,r+l(a!ﬁ)(n+)_!]()—a H:,Tnﬁr_)l(lJr x), (38)

53 ) 2

D (1+x+m). (39)

Proof. By (1) and (4), we get
o n k k ‘
553 M) M) T )

(l—at) "

(—In(l—at))m(ln = j (1-at)

1 —In 1— ot m+r+1 .
:(at)"”( at((l—at)))x ) 21 R L

Comparing the coefficients of t" in both sides of the last equation, we get the
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identity. (39) can be obtained in the same way.
Corollary 2.7. For m=1 in Theorem 2.4, we obtain the following identities

3 h o (_O‘)H Dn—j(x):a (F49) (14 x

JZ:; _0( ]( ) Hj*h,k,Prl( ’IB) (n—J)' H (1 ) (40)

(_a)n—j I§n—j (X)
(n—j)

Corollary 2.8. For x=0 in Corollary 2.7, we obtain the following identities

ii[ J(_l) P Hj*h’k’”l(a’ﬂ)D” ) (HZ |s (n+1, r+2)| (42)

j=0 h=0 a‘(n—j)! (n+1

$ Zk:[kj(—l)mh-i BH (@ 5)D,

=a"H" (2+x).  (41)

135> WCEIEY)

j=0 h=l

o

S &lh a'(n-J) (43)
:(r+2>!{ls<“+1’”2)|—|s(n,r+z)|}
n! n+1

Theorem 2.5.Let n>r>1 bea nonnegative integer, we have

rin-r AL *)p
Zo[ | j( 1) ((Z_ﬁr))!Ch ”"=Hn,k,r(a,ﬁ). »

Proof. By (1), (2) and (4), we get

$H, (@ f) :(—ln(l—a:))r:(ll jk[—ln(l—at)Jr(at)r

pard (1-Bt) -pt at
2 (=2 3 —a)'t"
:nz::;Ch C ﬂ) ;)Dp(’?! (at)

z( | ) "'(gz_ﬂg)éh

in both sides of the last equation, we get the

Comparing the coefficients of t"

identity.
Corollary 2.9. For a=f=K=r=1 in Theorem 2.5, we obtain the follow-

ing identities

E(n rlj (_1) (:I—(j.r)]ianil = Hn'(n >1)’ H1 =0. (45)

3. Identities about Generalized Harmonic Number

Hn,k,r (a'ﬂ)

In this part, using Riordan arrays, we derive some new equalities between Gene-
ralized Harmonic number H,_, (@, B) and Apostol Bernoulli polynomials,
Apostol Euler polynomials, Apostol Genocchi polynomials.

Theorem 3.1. Let 1 be a nonnegative integer, we have
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(-1)' BI™ (x: 2)

J

j!

3 NCONEY)

j=0 h=0 (46)
no(TAm=1Y (—a)" D™ (x: 4)
=a"> 2 HY (x+14+1) = " :
a l; [ | J a ) (x+1+1) "
Proof. An interesting Riordan arrays, associated with the H, (@, B) are
defined by
k (k .
m{g(h](—ﬁ) Hi e (a,ﬁ)}=(l,—ln(l—at)). (47)

On the one hand, by (8), (47) and Lemma 1, we get

" -1)' B (x:
jZ::‘J ho(E)(_ﬁ)h Hichir (O‘lﬁ)M

j!
= [t" ]Kle_yy_ljm eV |y= —|n(1—at)}
:[t”]bln(l_at)lJm (1t =) O (X0A)

(1-at)-

k

On the other hand, we get
In(l—at) " X
t" || ——— 1-at
[ J(i(l—at)—lj (-at)

:[t”]M(l—ﬂ(l—at))m

(1-at)™
Cra(-In(-at)" @ (14m-1
-] (1—at) ™ ;1( I j

aq(-In@-at))” & (1+m-1
T g

which completes the proof.
Corollary 3.1. For A =1 in Theorem 3.1, we obtain the following identities

n ok 1V B (
(K)o s ) L0

(48)
:a”i(l +T_1JH£'"11)(X+I +1)=

Corollary 3.2. For m=1 in Corollary 3.1, we obtain the following identities

0, (k) (1)'8,(x
ZZ (—,B) Hj—h,k,r(a!ﬁ).—lj
j (hJ j! (49)
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Corollary 3.3. For x=0 in Corollary 3.2, we obtain the following identities
n k (k ( l)J B N n
53 ) o (@m0

j! = n!
Theorem 3.2. Let 11 be a nonnegative integer, we have

(-2)' B (x: 2°)

G s

ji)hiom(—ﬂ)“ H e (@) ; N
- (_:!)n g[?JChi‘"‘) (x:2)D{") (x: ).

