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Abstract 
The importance of perturbation theory in many fields is very clear through 
almost a century or even more. Its importance was exemplified in solving 
many problems in physics and other applied fields. A great deal of applica-
tions arose in dealing with eigenvalue problems especially in quantum me-
chanics in conjunction with the field of atomic physics. Accordingly, it came 
to our mind to write a brief review article on the subject. At the beginning, we 
give some important definitions to do with various eigenvalue problems; then 
we introduce concepts that have to do with perturbation theory and the tech-
niques used in such a theory, beginning with the algebraic perturbation theory 
giving a good number of examples from the literature on the use of the theory 
in solving integral equation, algebraic equations and differential equations. 
Few applications are then given in applied fields such as classical mechanics, 
quantum mechanics and fluid mechanics. Finally, a concluding discussion is 
given which is related to the use of the theory. 
 

Keywords 
Perturbation, Eigenvalue, Hamiltonian, Quantum, Mechanics 

 

1. Introduction 

The simplest eigenvalue problem in Algebra is that of finding the value of λ 
which makes the square matrix A diagonal, and this is solved by writing the 
characteristic equation which is 

( )det 0A Iλ− =                             (1) 

And solving for its roots, I is the unit matrix. However, the problem becomes 
more interesting when dealing with symmetric matrices since those are of im-
portance in applied fields such as in sound in determining natural modes of vi-
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brations or in elasticity. Such problems will stimulate using different computer 
software such as subroutine JACOBI [1]. 

Another kind of eigenvalue problems is that encountered in integral equations, 
e.g. to solve the eigenvalue problem [2] 

( ) ( ) ( )d ,n n a n
b

f x y K x y f yλ= ∫                    (2) 

Most important are the eigenvalue problems, faced with, in quantum mechanics, 
i.e. when the time-dependent Schrodinger equation or the time-independent one 
are under consideration and the energy values are required for a certain system 
(e.g. the energy levels of the Hydrogen atom). The time-independent Schrodin-
ger equation, as an eigenvalue problem, is written as  

Eϕ ϕ=H                           (3) 

where H  is the Hamiltonian, E is the energy eigenvalue, and φ is the eigen-
function. Note that H  is given by 

( )
2

2

2
H V r

m
= − ∇ +

                      (4) 

2∇  is the Laplacian. 
It is to be noted that dealing with eigenvalue problems, the operators encoun-

tered in the calculation are of the Hermitian type and that the Hamiltonian is 
Hermitian [3]. 

Keeping in mind the above small piece of information about the eigenvalue 
problems, we now turn to answer the important question: What is perturbation 
theory? 

Perturbation theory is a theory built on certain mathematical methods used in 
order to get an approximate solution to some given problem with the condition 
that we start with an exact known solution for the related simpler problem. This 
means that the problem is partitioned into two parts: one is solvable and the 
other part represents the perturbation. Hence, perturbation theory is only used 
when the original problem cannot be solved exactly, but it can be formulated 
through the addition of a small perturbation term to the problem which can be 
solved exactly. 

The ultimate solution to the original problem is obtained as a series called 
perturbation series. The first term of which is the exact solution of the related 
problem (without perturbation) and the other terms give the deviations in the 
exact solution; in fact, this gives us the approximate solution to the problem. It is 
clear that the more terms we take from the series, the better result we get. 

In principle, the preliminary steps of performing perturbation techniques are 
as follows: 

Let   be a small parameter and S is a certain solution to be approximated in 
the problem, then we arrive to a series of the type: 

1 2
0 1 2 0

i
iiS S S S S∞

=
= + + + = ∑                      (5) 

where 0S  is the solution to the unperturbed problem and the approximation in 
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the original problem starts with the term 1
1S . Hence, we get the approximate 

solution for the problem by truncating the above series; e.g. the approximate so-
lution of the first order is 

1
0 1S S S≅ +                             (6) 

In a way, perturbation theory is similar to the methods used in numerical 
analysis. The first early time, the theory was used was in space mechanics to 
evaluate the moon’s orbit; however, perturbation theory is now widely used in 
many fields, such as wave mechanics, statistical mechanics, quantum mechanics, 
and chemistry [4]. 

In quantum mechanics, perturbation theory is used to get approximate solu-
tions for complex quantum systems in terms of simpler ones. The idea is to start 
with a simple system which is solvable then to add a weak perturbation Hamil-
tonian, and if the perturbation is small then the different physical phenomena 
(observables) which are connected with the perturbed system, such as energy le-
vels and eingenfunctions, can be expressed as corrections to the corresponding 
simple system. Due to the smallness of these corrections they can be calculated 
via approximate methods in the form of converging series. 

Perturbation theory is a good and important tool to describe real quantum 
systems noting that the exact solutions of Schrodinger equation for some Ha-
miltonians are difficult to obtain even if these Hamiltonians are not that com-
plex [5]. 

In the next section, we give some examples on the use of perturbation theory 
in solving algebraic equations and in solving differential and integral equations. 
In Section 3, we direct our attention to its uses in solving eigenvalue problems in 
many applied fields. Finally we conclude shedding light on some recent uses of 
perturbation theory. 

