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Abstract 
In this article we shall examine several different types of figurative numbers 
which have been studied extensively over the period of 2500 years, and cur-
rently scattered on hundreds of websites. We shall discuss their computation 
through simple recurrence relations, patterns and properties, and mutual re-
lationships which have led to curious results in the field of elementary num-
ber theory. Further, for each type of figurative numbers we shall show that 
the addition of first finite numbers and infinite addition of their inverses of-
ten require new/strange techniques. We sincerely hope that besides experts, 
students and teachers of mathematics will also be benefited with this article. 
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1. Introduction 

Pythagoras of Samos (around 582-481 BC, Greece) and his several followers, es-
pecially, Hypsicles of Alexandria (around 190-120 BC, Greece), Plutarch of 
Chaeronea (around 46-120, Greece), Nicomachus of Gerasa (around 60-120, 
Jordan-Israel), and Theon of Smyrna (70-135, Greece) portrayed natural num-
bers in orderly geometrical configuration of points/dots/pebbles and labeled 
them as figurative numbers. From these arrangements, they deduced some asto-
nishing number-theoretic results. This was indeed the beginning of the number 
theory, and an attempt to relate geometry with arithmetic. Nicomachus in his 
book, see [1], originally written about 100 A.D., collected earlier works of Py-
thagoreans on natural numbers, and presented cubic figurative numbers (solid 
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numbers). Thus, figurate numbers had been studied by the ancient Greeks for 
polygonal numbers, pyramidal numbers, and cubes. The connection between 
regular geometric figures and the corresponding sequences of figurative num-
bers was profoundly significant in Plato’s science, after Plato of Athens (around 
427-347 BC, Greece), for example in his work Timaeus. The study of figurative 
numbers was further advanced by Diophantus of Alexandria (about 250, Greece). 
His main interest was in figurate numbers based on the Platonic solids (tetrahe-
dron, cube, octahedron, dodecahedron, and icosahedron), which he documented 
in De solidorum elementis. However, this treatise was lost, and rediscovered on-
ly in 1860. Dicuilus (flourished 825, Ireland) wrote Astronomical Treatise in 
Latin about 814-816, which contains a chapter on triangular and square num-
bers, see Ross and Knott [2]. After Diophantus’s work, several prominent ma-
thematicians took interest in figurative numbers. The long list includes: Leonar-
do of Pisa/Fibonacci (around 1170-1250, Italy), Michael Stifel (1486-1567, Ger-
many), Gerolamo Cardano (1501-1576, Italy), Johann Faulhaber (1580-1635, 
German), Claude Gaspard Bachet de Meziriac (1581-1638, France), René Des-
cartes (1596-1650, France), Pierre de Fermat (1601-1665, France), John Pell 
(1611-1685, England). In 1665, Blaise Pascal (1623-1662, France) wrote the 
Traité du triangle arithmétique, avec quelques autres petits traitez sur la mesme 
matiére which contains some details of figurate numbers. Work of Leonhard 
Euler (1707-1783, Switzerland) and Joseph Louis Lagrange (1736-1813, France) 
on figurate numbers opened new avenues in number theory. Octahedral num-
bers were extensively examined by Friedrich Wilhelm Marpurg (1718-1795, 
German) in 1774, and Georg Simon Klügel (1739-1812, Germany) in 1808. The 
Pythagoreans could not have anticipated that figurative numbers would engage 
after 2000 years leading scholars such as Adrien-Marie Legendre (1752-1833, 
France), Karl Friedrich Gauss (1777-1855, Germany), Augustin-Louis Cauchy 
(1789-1857, France), Carl Guslov Jacob Jacobi (1804-1851, Germany), and Wac-
law Franciszek Sierpiński (1882-1969, Poland). In 2011, Michel Marie Deza 
(1939-2016, Russia-France) and Elena Deza (Russia) in their book [3] had given 
an extensive information about figurative numbers. 

In this article we shall systematically discuss most popular polygonal, centered 
polygonal, three dimensional numbers (including pyramidal numbers), and four 
dimensional figurative numbers. We shall begin with triangular numbers and 
end this article with pentatope numbers. For each type of polygonal figurative 
numbers, we shall provide definition in terms of a sequence, possible sketch, ex-
plicit formula, possible relations within the class of numbers through simple re-
currence relations, properties of these numbers, generating function, sum of first 
finite numbers, sum of all their inverses, and relations with other types of poly-
gonal figurative numbers. For each other type of figurative numbers mainly we 
shall furnish definition in terms of a sequence, possible sketch, explicit formula, 
generating function, sum of first finite numbers, and sum of all their inverses. 
The study of figurative numbers is interesting in its own sack, and often these 
numbers occur in real world situations. We sincerely hope after reading this ar-
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ticle it will be possible to find new representations, patterns, relations with other 
types of popular numbers which are not discussed here, extensions, and real ap-
plications. 

