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Abstract 
The trust region method plays an important role in solving optimization 
problems. In this paper, we propose a new nonmonotone adaptive trust re-
gion method for solving unconstrained optimization problems. Actually, we 
combine a popular nonmonotone technique with an adaptive trust region al-
gorithm. The new ratio to adjusting the next trust region radius is different 
from the ratio in the traditional trust region methods. Under some appropri-
ate conditions, we show that the new algorithm has good global convergence 
and superlinear convergence. 
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1. Introduction 

In this paper, we consider the following unconstrained optimization problem: 

 ( )min  
nx R

f x
∈

,                            (1.1) 

where ( ) : nf x R R→  is a real-valued twice continuously differentiable func-
tion. 

The trust region method is an effective iterative method for solving problem 
(1.1). In 1944, Levenberg [1] firstly proposed a trust region method, where a 
modified Gauss-Newton method is given for solving nonlinear least square 
problems. Pioneer researches on trust region methods were given by Powell [2] 
[3] [4] [5], Fletcher [6], Hebden [7], Madsen [8], Osborne [9], Moré [10], Toint 
[11] [12] [13] [14] [15], Dennis and Mei [16], Sorensen [17] [18], and Steihaug 
[19]. Moré [20] gave good research of early works on trust region methods, 
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which promoted trust region methods and standardized the term “trust region”. 
The modern version of trust region methods can be traced back to Powell [4]. 
Later, Conn [21] applied the modern trust region methods to solve ill-conditioned 
problems and proved that it has strong global convergence. In order to minimize 
( )f x , the trust region method constructs trust region subproblem to compute a 

trial step kd  through the following quadratic approximation: 

 

( ) T T1min   :
2

s.t.    

n k k k k
d R

k

q d f g d d B d

d
∈

= + +

≤ ∆
               (1.2) 

where ( )k kf f x= , ( ) ( )k k kg g x f x= = ∇  is the gradient of the objective func-
tion at the current iteration point, the approximation of the Hessian matrix 

( )2 n n
k kB f x R ×= ∇ ∈  is an n n×  symmetric matrix, ⋅  denotes the Eucli-

dean norm and k∆  is a positive parameter which is called trust region radius.  
At each iteration, the strategy of choosing a trust region radius k∆  is very 

crucial. In the standard trust region method, the following ratio to make a com-
parison between the objective function and the model is defined: 

( )
( ) ( )0

k k kk
k

k k k k

f f x dAred
r

Pred q q d
− +

= =
−

.                 (1.3) 

In the case, if the ratio kr  is close to 1, it is concluded that there is a good 
agreement between the objective function and the model over this step, so it is 
safe to increase the trust region radius for the next iteration. Otherwise, if kr  is 
close to 0 or even negative, we must shrink the trust region radius. 

The strategies of determining and updating trust region radius affect the 
number of computational cost and convergence of the algorithm. There are many 
researchers who pay much attention to determining and updating the trust re-
gion radius [22]-[27]. In 1997, Sartenaer [22] proposed a new approach to deter-
mine a radius by monitoring an agreement between the model and the objective 
function along the direction kg−  computed at the starting point. But the para-
meters of this procedure may be dependent on the problem that should be solved. 
In 2005, Gould et al. [28] examine the sensitivity of trust-region algorithms on 
the parameters related to the step acceptance and update of the trust region, al-
though, they did not discuss an initial trust-region radius. Motivated by a prob-
lem in neural network, in 2002, Zhang et al. [26] proposed a strategy to deter-
mine the trust region radius. Specifically, they solved the subproblem (1.2) with 

1ˆp
k k kc g B−∆ = , 

where ( )0,1c∈ , p is a nonnegative integer and ˆ
k kB B iE= +  is a positive defi-

nite matrix based on a modified Cholesky factorization from Schnabel and 
Eskow [29]. It needs to estimate 1ˆ

kB−  at each iteration which can not use this 
radius for large-scale optimization problems. Inspired by Zhang’s method, Cui 
and Wu [30] proposed a new adaptive trust region method, which can automat-
ically update the trust region radius during calculation. The adaptive radius is 
given by 
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2 T
1k k k k kd d B d+∆ = , 

avoiding the repeated solution of 1ˆ
kB− , and the trust region is no longer de-

pendent on the current iteration information kg . In 2004, Shi and Wang [27] 
proposed an adaptive radius given by 

 3 T ˆp
k k k k kc g g B g∆ = , 

where ( )0,1c∈ , p is a non-negative integer and ˆ
k kB B iE= +  is a positive de-

finite matrix. More recently, Shi and Guo [31] proposed an adaptive trust re-
gion:  