2. Algebraic Perturbation Theory 

As mentioned, earlier, one of the important eigenvalue problems are of the type 
of Equation (2), i.e. it is an integral equation and where ( ),K x y  is the kernel; 
if this kernel is separable, which means that: 

( ) ( ) ( ),K x y U x V y=                        (7)  

Then, one can get non-trivial solutions (eigenvalues and eigenfunctions). 
Taking into account Equation (2) and Equation (7), we see that  

( ) ( ) , is a constantn nf x AU x Aλ=                 (8) 

Substituting, the eigenvalue will be given by 

( ) ( )
1

d
n b

a
U y V y y

λ =
∫

                     (9) 

Now if ( ) ( ) sinU y V y y= = , then ( ) sinf x A xλ=  and  the eigenvalue is 

given by 4λ =
π

 [2]. 
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2.1. Small Perturbation Parameter 

If we consider the eigenvalue problem: 

( ) ( )e d ,x yU y y U x xλ
∞ − −

−∞
= −∞ < < ∞∫              (11) 

And if we are looking for a value of λ giving a solution ( ) 0U x ≠  for this equa-
tion fulfilling the condition that ( ) 2

U x
∞

−∞
< ∞∫ ; then ( )U x  is an eigenfunc-

tion corresponding to the eigenvalue λ. In this case the spectrum of the eigenva-
lues is discrete. 

For the eigenvalue λ, it is clear, with a straight forward manipulation that 
1λ =  and the corresponding eigenfunction is 0 e xϕ −=  [6]. 

Now, consider the following eigenvalue problem 

( ) ( ) ( )e d ,x yU y y xU x U x xλ
∞ − −

−∞
+ = −∞ < < ∞∫          (11) 

where   is a given real number. If   is assumed to be of small value, then the 
problem in this case is to find the eigenvalue ( )λ λ=   and the corresponding 
eigenfunction ( ),U U x=  . To solve the problem, we write the two following 
series 

2
0 1 2 0; 1λ λ λ λ λ= + + + =                   (12)  

And  
2

0 1 2 0; e xU ϕ ϕ ϕ ϕ −= + + + =                 (13) 

Moreover we put 

( ) ( )e d ;x yAU U y y BU xU x
∞ − −

−∞
≡ ≡∫             (14) 

So as to get 

( )( ) ( )( )2 2 2
0 1 2 0 1 2 0 1 2A B ϕ ϕ ϕ λ λ λ ϕ ϕ ϕ+ + + + = + + + + + +           (15) 

And if we assume that the series 2
0 1 2ϕ ϕ ϕ+ + +   is convergent in order to 

be able to perform multiplication term by term, then on comparing coefficients 
of i  we get 

0 0 0 1 0 1 1 0 00;A A Bϕ λ ϕ ϕ λ ϕ λϕ ϕ− = − = −             (16) 

In general for the nth terms, one gets 

0 0 1 1 1 1 1n n n n n nA Bϕ λ ϕ λ ϕ λ ϕ λϕ ϕ− − −− = + + + −          (17) 

From Equation (16) we see that 1λ =  and 0 e xϕ −= , as expected. 
The last equation is written in the form 

0n nA fϕ λ ϕ− = ,                       (18) 

and where 

0 1 1 1 1 1n n n nf Bλ ϕ λ ϕ λϕ ϕ− − −≡ + + + −               (19) 

Taking the inner product of Equation (18) with 0ϕ  and noting that the kernel 
is symmetric in x and y, one gets 

( )1 0 0, Bλ ϕ ϕ=                        (20) 
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1λ  is the first order correction to the eigenvalue. Equation (20) can be stated as 
“The approximation of first order in the eigenvalue is equal to the mean value of 
the perturbation operator B with respect to the normalized unperturbed eigen-
function 0ϕ ” [6] [7]. 

In this problem 2
1 e d 0xx xλ

∞ −

−∞
= =∫ . Moreover, the correction to the eigen-

function 1ϕ  is given by 1 e xxϕ −= . 
Calculating 2λ  and 2ϕ  in the same manner, one obtains λ  and U as 

211
2

λ = + +…                         (21) 

And 

2 23e 1
4

xU x x−   = + + − +  
  

                  (22)  

2.2. Algebraic Equations 

To illustrate the use of perturbation theory in solving certain algebraic equations, 
we give the following examples: 

Example 1 
Consider the cubic equation 3 0x x− + = , where   is a small perturbation 

number and assume that the solution is of the form 

( )2 3
0 1 2x x x x O= + + +    

where ( )3O   is a term containing all terms with 3  and higher. Substituting 
in the cubic equation and equating coefficients of i , we get 

3 2 2
0 0 0 1 1 0 2 2 0 10, 3 1 0, 3 3 0x x x x x x x x x x− = − + = − + =  

From which, we obtain 0 0, 1x = ±  and 1 2
0

1
1 3

x
x

=
−

. Therefore, for 0 0x =  we 

get 1 1x =  and ( )2x O= +  ; while for 0 1x = ±  we get ( )211
2

x O= ± − +  .  

Continuing this process we can have the solution as convergent expansion in  . 
The truncation in the series is determined by the degree of precision we like to 
reach. Moreover, the same result can be obtained using the usual Taylor expan-
sion [7]. 

Example 2 
Again, we consider the cubic equation 3 1 0x x− + = ; using this with the fa-

miliar expansion in   and on substitution, we get 0 1 0x− + = , 3
1 0 0x x− + = , 

2
2 1 03 0x x x− + = ; for 0 1 1x x= = , we have ( ) ( )21x O= + +   , this gives the li-

near part of the solution. As to the two other solutions, we note that as 0→ , 
( )x →∞ . This is actually a standard singular perturbation problem. To over-

come this problem, some sort of scaling is needed; this is done by writing x as  

( ) ( ) ( )1x y
ρ

= 


 so as ( )1y O=  as 0→ , and from the cubic equation one 

gets 
3

3 1 0y y
ρρ

− + =
 . ρ  needs to be determined in order to fulfill our  
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requirement, namely to get a definite answer. For that, the principle of dominant 
balance is to be used; this requires that the two leading terms in the equation, at  

least, should have the same order of magnitude. Hence 3

1
ρρ

=
  giving ρ =  . 

Our cubic equation, now, becomes, in terms of the variable y, 3 0y y− + = . 