Proof. By (8), (47) and Lemma 1, we get

=[t”]_(%jm ™|y =—|n(1—at)}

] (<—)>] aaty’

=[] A(1-at +1J [xllzllatat Jm 1-at)”

B S

which completes the proof.
Corollary 3.4. For A =1 in Theorem 3.2, we obtain the following identities

(-2)' 8" (x)

i[ﬁ](—ﬂ)h H o () B0 () i[?jc:hm (X)D" (x).52)

2

n
j=0 h=0 J! nt %

Corollary 3.5. For m=1 in Corollary 3.4, we obtain the following identities

2 i(ij(—ﬁ)“ Hi e (a,ﬁ)(_z)j.B" () _(a) imcn (x)D,; (x)-(53)

i=0 h=0 j! n!l i3

Corollary 3.6. For x=0 in Corollary 3.5, we obtain the following identities
(28, _(-a) ¢

ii[m(—ﬁ)thh,k,r(%ﬂ) T i (=2) Z(r_]jcnoni. (54)

n! Ui

Theorem 3.3.Let n>i>1 be a nonnegative integer, we have

n ok OV EM (4
$3(Jar o ap D)

=0 h=0 j!
n—i i /- n (m (55)
—Zmi(_l) a"A (Hm—lJ( X j_(—a) chi™ (x: 1)
i (4 +1)m+i [ n—i n! .
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Proof. On the one hand, by (9), (47) and Lemma 1, we get

-1 EI" (x:
Z(E](—ﬁ)h Hinr (“’ﬂ)w

0 h=0 j!

-

J

=[t" J{[ﬂei +1jm eV |y=- In(l—at)}
=[t”1(ﬁjm (1 ey = CAV O (x:)

1-at

On the other hand, we get

which completes the proof.
Corollary 3.7. For A =1 in Theorem 3.3, we obtain the following identities

nook 1) EM (x
£ 3 i )

zL{l}( |- et

i —-i) n!

(56)

Corollary 3.8. For x=0 in Corollary 3.7, we obtain the following identities
0 & (K ' (-)'E" g (n+m-1) (-a)'cCh™
ZZ[h](_ﬁ) Hinr (@0 B)——"—=—- =

j! 2" n n!
Corollary 3.9. For m=1 in Corollary 3.8, we obtain the following identities
(-1'E _a" _(-a)ch

ii[m(_ﬁ)h Hi e (@) : == YR (58)

j!

.(57)

Theorem 3.4. Let 1 be a nonnegative integer, we have

[kj(_l)mh” BH e (“vﬁ)GEm) (x:4)
j=0 h=0 h Jl

n k
>
" (59)

n—Ii

(n—i)!

—a)" Ch{"™ (x+1,A)H (i,m-1)

=2

n
i=0
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Proof. By (10), (47) and Lemma 1, we get

Zi[ j( B) ,hkr(aﬂ)w

= [tn]_(lef};ljm e |y=-In (l—at):l

[ ) e

=(-1>mi[t”ﬂ[—i( 2 )+1] ([N

1-at

—a)"Ch?; (x+LA)H (i,m-1)
i=0 (n - |)' .
which completes the proof.
Corollary 3.10. For A =1 in Theorem 3.4, we obtain the following identities

0 h=0 j!
: (60)
i( a) o) (x+1)H (,m-1)
o (n—i)!
Corollary 3.11. For m=1 in Corollary 3.10, we obtain the following identi-
ties
n )" B (@, 8)G, " (—a)' Ch__ (x+1)Hi
=0 h=0 j! i=0 ( —|)
Corollary 3.12. For x=0 in Corollary 3.11, we obtain the following identi-
ties
(k) () A H e (@8)G; & (-a)' Chy Hi
(62)
520 T R CE]
Theorem 3.5. Let 1 be a nonnegative integer, we have
k(K)o (-1)' G\™ (2x)
55 ) B ) R
j=0 h=0 J:
n (63)

Proof. By (11), (47) and Lemma 1, we get
()6 (2¢)

anzk:[m(_ﬂ)h Hiner (. 8) T
:[tq{(e_yzzljm e |y= —|n(1—at)}

DOI: 10.4236/jamp.2022.105111 1612 Journal of Applied Mathematics and Physics
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which completes the proof.
Corollary 3.13. For x=0 in Theorem 3.5, we obtain the following identities

$ 3ot ) O LM Mooy e

j! (n-m)ti i

Corollary 3.14. For m=1 in Corollary 3.13, we obtain the following identi-
ties

gé@(‘ﬂ)h Hi s (a,ﬂ)(_lzj!Gj = ((n_fzyZInﬂCh D... (65)

4, Identities about Generalized Harmonic Number

Hn,k,r (a!ﬂ)

In this part, using generating functions and coefficient method, we derive the
new identities involving Generalized Harmonic number H,, (&, /), with De-
generate Changhee polynomials, Degenerate Genocchi polynomials, Degenerate
Changhee-Genocchi polynomials, Two kinds of degenerate Stirling numbers and
so on.