T

T ˆ
p k k

k k
k k k

g q
c q

q B q
∆ = − ,                    (1.4) 

the vector kq  satisfies the angle consdition: 

 

T
k k

k k

g q
g q

θ− ≥
⋅

.                      (1.5) 

where ( )0,1θ ∈ . Theoretical analysis shows that the proposed trust region me-
thod has global convergence for first-order critical points, and preliminary nu-
merical results show that the proposed method is effective for solving me-
dium-scale unconstrained optimization problems. Kamandi et al. [32] give an 
improved version of the trust-region radius (1.4). They proposed a modification 
of kq : 

 

( )T
1

1

1

,    if  0 or  ,

,     otherwise,

k k
k

k k k

k

g d
g kq g d

d

θ−

−

−

 −
− = ≤

= 



             (1.6) 

where 1kd −  is a solution of the subproblem (1.2) which can be accessed and
( )0,1θ ∈ . It is straightforward that kq  satisfies the condition (1.5). To avoid a 

very small trust region radius, the formula is defined: 

 

T

T

T

1T

,                          if 0,

max , ,   if 1.

k k
k

k k k
k

k k
k k

k k k

g q
q k

q B q
s

g q
q k

q B q
λ −


− =
= 

   − ∆ ≥    

           (1.7) 

where 1λ > , and kq  is determined by (1.5). Then, the trust region radius is 
updated by  

 { }min ,p
k kh s∆ = ∆� ,                      (1.8) 

where 0∆ >�  is a real-valued constant, ( )0,1h∈  and p is a nonnegative integer. 
Due to the high efficiency of nonmonotone techniques, many researchers use 

the nonmonotone technique in the trust region algorithm framework. In 1986, 
Grippo et al. [33] put forward the nonmonotone line search technology for the 
first time. The stepsize kα  satisfies condition 

 ( ) ( )
T

k k k k k kl kf x d f g dα βα+ ≤ + ,                 (1.9) 
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where 10,
2

β  ∈ 
 

, the nonmonotone term ( )l kf  is defined by 

 
( ) ( )

( ){ }
0
maxl k j m k

f f x j
≤ ≤

≤ − ,                   (1.10) 

where ( )0 0m = , ( ) ( ){ }0 min 1 1,m k m k M≤ ≤ − + � , for 1k ≥ , and M�  is a 
given non-negative integer. This technique leads to a breakthrough in nonmo-
notonic algorithms for nonlinear optimization. Based on the proposed nonmo-
notone technique by Grippo et al, Ke and Han [34], Sun [35], Fu and Sun [36] 
presented various nonmonotone trust region methods. In 2004, Zhang and 
Hager [37] found that nonmonotone techniques (1.10) have some drawbacks. 
For example, the numerical performances are seriously dependent on the choice 
of parameter M� ; A good function value generated at any iteration may not be 
useful; For any given bound M�  on the memory, even an iterative method is 
generating R-linearly convergence for a strongly convex function, the iterates 
may not satisfy the condition (1.3) for k sufficiently large [38]. In order to cope 
with these disadvantages, Zhang and Hager [37] propose another nonmonotonic 
technique where the stepsize kα  satisfies the following condition: 

( ) T
k k k k k k kf x d C g dα βα+ ≤ + , 

where 

 

( )
( )1 1 1

,                          0

,   1

k

k k k k k

k

f x k
C Q C f x

k
Q

η − − −

 ≥


= +
≥



              (2.1) 

1 1

1,                    0
1,    1k

k k

k
Q

Q kη − −

≥
=  + ≥

                   (2.2) 

where [ ]1 min max,kη η η− ∈ ; [ )min 0,1η ∈  and [ )max min ,1η η∈  are two prefixed 
constants. Inspired by this nonmonotone technique, in 2006, Mo et al. [39] in-
troduced it into trust region method and developed a nonmonotone algorithm. 
The numerical results indicate that the algorithm is robust and encouraging. In 
2019, Xue et al. [40] propose a new improved nonmonotone adaptive trust re-
gion method for solving unconstrained optimization problems. From the pers-
pective of theoretical analysis, it is shown that algorithm possesses global con-
vergence and superlinear convergence under classical assumptions. 

Among the existing nonmonotone strategies, Gu and Mo [41] propose a 
simpler nonmonotone technique, and its computational complexity is greatly 
reduced. Therefore, based on the method in [40] and [41], we propose a new 
improved nonmonotone adaptive trust region method for solving unconstrained 
optimization problems. Under appropriate conditions, we analyze the global 
convergence and superlinear convergence of the algorithm. 