Following the steps of the last example, we get ( )
1
211

2
y O= ± − +   or  

( )1 21 1
2

x O= ± − + 


; which are the other two solutions of the problem [7]. 

Example 3 
If the quadratic equation ( ) 21 2 1 0x x− − + =  is to be solved, then making the 

usual expansion in   and comparing coefficients of i , we get 2
0 02 1 0x x− + = , 

( ) 2
0 1 02 1x x x− = ; the first equation leads to the solution 0 1x =  which is a re-

peated root, substituting in the second equation we get a contradiction (0 = 1?) 
which means that the series techniques do not work here. Hence, we calculate 
the roots of the equation using the simple general square root method to get  

1
1

x±
±

=
−



; that gives us a hint for writing the expansion as  

3
2

0 1 2x x x x O= + + +
 
  
 

    instead of the expansion ( )2
0 1x x x O= + +  . Now  

following the same techniques used before we get 0 1x = , 1 1x = ±  and hence 
the solutions are ( )1x O= ± +   as expected [7]. 

Example 4 
Given that e xx − =  , then we see that there are two possible solutions for it 

for the case 0+→ , namely 
1) When 0x →  and ( )2 3x O= + +   . 
2) When e 0x− →  as x →∞ , for this case x has to behave like ( )log 1  ; 

and in order to get a convergent solution, we write the problem as e x x− =   
which implies that ( )log log 1x x= +  , note that ( )1 log 1x =   is the initial 
starting point for any recurrence techniques we choose. 

Using the formula ( )1 log log 1 ,n nx x n N+ = + ∈  and defining ( )1 log 1L =  , 
( )( )2 log log 1L =  , we see that 2 1 2x L L= + , ( )3 1 1 2logx L L L= + + , etc.   

Note that the successive terms of the series converge slowly as 0→  [7]. 

2.3. Examples from Different Mathematics Fields 

In this subsection, we give applications of perturbation theory in other different 
fields of mathematics such as differential equations and geometry. These are il-
lustrated by few examples. 

Example 5 

Given the ordinary differential equation 
2

2

d d 1
dd

y y
xx

= − − , ( )0 0y = , ( )0 1y = ,  

which represents a projectile vertical motion in air with air resistance force taken 
into account. kv mg= , where v is the initial velocity, m is the projectile mass, 
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k is the friction constant, and g is the gravitational constant. If we want now to  

solve for y, we get the exact solution as ( ) ( )2

1 1 e xy x x−+
= − −




; and if  

0 1< ≤  which corresponds to the case when the air resistance is weak, then we 
use Taylor’s series to obtain the first few terms of the expansion as  

( ) ( )
2 2 3 3 4

2 3

2 2 6 6 24
x x x x xy x x O

   
= − + − + + − +   

   
   . The expansion is valid for 

0 1x<   . 

Now, assuming that we are not aware of the exact solution, then we use per-
turbation theory to write ( ) ( ) ( ) ( ) ( )2 3

0 1 3y x y x y x y x O= + + +   ; and where 
( ) , 0,1, 2,iy x i =   are to be determined; as before, we substitute this in the 

original equation, following the same old techniques, keeping in mind that the 
initial conditions become ( ) ( ) ( ) ( )2 3

0 1 20 0 0 0y y y O+ + + =   ,  
( ) ( )2 3

0 1 20 1 0y y y O− + + + =     ; then we get the system of differential equa-
tions ( ) ( )0 0 01 0, 0 0, 0 1y y y+ = = =  ; ( )1 0 1 10, 0 0, 0y y y y+ = = =   ;  

( ) ( )2 1 2 20, 0 0, 0 0y y y y+ = = =   , on equating the coefficients of i . Solving these  

equations, we get ( )
2

0 2
xy x x= − , ( )

2 3

1 2 6
x xy x = − + , ( )

3 4

2 6 24
x xy x = − , in 

conformation with the results obtained using Taylor’s series expansion [8]. 
Example 6 
Consider a right angle triangle with sides 1, 0.1, and 2 21.0049 1 0.1≅ + , it is 

difficult to differentiate between this right angle triangle and its being an isos-
celes one; since there is not that difference between the two sides 1 and 1.0049. 
Let us make a simulation of the situation using perturbation theory by consider-
ing the side as 1,   and 21+  . Using binomial theorem we have  

( )2 2 41 1 O+ = + +   . Hence, the difference between the side 1 and the hypote-
nuse is of order ( )2 0.01=  which is a small number. Note that the angle between  

them is given by 1tan 5.71
1

θ −  = ≅ = 
 




  which is a sensible angle and can be  

observed better than the difference between the side and the hypotenuse. Ac-
tually, if we make the value of   smaller, we will be misled to the conclusion 
that the triangle is segment of a straight line [9]. 

2.4. The Smallness of the Perturbation Parameter and Its Relation  
with the Unperturbed Operator 

If we consider the following eigenvalue problem 
2

2 2
2

d ,
d

u a x u u x
x

λ− + = −∞ < < ∞                 (23) 

where a is a given positive constant, then the discrete eigenvalues are given by 

( )2 1 , 0,1,2,3,n n a nλ = + =                   (24) 

And the corresponding eigenfunctions are 

( )2 2e , 0,1, 2,3,ax
n nu H ax n−= =                (25) 
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( ) ( ) ( )2 2
2

2

d1 e e
d

n x x
nH x

x
= −  is a Hermite polynomial. 

This problem describes the eigenvalue problem for the simple harmonic os-
cillator [10]. 

Now, adding a perturbation term of the form xu , we get 
2

2 2
2

d ,
d

u a x u xu u x
x

λ− + + = −∞ < < ∞                (26) 

We may look at the term xu  as not small. This is because the variable value x 
takes values from −∞ to ∞; however if we compare this perturbation parameter 
with the term 2 2a x u  which is the non-perturbed one, the perturbation para-
meter (for small  ) is then considered as a small perturbation. One concludes 
then that: In perturbation problems, the perturbing parameter has to be 
small in comparison with the unperturbed operator [6]. 