2. Triangular Numbers 

In this arrangement rows contain 1,2,3,4, ,n  dots (see Figure 1). 
From Figure 1 it follows that each new triangular number is obtained from 

the previous triangular number by adding another row containing one more dot 
than the previous row added, and hence nt  is the sum of the first n positive in-
tegers, i.e.,  

( ) ( )1 2 1 1 2 3 1 ,n n nt t n t n n n n− −= + = + − + = = + + + + − +        (1) 

i.e., the differences between successive triangular numbers produce the sequence 
of natural numbers. To find the sum in (1) we shall discuss two methods which 
are innovative. 

Method 1. Since 

( )
( ) ( )

1 2 3 1

1 2 2 1
n

n

t n n

t n n n

= + + + + − +

= + − + − + + +





 

An addition of these two arrangements immediately gives  

( ) ( ) ( ) ( )2 1 1 1 1nt n n n n n= + + + + + + = +  

and hence 

( ) 2

1

1 1 1 .
2 2 2

n

n
k

n n
t k n n

=

+
= = = +∑                  (2) 

Thus, it immediately follows that 1 1t = , 2 1 2 3t = + = , 3 1 2 3 6t = + + = , 

4 1 2 3 4 10t = + + + = , 5 15t = , 6 21t = , 7 28t = ,  . This method was first 
employed by Gauss. The story is his elementary school teacher asked the class to 
add up the numbers from 1 to 100, expecting to keep them busy for a long time. 
Young Gauss found the Formula (2) instantly and wrote down the correct an-
swer 5050. 

Method 2. From Figure 2 Proof without words of (2) is immediate, see Alsina 
and Nelsen [4]. However, a needless explanation is a “stairstep” configuration 
made up of one block plus two blocks plus three blocks, etc, replicated it as the 
shaded section in Figure 2, and fit them together to form an ( )1n n× +  rectan-
gular array. Because the rectangle is made of two identical stairsteps (each  
 

 
Figure 1. Triangular numbers. 
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Figure 2. Proof of (2) without words. 
 
representing nt ) and the rectangle’s area is the product of base and height, that 
is, ( )1n n + , then the stairstep’s area must be half of the rectangle’s, and hence 
(2) holds. 

To prove (2) the Principle of mathematical induction is routinely used. The 
relation (1) is a special case of an arithmetic progression of the finite sequence 
{ }, 0,1, , 1ka k n= −  where ka a kd= + , or ( ) , 0ka a k d k= + − ≥ ≥



  , i.e.,  

( ) ( ) ( ) ( )( )
1

0
2 1 .

n

k
S a kd a a d a d a n d

−

=

= + = + + + + + + + −∑         (3) 

For this, following the Method 1, it immediately follows that  

( ) [ ]0 12 1 .
2 2 n
n nS a n d a a −= + − = +                  (4) 

Thus, the mean value of the series is ( )0 1 2nS S n a a −= = + , which is similar 
as in discrete uniform distribution. For 1a d= = , (3) reduces to (1), and (4) 
becomes same as (2). From (4), it is also clear that  

( ) ( ) ( )

( ) ( )

( )

1 1 1

0 0

2 1 2 1
2 2

2 1 .
2

n n m

k m k k
a kd a kd a kd

n ma n d a m d

n m a n m d

− − −

= = =

+ = + − +

= + − − + −      

−
= + + −  

∑ ∑ ∑

         (5) 

Ancient Indian Sulbas (see Agarwal and Sen [5]) contain several examples of 
arithmetic progression. Aryabhata (born 2765 BC) besides giving the Formula (4) 
also obtained n in terms of S, namely, 

( )28 2 21  1
2

Sd a d a
n

d

 + − − = +
 
 

                 (6) 

He also provided elegant results for the summation of series of squares and 
cubes. In Rhind Papyruses (about 1850 and 1650 BC) out of 87 problems two 
problems deal with arithmetical progressions and seem to indicate that Egyptian 
scriber Ahmes (around 1680-1620 BC) knew how to sum such series. For exam-
ple, Problem 40 concerns an arithmetic progression of five terms. It states: divide 
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100 loaves among 5 men so that the sum of the three largest shares is 7 times the 
sum of the two smallest  
( ( ) ( ) ( ) ( )2 3 4 100x x d x d x d x d+ + + + + + + + = ,  