2. The Structure of the New Algorithm 

In this section, we talk about our algorithm for solving unconstrained optimiza-
tion problems in detail. As we see, The nonmonotone technique proposed by 
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Zhang and Hager [37] implies that each kC  is a convex combination of the 
previous 1kC −  and kf , including the complex kη  and kQ . In practice, it be-
comes an encumbrance to update kη  and kQ  at each iteration. Therefore, Gu 
and Mo [41] proposed another nonmonotone technique where the nonmono-
tone term is revised by: 

 
( )1

 ,                             0,
1 ,   1,

k
k

k k k k

f k
D

D f kη η−

==  + − ≥
                 (2.1) 

where [ ]min max,kη η η∈ ; ( )min 0,1η ∈  and [ )max min ,1η η∈  are two prefixed 
constants. 

Then, the actual reduction of the objective function value is given by: 

 ( )k k k kAred D f x d= − + ,                    (2.2)  

the predicted reduction of the objective function value is given by: 

 ( ) ( )0k k k kPred q q d= − .                     (2.3)  

In order to determine whether the trial step is feasible and how to update the 
new trust region radius, we compute the modified ratio that is given by: 

 

( )
( ) ( )0

k k kk
k

k k k k

D f x dAred
r

Pred q q d
− +

= =
−

.                  (2.4) 

We describe the new trust region region algorithm with adjustable radius as 
below: 
 
Algorithm 2.1. ANNATR (A new nonmonotone adaptive trust region method) 

Step 0. Let 0
nx R∈ , a positive definite matrix 0

n nB R ×∈ , ( )0,1θ ∈ , 0∆ >� , ( )0,1h∈ , 

0ν > , 1λ > , ( )0,1iη ∈ , 0,1,2,i = � , ( )0 0D f x= , a positive integer M�  and 

0δ > . Set : 0k = . 
Step 1. If kg δ≤ , then stop. 
Step 2. Compute kq  according to expression (1.6), ks  by (1.7) and set 0p = . 
Step 3. Compute k∆  by (1.8), solve subproblem (1.2) to find the trial step kd  and 

compute kr  by (2.4). 
Step 4. If kr υ< , then 1p p= + . Set 1k kx x+ = , : 1k k= + . Go to Step 3. 

Step 5. Set 1k k kx x d+ = + . 
Step 6. Update kB  by BFGS update formula [42]. 

Set : 1k k= +  and go to Step 1. 

 
In Algorithm 2.1, if kr v≥ , it is called a successful iteration. The loop started 

from Step 3 to Step 4 is called the inner cycle.  
The flowchart of our algorithm is provided here: 
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3. Convergence Analysis 

In this paper, we consider the following assumptions that will be used to analyze 
the convergence properties and the superlinear convergence rate of the below 
new algorithm: 

(H1) The level set ( ) ( ){ }0 0 :   nW x R f x f x= ∈ ≤ ⊂ Ω , where nRΩ∈  is a 
closed and bounded set and the objective function f is a twice continuously dif-
ferentiable over 0W ; 

(H2) The approximation matrix kB  is uniformly bounded, i.e. there exists a 
positive constant M such that kB M≤  for all k N∈ ;  

(H3) Matrix kB  is invertible and the step 1
k k kd B g−= −  computed from Al-

gorithm 2.1 for all k N∈ . 
The subsequent results are essential results to establish the global convergence 

of Algorithm 2.1. 
Lemma 3.1. Suppose that the sequence { }kx  is generated by Algorithm 2.1. 

Then we have 

 ( ) ( )2
k k k k kf f x d Pred O d− + − ≤ .              (3.1) 

Proof. See [43] for reference.                                        
Lemma 3.2. If (H2) holds, the sequence { }kx  is generated by Algorithm 2.1, 

and kd  is a solution of (1.2) with k∆  given by (1.7), then we get 
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( ) ( )
2T T1 10 min ,

2
kp k k k k

k k k
k k

g q g q
q q d h

M q q

    − − − ≥ ∆       
     

� ,      (3.2) 

for all k N∈ . 
Proof. See [32] for reference.                                        
Lemma 3.3. Let { }kx  be the sequence generated by Algorithm 2.1. Then we 

have  

 1 1k k kf D D+ +≤ ≤ , k N∀ ∈ .                    (3.3) 

Proof. From the definition of kD , we have 

 ( )( )1 1 11k k k k kD D f Dη+ + +− = − −                  (3.4) 

and 

 ( )1 1 1 1k k k k kD f D fη+ + + +− = − ,                  (3.5) 