Now the eigenvalues and eigenfunctions for the perturbed problem are given 
by 

( )
2

22 1 , 0,1,2,3,
4n n a n

a
λ = + − = 

                 (27a) 

and     
2

22
2

2e , 0,1, 2,3,
2

a x
a

n nu H a x n
a

 
− + 

    = + =    



          (27b) 

Note that the functions nu  are regular functions in  . 
At the end of this subsection, we note that the main goal of perturbation 

theory is the precise definition of smallness of the perturbing parameter with 
respect to the unperturbed operator [6]. 

Before we move to the applications of perturbation theory in different applied 
fields, we make a little digression, in the next section, on spectral perturbation 
theory. 

2.5. Spectral Perturbation Theory 

The theory deals with the way the perturbation affects the spectrum of a certain 
operator when it is perturbed. This compels us to reformulate the problem in a 
more precise and different manner [6]. 

Definition 1 
If   is a Hilbert space with inner product .,.  and that A  is a linear op-

erator in   such that ( )D A ⊂ →   and ( )D A  is the domain of A  
which depends on a small parameter  ; assume that  

1) A  Is a self-adjoint operator, i.e. 

( ), , , ,y y xx A A yx D A= ∀ ∈                  (28) 

2) A  has a smooth branch of simple eigenvalues Rλ ∈  with eigenvectors 
x ∈ ; namely 

A x xλ=                            (29) 
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Then, the job of perturbation theory is the calculation of the eigenvalues with 
respect to their values at 0=  when   is small but not equal to zero [6]. 

To clarify this idea, we take as an example the perturbation in the eigenvalues 
for a symmetric matrix; in this case nR= , with the Euclidean inner product 

T,x y x y=                           (30) 

And : n nA R R→  is a linear transformation for a symmetric matrix of the or-
der n n×  ( ija ). [note that we are concentrating on symmetric matrices because 
these are what we face in physics] 

Moreover, the perturbation in the eigenvalues for a Hermitian matrix is of our 
concern, in this case nC=  with the inner product 

T,x y x y=                           (31) 

Problems of this sort are found in many applications especially in quantum me-
chanics and where Hilbert spaces of infinite dimensions are dealt with. In this 
case expansions of the form 

0 1
n

nA A A A= + + + + 

   ,                  (32) 

1
n

nx x x x= + + + + 

   ,                   (33) 

0 1
n

nλ λ λ λ= + + + + 

                      (34) 

Are used. 
Now following the same techniques we have used in solving previous exam-

ples and in particular equating coefficients of n , we get the following equations 

( )0 0 0 0A I xλ− =                         (35) 

( )0 0 1 1 0 1 0A I x A x xλ λ− = − +                    (36) 

  

( ) ( )0 0 1n i n i i n ii
nA I x A x xλ λ− −=

− = − +∑                (37) 

[I is the n n×  unit matrix]. 
Now, suppose that 0 0x ≠ , then from Equation (35) 0λ  is the eigenvalue of 

the unperturbed operator 0A ; and the corresponding eigenvector is 0x  [7]. 
As to the second correction 1λ  and 1x , we note that Equation (36) is a sin-

gular equation and in order to be able to solve it, we need a certain hypothesis 
and the so-called Fredholm alternative [7]. 

3. Applications 

In this section, we give some representative well-known problems in different 
branches of physics; we start first with the ones from classical physics, then we 
move to the ones from modern physics (or more specific in quantum mechan-
ics). 

3.1. Problems from Classical Physics 

1) String Problem in the Theory of Sound 
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The vibrations of a string, with a small stiffness can be described the following 
eigenvalue problem 

2 4

2 4

d d , 0 1
d d

u u u x
x x

λ− + = < <                     (38) 

where   is a small positive number and is proportional to the stiffness, i.e.   
represents the perturbation. To solve this problem boundary conditions are 
needed. For instance to impose the conditions at the end points; 1x =  and 

0x =  [6]. 
If the two ends of the string are to be supported, then the boundary conditions 

will be ( ) ( )0 0 0u u= = , ( ) ( )1 1 0u u= = ; with these conditions in mind, one 
can get the eigenfunctions and eigenvalues as 

( ) 2 2 4 4sin and 1,2,3, ,n nu x n x n n nλ= π = π + π =         (39) 

The set { } 1sin nn x ∞

=
π  is complete in the interval ( )0,1 ; this means that { } 1n n

λ ∞

=
 

represents the full spectrum of the problem. For 0≥ , the spectrum is bounded 
below and the smallest value of the eigenvalues is 2 4

1λ = π + π . However, for 
0<  the spectrum is not bounded below and this is not allowed because   

measure the stiffness which is a physical quantity and is not negative. 
2) The Simple Pendulum 
The equation of motion for the simple pendulum is  

sin 0mL mgθ θ+ =                          (40) 

where θ  is the angle between the light string (of length L) and the vertical 
equilibrium position, m is the mass, and g is the gravitational acceleration. The 
equation can be written as 

2 sin 0kθ θ+ =                           (41) 

where 2k g L= . 
Now, taking into account the initial conditions, the problem, for a small angle, 

then becomes  

( ) ( )2 sin 0, 0 , 0 0kθ θ θ θ+ = = =                  (42) 

And 0 1<  , ( )Oθ =  . 
Putting θ = Ψ  and dividing by  , the last equation can be written as 

( )2 2 31 0, 0 1, 0
6

k  Ψ + Ψ − Ψ = Ψ = Ψ = 
 

               (43) 

If the solution is required to be of second order, then the higher order terms can 
be neglected. Making the transformation tτ ω= , where t is the time, Equation 
(43) is then written as 