Theorem 4.1. Let 1 be a nonnegative integer, we have

—a) eh (x A ) (x
(Ej(_ﬂ)thh,k,r(a'ﬁ)( ) Chn—m() (1) CGM()

52

=0 h=0

(n—j)! - n! - (66)

Proof. By (1) and (12), we get

=(-In(1-at)) - (1+Mn(1—at))§
1+(1+ 2In(1-at))*

DOI: 10.4236/jamp.2022.105111
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r

2In(1-at)

(l+/1ln(1—at))%

-y

1+(1+ 2In(1-at))

Comparing the coefficients of t" in both sides of the last equation, we get the
identity.
Theorem 4.2. Let 1 be a nonnegative integer, we have

5235 (Ka M (@)

(0" ()" (%), €0 1 _ ()" CB, ()

mi(n—j)! n!

(67)

The A -analogue of falling factorial sequence is given by

(%), = X(x=2)(x~(m-1)2),(m=0), (x),, =L
Proof. By (14), we get

5o, ()

n!

__ 2hn@-at) —(1+4 |n(1—at))%

1+(1+2In(1-at))*

_ an:lOCGM (—z?)" rg}(—l) m(!X)M gém(_ﬂ)h Ho o (@)
- éCGM (_ﬁ:)n g mZ:,) :Z(;[E)(—ﬂ)h Honim (a,ﬂ)%t”
LK) gy Y ) (%), 08
33553 N I e

Comparing the coefficients of t" in both sides of the last equation, we get the
identity.
Theorem 4.3. Let n be a nonnegative integer, we have

[kj(—l)m*“” B" (%), Honienema (@)

m!

(68)

_(=a)’ (CG,, (x+1)+CG,, (x)).
2n!

Proof. By (14), we get
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gO(CGM (x+1)+CG, , (x)) (—ﬁ:)”

2MA=) (1, in(a-at))

1+(1+ 2In(1-at))*
2In(1-at)

- (1+,1|n(1—at))§
1+(1+AIn(1-at))?

=2In(1-at)(1+2In (1—at))%

—2in(l-at)y [f]z In" (1-at)

m=0 m

Comparing the coefficients of t" in both sides of the last equation, we get the
identity.
Theorem 4.4. Let n be a nonnegative integer, we have

(=1)" En) (9) _ (=e)"Chi (x)

ii(m(—ﬁ)“m,k,m(mﬁ) Lot e (69)

m!

- Z EN. (x)(_n?!m ghﬁ_om(—ﬂ)h Hopiom (2 8)

S (x)(_n?m n(i-at)f - £ £, 1) In™ (r:at)

_ 2 | _Sent (A
- — | (1+2In(1-at)) _EOChM(X) .

1+(1+2In(1-at))*

Comparing the coefficients of t" in both sides of the last equation, we get the
identity.
Theorem 4.5. Let n be a nonnegative integer, we have
(=1)"Gn) (x) _ (=)' Ce1) (%)

iim(—ﬂ)“m,k,m(a,ﬂ) == s (70)

m=0 h=0 m! n!

Proof. By (1) and (14), we get
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II

G)
3=
2=

2In 1 at X
1

1+(1+ 2In(1-at))* "0

Comparing the coefficients of t" in both sides of the last equation, we get the
identity.
The combined inversion relations are introduced below (see [19]):
n n
=>'S(nk)g, © g, =2 s(nk)f,. *)
k=0 k=0
where f, and g, are two sequences, expressed as following
© tn © tﬂ
= f —, = i
2 hp 9=20

Theorem 4.6. Let m>r =1 be a nonnegative integer, we have

i zk:(kj(_ﬁ)h Hnfh,k,r (0!,,3) (_A)nir n!nSM (m’ n) = (m)r Dl(ﬂr)r’ (71)

a

S (=) Hy s (a0 ﬂ)w =3 (n), Ds,, (mn).  (72)

h=0 a n=0
A
1-(1+t)
Proof. Let t=—————,by (1) and (16), we get
a

-A)"nls,, (m,n) ¢"

3o ]

m=0 n=0 h=0 o
— o ek _p\n (—/I)nnl ﬂ
=2 2\ n)A) o (@ 8) == 2 s ()

h

(-5 For (. 8)

:éhk; Ej(_ﬂ)h H, hkr(a'ﬁ){l_(lojt) J
(Al (1+1)) =(-2) (In(lt_+t)) th=(-4) ri‘;(m)r D&[,%.

tm
Comparing the coefficients of Py in both sides of the last equation, we get the

identity.
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In addition, from the inversion formula (*), we can get (72).

Theorem 4.7. Let n>k >1 be a nonnegative integer, we have

éé(ij(_ﬂ)h Honk (a’ﬁ)%S(l,k):M] (73)
(S AUC NS TR s

S i CE L ey
1350 )wn(l“—at))' :2«1)' S iy (1)
D e D [ UL

Comparing the coefficients of t" in both sides of the last equation, we get the

identity.

In addition, from the inversion formula (*), we can get (74).
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