Now we Let { }kI k r ν= ≥  and { }kJ k r ν= < . We consider two cases: 
Case 1. k I∈ . From (2.4) and (3.2), we have 

( ) ( )
2T T

1
1 10 min , 0
2

kp k k k k
k k k k k

k k

g q g q
D f q q d h

M q q
ν ν+

    − −  − ≥ − ≥ ∆ ≥         
     

� .(3.6) 

From (3.4), (3.5) and (3.6), we have 

 1 1k k kf D D+ +≤ ≤ , k I∀ ∈ .                   (3.7)  

Case 2. k J∈ . If 1k I− ∈ , from Case 1, we have k kf D≤ , and from Step 4 
of Algorithm 2.1 we get 1k kx x+ = , 1k kf f+ = , k J∀ ∈ . Then we get  

 ( ) ( )1 1 1 1 1 1 1 1 11 1k k k k k k k k k kD D f f f fη η η η+ + + + + + + + += + − ≥ + − = .    (3.8) 

From (3.4), (3.5) and (3.8), we have 

 1 1k k kf D D+ +≤ ≤ , 1k I∀ − ∈ .                 (3.9) 

If 1k J− ∈ , let { }1 ,K i i k k i I= < < − ∈ . If K = ∅ , then from Step 4 of Algo-
rithm 2.1, we have 0 1k j kf f f− += = , 0,1, , 1j k= −� . Therefore, from the defi-
nition of kD , 1 1k k kD D f+ += = . On the other hand, if K ≠ ∅ , let  

{ }minm i i K= ∈ , then we have 1k j k kf f f− += = , 0,1, , 1j m= −� . Obviously, 
k m I− ∈ , then we get 1 1k m k m k mf D D− + − + −≤ ≤  from Case 1. Then we have  

( )
( )

2 2 1 2 2

2 2 2 2 2

1

1
k m k m k m k m k m

k m k m k m k m k m

D D f

f f f

η η

η η
− + − + − + − + − +

− + − + − + − + − +

= + −

≥ + − =  

Then from (3.4) and (3.5), we get 2 1k m k mD D− + − +≤ . Therefore, from the defini-
tion of kD , we have 1k kD D+ ≤ . From (3.4) and (3.5), we get 1 1k k kf D D+ +≤ ≤ . 

Both Case 1 and Case 2 imply that 1 1k k kf D D+ +≤ ≤ , k N∀ ∈ . So the proof is 
completed.                                                        

Lemma 3.4. Step 3 and Step 4 of Algorithm 2.1 are well-defined in the sense 
that at each iteration they terminate finitely. 

Proof. The proof this lemma is quite as the same as [40], for the completeness 
of this work, we prove it again here. By contradiction, assume that the inner loop 
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from Step 3 to Step 4 of algorithm 2.1 is infinite. Now, let i
kd  be the solution of 

subproblem (1.2) corresponding to i N∈  at kx . Then we have 
i

kr ν< , 1,2,i = �                       (3.10) 

Since kx  is not optimum, then we have 

 kg δ≥ , k N∈ ,                      (3.11) 

using (3.11) and (1.5), we get  

 

k k

k

g q
q

θδ− ≥ .                       (3.12) 

It follows from Lemma 3.1-3.2 and (3.12) that 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
( ) ( )

( )

( )
( ) ( )

2

2

2T T

2

2

1
0 0

0

1 1min ,
2

1 min ,
2

ki

ki

i i i
k k k k k k k

i i
k k k k k k

i
k

i
k k k

i
k

p k k k k

k k

i
k

p

f x f x d f x f x d Pred

q q d q q d

O d

q q d

O d

g q g qh
M q q

O d

h
M
θδ

θδ

− + − + −
− =

− −

≤
−

≤
    − − ∆       

     

≤
  ∆ 
  

�

�

  (3.13) 

By the assumption that the inner cycle cycles infinity and (1.8), we obtain that 
0i

k∆ →  with i →∞ . i i i p
k k k kd h s≤ ∆ ≤  implies that the right-hand side of the 

above equation (3.13) tends to zero. This means that for sufficiently large i, we 
get 

 
( ) ( )

( ) ( )
lim 1

0

i
k k k

ii
k k k

f x f x d

q q d→∞

− +
=

−
,                  (3.14) 

combining (2.4) and Lemma 3.3, we get 

 
( )

( ) ( )
( ) ( )