2 2 2 31 0
6

kω  Ψ + Ψ − Ψ = 
 

                      (44) 

And where the differentiation is with respect to τ . Now, expanding in terms of 
powers of 2 , we get 
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2
0 1ω ω ω= +                            (45) 

And 
2

0 1Ψ = Ψ + Ψ                          (46) 

Substituting with Equations (45)-(46) in Equation (44) and equating coefficients 
of 2 , one obtains 

2
0 0 0 0 00, 1, 0kω Ψ + Ψ = Ψ = Ψ =                  (47) 

And 

( ) ( )2 2 3
0 1 1 0 1 0 0 1 1

12 ; 0 0, 0 0
6

k kω ω ωΨ + Ψ = − Ψ + Ψ Ψ = Ψ =       (48) 

Choosing 0 kω = , the solution 0Ψ  is given by  

0 0cos ; kτ ωΨ = = ,                     (50) 

while 1Ψ  satisfies the equation 

1 1 1
2 1 1cos cos cos3

8 24k
ω τ τ τΨ +Ψ = + +              (51)  

If we choose 1 16
kω = −  the solution 1Ψ  will then be  

( )1
1 cos cos3

192
τ τΨ = −                     (52) 

and the final solution is 

( ) ( ) ( )3 51cos cos cos3
192

t Oθ τ τ τ= + − +              (53) 

Moreover, ( )2 411
16

k Oτ  = − +  
   [11]. 

3) Steady State Diffusion Through a Corrugated Slab 
In this application, the simplest type of heat transfer is dealt with, which is the 

steady state type, i.e. when 0T
t

∂
=

∂
. The flow of heat is through a corrugated  

slab of thickness H, with the assumption that the lower side ( 0z = ) is at tem-
perature 0T ; and the upper side ( z H= ) is at temperature 0T T+ ∆ . Then, for 
steady state flow we have 

0zzkT =                            (54) 

(this is because the temperature does not depend on time explicitly 0T
t

∂
=

∂
). 

From the boundary conditions, the solution is given by 

0
TT T z

H
∆

= +                         (55) 

And the heat flux through the slab is determined by 

k T zF
H z
∆

= −




                        (56) 

Now, assuming that the slab occupies the region x−∞ < < ∞ , ( )h x z H< < , 
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and suppose that the slab is not homogenous with a boundary condition on the 
lower part at ( )z h x=  given by 

( ) max cosh x h kx=                         (57) 

where maxh H< ; in this case Laplace equation for the steady state case is given 
by 

0xx zzT T+ =                           (58) 

with Dirichlet boundary conditions given as 

( )( ) ( )0 0, ; ,T x h x T T x H T T= = + ∆                (59) 

Introducing the dimensionless variables  

0 , ,
T T

T x kx z kz
T
−

= = =
∆

                  (60) 

The problem becomes dimensionless and the boundary conditions will be as 

( ) ( ), cos 0, , 1T x x T x β= =                  (61) 

where max ,kh kHβ= = . It is clear that maxh H<  and hence β< . 
For small amplitudes, 1 , and this is fulfilled when maxh  is made to be 

very small ( 0→  with β  kept as a constant) [12]. 
Now, the boundary condition ( ), 0T x h =  can be written as a Taylor series 

as 

 ( ) ( ) ( ) ( )21,0 ,0 ,0
2z zzT x hT x h T x+ + +              (62) 

Also, using perturbation theory, T is written as 
2

0 1 2T T T T= + + +                        (63) 

Using the last two equations, following the same old procedure, and equating 
coefficients of n , we get  

2
0 1 0 2 1 0

10, 0, 0
2z z zzT T hT T hT h T= + = + + =             (64) 

This is for the first boundary condition; as for the second one ( ), 1T x β = , it 
tends to 0 1T =  and 1 0nT ≥ = , with all ( ),nT x z  satisfying Laplace equation  

2 2

2 2 0nT
x z

 ∂ ∂
+ = 

∂ ∂ 
. putting, now cosh x= ; we get the solution as 

( )

( ) ( )2 3

sinh
cos

sinh

sinh 21 coth cos 2
2 sinh 2

zzT x
h

zz x O

β
β β β

ββ β
β β β

−
= −

 − −
− + +  

   



 
     (65) 

4) Incompressible Flow Past a Circle 
Here, the stream function is given by 

d d du y v xΨ = −                          (66) 

( ),u v  is the velocity; and if the motion is inviscid, the function satisfies the eq-
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uation 

( )2 ω∇ Ψ = − Ψ                           (67) 

where ω  is the vorticity, which is equal to zero upstream if the flow is uniform; 
hence Equation (66) becomes, in cylindrical coordinates, as 

2

1 1 0rr rr r θθΨ + Ψ + Ψ =                      (68) 

Also, the boundary conditions are given by 

( ), sinr urθ θΨ →  as r →∞  (upstream)              (69) 

and 

 ( ), 0a θΨ =  (on the surface)                  (70) 

where a is the radius of the circle. Moreover, it is assumed that there is no rota-
tional motion, this means that the flow should be symmetrical about the line 

0θ =  and this means that ( ) ( ), ,r rθ θΨ = −Ψ − ; hence the solution, in this 
case, will be 

2

0 sinau r
r

θ
 

Ψ = − 
 

                     (71) 

Now, in the presence of the circle and if the vorticity number   is small, then 
we expect that the solution will not depart from the one we got in Equation (70). 
So, we write the solution in the presence of vorticity as 

( ) ( ) ( )0 1, ; , ,r r rθ θ θΨ = Ψ + Ψ                  (72) 

( )0 ,r θΨ  is the unperturbed solution given by Equation (70). 
On substituting Equation (71) in Equation (67), and equating coefficients of 

n , we get 
2 2

1 1 1
2 2 2

1 1 u
r r ar r θ

∂ Ψ ∂Ψ ∂ Ψ
+ + =

∂∂ ∂
                  (73) 

Also, we get the boundary conditions as 

( ) ( )2
1 1

1 1 cos 2 ; , , 0
4

u r r a
a

θ θΨ → − →∞ Ψ =            (74) 

Therefore, the solution is written as 

( ) ( )2
1

1 1 cos 2 ,
4

u r r
a

θ ϕ θΨ = − +                 (75) 

And the equation in ( ),rϕ θ  is given by 
2 2

1 1 1
2 2 2

1 1 0
r rr r

ϕ ϕ ϕ
θ

∂ ∂ ∂
+ + =

∂∂ ∂
                   (76) 

With the conditions 

( ) ( )1 1
1constant as ; , 1 cos 2
4

r a uaϕ ϕ θ θ→ →∞ = − −        (77) 

Using separation of variables, the solution in final form is 
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( )
2 2 3

2

1sin 1 cos 2 cos 2
4

a r au r uu a
r a r

θ θ θ
   

Ψ = − + − + −   
   

      (78) 

Equation (77) gives the solution in first order in   [12].     

3.2. Problems in Modern Physics 

In some physics subjects, one can solve for the eigenvalues and eigenfunctions of 
the Hamiltonian of the problem exactly and precisely such as the simple har-
monic oscillator and the Hydrogen atom in atomic physics. However, many 
physical systems in nature cannot be solved exactly and that requires the need 
for the development of appropriate procedures and tools to deal with such situa-
tions. As we stated before, perturbation theory was successful in treating these 
cases in which the distortion in the system, that can be solved exactly, is small. 

Mathematically, the Hamiltonian of the system H  is written as 

0= +H H V                           (79) 

0H  is the unperturbed part of the Hamiltonian,   is a small parameter, and 
V  is the potential, related to the perturbation, and supposed to be independent 
of time. 

We assume that we can solve the time-independent Schrodinger equation for 
the unperturbed Hamiltonian i.e. we can get the eigenvalues nE  and the ei-
genfunctions ( )n xΨ , such that 

( ) ( )0 n n nx E xΨ = ΨH                      (80) 

Such solutions may give unperturbed eigenvalues nE , nondegenerate or dege-
nerate. 

3.3. Nondegenerate Solutions 

Let the time-independent Schrodinger equation for the total Hamiltonian be 

( ) ( )x E xΨ = ΨH                        (81) 

Since   is a small parameter, we can use Taylor series to expand the wave 
function ( )xΨ  in terms of   as 

( ) ( ) ( ) ( )2
0 1 2x x x xη ηΨ = Ψ + + +                 (82) 

The same thing can be done with the state energy to get 
2

0 1 2E E= + + +                        (83) 

Substituting with these two equations in Equation (81) one gets 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2
0 0 1 2

2 2
0 1 2 0 1 2

x x x

E x x x

η η

η η

+ Ψ + + +

= + + + Ψ + + +

H V 

 

  

  
        (84) 

[ ( ) ( )1 1 2 2, , , ,η η    are the corrections in E and Ψ ]. 
Comparing terms of n , one gets 
For the order 0   

( )0 0 0 0E− Ψ =H                         (85) 
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This equation actually shows that 0Ψ  is the unperturbed eigenfunction cor-
responding to the eigenvalue 0E . 

For the order 1  

( ) ( )0 0 1 1 0 0E η− + − Ψ =H V                     (86) 

Taking the scalar product of this equation with 0Ψ , one gets 

0 0 1 0 0 0 0 1 1 0 0, , , , ,V Eη ηΨ + Ψ Ψ = Ψ + Ψ ΨH          (87) 

Using the hermiticity of 0H  and that 0E  is the eigenvalue of 0H , one gets 

0 0
1

0 0

,
,
VΨ Ψ

=
Ψ Ψ

                          (88) 

1  represents the shift in E to first order; which means that 

( )0 0 2
0

0 0

,
,
V

E E O
Ψ Ψ

= + +
Ψ Ψ

                    (89) 

This is a very important result which can be stated as 
{The perturbed energy levels can be calculated from those which are not per-

turbed} [13]. 
Now, taking the scalar product of Equation (86) with mΨ  and using the or-

thogonality of the eigenfunctions, and the hermiticty of the unperturbed Hamil-
tonian, one obtains 

0
1

0

,
, m

m
m

V
E E

η
Ψ Ψ

Ψ =
−

                     (90) 

Hence and in first order, the perturbed eigenfunction is given by 

( ) ( ) ( ) ( )0 2
0 0

0

,m
mm

m

V
x x x O

E E≠

Ψ Ψ
Ψ = Ψ + Ψ +

−∑          (91) 

This result is for the ground state; a similar result can be obtained for the other 
energy levels nE  and 

( ) ( ) ( ) ( )2,m n
n mm n

n m

V
x x x O

E E≠

Ψ Ψ
Ψ = Ψ + Ψ +

−∑          (92) 

Note that ( )xΨ  is normalized to first order in  , namely ( )21 OΨ Ψ = +  ; 
where Dirac notation is used here. 

Example 7. Infinite Square Well 
Consider a particle moving under the potential described as 

( ) 0 cos ,
2

,

xV x a
aV x

x a

 π  <  =  
∞ ≥

, and assume that it is required to compute the  

ground state energy to first order using perturbation theory. Then, to do that we 
need to seek solutions of the corresponding infinite square well problem. The  

potential in this case is given by ( )
0,

,p

x a
V x

x a

 <= 
∞ ≥

; this means that the particle  

(m) is moving inside a box ( x a< ) freely, while there is a very strong repulsion 
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force at the walls ( x a= ± ). Hence, the time-independent Schrodinger equation  

is given by 
2 2

2

d
2 d

uEu
m x

= −
 , its solution is then ( )

cos , odd
21

sin , even
2

n

n x n
a

u x
n xa n

a

 π 
   = 
π 

   

; 

moreover, the energy eigenvalues are given by 
2 2 2

28n
nE

ma
π

=
 ; and the least value 

energy ( ground state) is 
2 2

1 28
E

ma
π

=
  [13]. 