( ) ( )0 0

i i
k k k k k ki

k i i
k k k k k k

D f x d f x f x d
r

q q d q q d

− + − +
= ≥

− −
,          (3.15)  

this means for i →∞ , ( )0,1i
kr ν≥ ∈  which is contradictory to (3.10), so the 

proof is completed.                                              
Theorem 3.1. If (H1) holds and the sequence { }kx  is generated by Algo-

rithm 2.1, then we have 

 
lim inf 0kk

g
→∞

= .                      (3.16) 

Proof. By contradiction, suppose that there exists a constant 0δ >  such that 

 kg δ≥ , k N∈ .                     (3.17) 
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Using (2.4), Lemma 3.2 and kr ν≥ , we conclude that 

( )
2T T1 1min ,

2
kp k k k k

k k k k k
k k

g q g q
f x d D Pred D h

M q q
ν ν

    − − + ≤ − ≤ − ∆       
     

� . (3.18) 

From the definitions of kD  and (3.18), we can get 

( )

( )

1 1 1 1

2T T

1 1

2T T
1

1

1 11 min ,
2

1 1min ,
2

k

k

k k k k k

p k k k k
k k k k

k k

pk k k k k
k

k k

D D f

g q g q
D D h

M q q

g q g q
D h

M q q

η η

η η ν

η
ν

+ + + +

+ +

+

= + −

     − −  ≤ + − − ∆              
    − − − = − ∆       
     

�

�

 
(3.19)

 
 

Using (3.12) and (3.19), then we get  

 

( ) ( )
2

max
1

1
min ,

2
kp

k kD D h
M
θδη

ν θδ+

 −  − ≥ ∆ 
  

� .           (3.20) 

We can conclude from Lemma 3.3 that the sequence kD  is monotonically 
nonincreasing and 1 1k kf D+ +≤ . According to assumption (H1) that f has a lower 
bound, then we deduce that kD  is convergent. From (3.20) we have  

 

( ) ( )
2

max

0

1
min ,

2
kp

k
h

M
θδη

ν θδ
∞

=

 −  ∆ < ∞ 
  

∑ � ,             (3.21) 

we define ( ) ( )
2

max1
min ,

2 M
θδη

ν θδ γ
 −  ∆ = 
  

� , then  

 0

kp

k
hγ

∞

=

< ∞∑ .                        (3.22) 

From (3.17) and (3.22), we get there exists an index set H such that  
T

,
lim 0k k

k k
k

g q
q→∞ ∈Η

−
≠ ,                     (3.23)  

Therefore,  
,

lim 0kp

k k
h

→∞ ∈Η
= .                      (3.24) 

 
From (1.8), 0k∆ →  as k →∞  and k ∈Η . Now, assume that there are more 
than one inner cycles in the loop from Steps 3 to 4 at the kth iterate for all 
k N∈ . Therefore, the solution kd�  of the subproblem 

 

( ) T T1min  
2

s.t.   ,   H

k k k k

k

m d f g d d B d

d h k

= + +

≤ ∆ ∈
             (3.25) 

is not accepted at the kth iteration, then we denote  

 

( )
( ) ( )0

k k k
k

k k k

D f x d
r

m m d
ν

− +
= <

−

�

� , k N∈ ,             (3.26) 
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but we have kr ν>  for k →∞  from Lemma 3.4, which is a contradiction with 
(3.26). This implies the result is valid.                                  

Theorem 3.2. If (H1)-(H3) holds, the sequence { }kx  is generated by Algo-
rithm2.1 converges to x∗ , suppose that ( )2 f x∇  is a Lipschitz continuous ma-
trix in a neighborhood ( )* ,N x ε  of *x , also suppose that ( )H x  and kB  are 
uniformly positive definite matrices such that 

 
( )*

lim 0
k k

k
k

B H x d

d→∞

 −  = .                (3.27)  

Proof. See [44] for reference.                                        

4. Conclusion 

In this paper, we introduce the algorithm of a new nonmonotone adaptive trust 
region method for solving unconstrained optimization problems based on (1.8) 
and (2.1). The nonmonotone strategy is introduced into a new adaptive trust re-
gion. Maratos effects are avoided and the amount of calculation is reduced. Fur-
thermore, it is obvious that the current objective function value kf  is fully em-
ployed. With the help of nonmonotone technique and adaptive trust region ra-
dius, our algorithm can reduce the number of ineffective iterations so that we 
enhance the effectiveness of the algorithm. Under some standard and suitable 
assumptions, the global convergence and superlinear convergence of the new 
algorithm are analyzed theoretically. However, our algorithm still has some con-
tinuation and expansion, we can consider the following aspect: although this 
paper gives the theoretical proof of the proposed method as detailed as possible, 
it does not fully demonstrate the superiority of the new algorithm through nu-
merical experiments, which will be the focus of further work. 
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