Now, going back to the original problem, we see that the ground state energy 
needs to be calculated to first order where the perturbation is given by  

0 cos
2

xH V
a
π ′ =  

 
; this is small compared with the term 2 1E E− .  

Or 0 2 1V E E− . Using perturbation theory techniques, one obtains the shift 
in ground state energy as 

* 30 0
1 11 1 1 0

8
d cos d 0.85

2 3
a

a

V VxE H u H u x x V
a a

∞

−∞ −

π ′ ′∆ = = = = = =  π ∫ ∫  

(it is to be noted that n = 1 for the ground state energy) [13] [14]. 
Example 8. Simple Harmonic Oscillator under a Linear Perturbation 
The unperturbed Hamiltonian for the simple harmonic oscillator in one di-

mension is given by 
22 2 2

2 20
0 02 2

d 1 d
2 2 2d d

m
x

m x
ω

ρ ω
ρ

   
= − + = − +   

  
H 

 ,  

where 0m
x

ω
ρ =



. Putting 0 1ω = , one gets for the unperturbed states ener-

gy ( )0 1
2nE n= + , 0,1,2,n = 

; the superscript 0 means that the energy is for the 

unperturbed case. Also, the unperturbed normalized eigenfunctions are given by 

( ) ( ) ( )
2

0 2en n nN H
ρ

ρ ρ
−

Ψ = ; ( )21 4 2 !n
nN n−= π ; ( )nH ρ  are Hermite polyno-

mials. 
Now, in the presence of the linear perturbation βρ , we need to compute the 

matrix elements of ρ ; which is ( ) ( ) ( ) ( )0 0 dn mn mρ ρ ρ ρ ρ
∞

−∞
= Ψ Ψ∫ ; again Di-

rac notation is used here for the eigenfunctions. Using the recurrence relation 
for Hermite polynomials [10], ( ) ( ) ( )1 12 2n n nH H nHρ ρ ρ ρ+ −= − , and the form  

of ( ) ( )0
n ρΨ , one obtains that ( ) ( ) ( ) ( ) ( ) ( )0 0 0

1 1
1

2 2n n n
n nρ ρ ρ ρ+ −
+

Ψ = Ψ + Ψ . Taking 

the product of this equation with ( ) ( )0
m ρΨ  and using the orthogonality of these 

functions, we get , 1 , 1
1

2 2m n m n
n nm n n mρ ρ δ δ+ −
+

= = + ; and hence, for a 

linear perturbation of the form H βρ′ = , the total Hamiltonian is  
2 2

2 2 2
0 2 2

1 d 1 d 1
2 2 2d d

H H H ρ βρ µ β
ρ µ

   
′= + = − + + = − + −   

   
; where µ ρ β= + . 
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Therefore, the total energy, including the perturbation term, is given by  
( )0 2 21 1 1

2 2 2n nE E nβ β= − = + −  [14].  

3.4. Degenerate States 

The correction in the eigenfunctions, in first order of perturbation, is small only 
when 

1m n

n m

V
E E
Ψ Ψ

≅
−

                        (93) 

If the difference between the unperturbed energy eigenvalues is small compared 
with the matrix element in the numerator mnV , then the perturbation will be 
large and the approximation fails. In particular, if there exist levels of the dege-
nerate type (levels with the same energy), the denominator will be equal to zero 
which is a singular situation and the solution obtained for the nondegenerate 
states is not acceptable. 

Now, if unperturbed state is l-fold degenerate, then we use the projection P  
on the state and the projection Q  perpendicular to it. Acting with P  on the 
space of these degenerate states, one gets 

( )1 0 0− Ψ =P V                          (94) 

Choosing an appropriate basis for the space of the degenerate states { } 1

l
i i=

∅ ; 

0Ψ  can be written as 

0 1 i ii
l c
=

Ψ = ∅∑                          (95) 

So, one gets 

1i j j iV c c∅ ∅ =                         (96) 

Hence, 1  is an eigenvalue of the matrix ( )ijV . this will lead to l roots. Equa-
tion (96) is a generalization of Equation (89) for the nondegenerate case. More-
over, if the states are degenerate, one can, partially, remove the degeneracy as 
will be shown in the following example. 

Example 9. Stark Effect  
The Schrodinger equation for the Hydrogen atom is given by [10] 

2 2
2

2
eu u Eu

m r
− ∇ − =
                      (97) 

,m e  are the mass and charge of the electron which is orbiting around the pro-
ton. 

Equation (96) can be written as u Eu=H , where H  is the Hamiltonian and 
u is the eigenfunction which describes the electron motion under the attractive  

force 
2e
r

− ; while E is the eigenvalue (the energy). Using separation of variables 

in spherical coordinates, the eigenvalues are found to be [10] 

 
4

2 2 , 1, 2,3,
2n
meE n
n

= − = 



                 (98) 
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n is the principal quantum number and for each n there exist an orbital angular 
quantum number l such that l n<  and 0,1,2, , 1l n= − ; also, there exist a 
magnetic quantum number m such that l m l− ≤ ≤ . This means that for each 
orbital quantum number l the degeneracy in energy states equals 2 1l + . 

The state with 0l =  is labelled as s-state, while the one with 1l =  is called 
the p-state, … and so on. Moreover, the ground eigenstate for Hydrogen atom is  

given ( )
3
2

100
0

1 1 exp ru r
a a

   = −   π   

  [10]. Note that, in this case,  

1 0n l m= → = = . In terms of the fine structure formula, the wave function in 
this situation is expressed as 1s . If 2n = , then 0,1l =  and there is a 4-fold 
degeneracy with the same energy and the eigenstates are 2s , 2 ,0p , 2 , 1p + , 
2 , 1p − , 

Now, if the Hydrogen atom is acted upon by a weak electric field E


 in the 
z-direction, and ˆE z=



 ;   is the magnitude of the electric field. The poten-
tial, in this case, is V ez= −  . 

To compute the matrix elements of ijV , for the unperturbed states for the 
Hydrogen atom with energy 2E , we note that we are computing a 4 × 4 Hermi-
tian matrix keeping in mind that the perturbing potential is odd under parity 
operation; and hence the only non-zero elements are those with different parity 
(e.g. 01 0V ≠ , and 10 0V ≠ , this because 2s  is of even parity, while 2 ,0p  is 
of odd parity). Note, also that the Hydrogen eigenstates are eigenstates of the to-
tal angular momentum 2L  and the z-component of the angular momentum 

zL . Therefore, ijV  between states p and s may not be zeros; moreover V com-
mutes with zL . Taking previous information into account, the only non-zero 
elements are 2 2 ,0s pV  and its Hermitian conjugate. i.e. 

( )
0

0

0 3 0 0
3 0 0 0

0 0 0 0
0 0 0 0

ij

e a
e a

V

 
 
 =
 
 
 




. Note that to reach these results, the forms of  

the Hydrogen eigenstates were used; 0a  is Bohr radius. From these results we 
conclude that the electric field was able to remove the degeneracy between the two 
states 2 ,0p  and 2s  (it made what was hidden apparent); while the other 
two states 2 , 1p ±  are still without any change in their status. What happened 
for the states 2s  and 2 ,0p  was a discretization in the energy, so that the 
energy of one of them becomes 0 03E e a+   and the other is 0 03E e a−  . This 
is the so-called Stark effect [13]. 

Example 10. The Approximation in Calculating the Ground State Energy 
for the Helium Atom 

In the He atom, the nucleus is composed of two protons and two neutrons 
with two electrons moving around the nucleus. The unperturbed total Hamilto-
nian is given by 0 1 2= +H H H  where , 1, 2i i =H  are the Hamiltonians for the 
first and second electrons; the total, ground state, eigenfunction of the total un-
perturbed Hamiltonian is given by ( ) ( )0 100 1 100 2 0,0u r u r ψΨ =

  ; 1 2,r r   are the po-
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sition vectors for electron 1 and electron 2 respectively. While, 0,0ψ  has to do 
with the spin of the ground state. 

For the total Hamiltonian H , when the repulsion between the two electrons 
is taken into account ( ′H ) and which is considered as the perturbation in the  

problem, is given by 0 ′= +H H H  and 
2

0 124
e

r
′ =

π
H


, 12 1 2r r r= −

  . 

Now, to compute the first order correction in the energy, we compute the ex-

pectation value for ′H , and where ( )
3
2

100
0 0

1 expZ Zru r
a a

   
= −   

π    

 ; hence  

( )23
1 20

1 1 23
0 12 00

21 5exp d d 34 eV
4 4 y

Z r ra ZE ZR
r aa

τ τ
+   

∆ = − = =   
π π   

∫
; ( 2Z =  is 

the atomic number for Helium and [ ]13.606 eVyR =  is Rydberg constant) [13]. 

Therefore, 1 108.8 eV 34 eV 74.8 eVE = − + = − , and this represents the cor-
rected value of the energy, in first order, for the Helium ground state [13] [15]. 

Example 11. Zeeman Effect 
In this problem, an electron (−e) moves under the effect of a field resulting 

from a nucleus with positive charge Ze positioned at the center of the coordinates 
system , ,x y z ; moreover, there is a uniform magnetic field in the z-direction  

so that the wave equation is given by ( )2 2
y x

Zu u xu yu u
r i

λ−∇ − + − =
 ,   is a  

small parameter representing the perturbation and λ  is related to the energy 
(it is the eigenvalue of the equation). 

Now, if 0=  (no perturbation), the eigenvalues, nλ , are then given by  
2

2n
Z
n

λ = − , 1,2,3,n = 
; and the corresponding eigentates are  

( ) ( ) ( ); , ;, , cos em im
n i m n l lu r f r P ϕθ ϕ θ= , 0,1, , 1l n= − ; 0, 1, ,m l= ± ± . Bu, 

( )1 1
y x

uxu yu
i i ϕ

∂
− =

∂
. The effect of this last operator is clear, since  

; ,
; ,

1 n i m
n l m

u
mu

i ϕ
∂

=
∂

. Hence, the eigenvalue, in the presence of perturbation, is 

given by ( )
2

2n
Z m
n

λ = − +  . While the eigenfunctions do not change with the 

perturbation [6]. 
Thence, the magnetic field removed the degeneracy in eigenvalues, e.g. if 1l =   

then 0, 1m = ± ; and the energy levels become 
2 2 2

2 2 2, ,Z Z Z
n n n

− − − − +  , respec-

tively. 

4. Concluding Discussion 

In this brief review article, we have shown the importance of perturbation theory 
in evaluating the eigenvalues and eigenfunctions for physical systems in many 
applied fields, in classical mechanics, fluid mechanics, heat flow in certain bodies, 
and most prominent in quantum mechanics where we gave sample examples of 
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well-known problems in the literature and cited in the references given below. 
Perturbation theory will keep to be a vital subject leading to many applications 

in many fields; as an example, recently a PhD dissertation is written on pertur-
bation theory and its role in the evaluation of Feyman Integrals using integration 
by parts identities [16]. 
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