( ) ( ) ( ) ( )7 2 3 4x x d x d x d x d+ + = + + + + +   , 10 6x = , 55 6d = ). There is a 
discussion of arithmetical progression in the works of Archimedes of Syracuse 
(287-212 BC, Greece), Hypsicles, Brahmagupta (born 30 BC, India), Diophantus, 
Zhang Qiujian (around 430-490, China), Bhaskara II or Bhaskaracharya (working 
486, India), Alcuin of York (around 735-804, England), Dicuil, Fibonacci, Jo-
hannes de Sacrobosco (around 1195-1256, England), Levi ben Gershon (1288-1344, 
France). Abraham De Moivre (1667-1754. England) predicted the day of his own 
death. He found that he slept 15 minutes longer each night, and summing the 
arithmetic progression, calculated that he would die on November 27, 1754, the 
day that he would sleep all 24 hours. Peter Gustav Lejeune Dirichlet (1805-1859, 
Germany) showed that there are infinitely many primes in the arithmetic progres-
sion an b+ , where a and b are relatively prime. Enrico Bombieri (born 1940, Italy) 
is known for the distribution of prime numbers in arithmetic progressions. Te-
rence Chi-Shen Tao (born 1975, Australia-USA) showed that there exist arbitra-
rily long arithmetic progressions of prime numbers. 

The following equalities between triangular numbers can be proved rather 
easily.  

2
2 2

1

1 2

1 2 1

1 1

3
3

n n n

n n n

n n n

n m n m

n m n m nm

t t t

t t t
t t t

t t nm t
t t t t t

−

−

+ +

+

− −

+ =

+ =

+ =

+ + =

+

 

Instead of adding the above finite arithmetic series { }ka , we can multiply its 
terms which in terms of Gamma function Γ  can be written as  

( )
1

0 1 1
0

    ,
n

n
n

k

a n
da a a a kd d

a
d

−

−
=

 Γ + 
 = + =
 Γ 
 

∏              (7) 

provided a/d is nonpositive. 
 The triangular number nt  solves the handshake problem of counting the 

number of handshakes if each person in a room with ( )1n +  people shakes 
hands once with each person. Similarly a fully connected network of ( )1n +  
computing devices requires nt  connections. The triangular number nt  also 
provides the number of games played by ( )1n +  teams in a Round-Robin 
Tournament in which each team plays every other team exactly once and no 
ties are allowed. Further, the triangular number nt  is the number of ordered 
pairs ( ),x y , where 1 x y n≤ ≤ ≤ . For an ( )1n +  sided-polygon, the num-
ber of diagonals is ( )( ) 11 2 2 2 , 2n nn n t t n++ − = − ≥ . From Figure 1, it fol-
lows that the number of line segments between closest pairs of dots in the 
triangles is ( )13   3 1 2n nt n n−= = − , or recursively, ( )1 3 1n n n−= + −  , 
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1 0= . Thus, for example, 4 18= . A problem of Christoff Rudolff 
(1499-1545, Poland) reads: I am owed 3240 florins. The debtor pays me 1 flo-
rin the first day, 2 the second day, 3 the third day, and so on. How many days 
it takes to pay off the debt (80 days). For the Pythagoreans the fourth trian-
gular number 4 10t =  (decade) was most significant of all: it contains in it-
self the first four integers, one, two, three, and four 1 2 3 4 10+ + + = , it was 
considered to be a symbol of “perfection”, being the sum of 1 (a point), 2 (a 
line), 3 (a plane) and 4 (a solid); it is the smallest integer n for which there 
are just as many primes between 1 and n as nonprimes, and it gives rise to 
the tetraktys (see Figure 1 and its alternative form Figure 3). To them, the 
tetraktys was the sum of the divine influences that hold the universe together, 
or the sum of all the manifest laws of nature. They recognized tetraktys as 
fate, the universe, the heaven, and even God. Pythagoras also called the Deity 
a Tetrad or Tetracyts, meaning the “four sacred letters”. These letters origi-
nated from the four sacrad letters JHVH, in which the ancient Jews called 
God our Father, the name “Jehovah”. The tetraktys was so revered by the 
members of the brotherhood that they shared the following oath and their 
most jealously guarded secret, “I swear by him who has transmitted to our 
minds the holy tetraktys, the roots and source of ever-flowing nature”. For 
Plato (Plato, meaning broad, is a nickname, his real name was Aristocles, he 
died at a wedding feast) number ten was the archetypal pattern of the universe. 
According to Eric Temple Bell (1883-1960, UK-USA), see [6], “Pythagoras 
asked a merchant if he could count. On the merchants’s replying that he could, 
Pythagoras told him to go ahead. One, two, three, four ..., he began, when Py-
thagoras shouted Stop! What you name four is really what you would call ten. 
The fourth number is not four, but decade, our tetractys and inviolable oath by 
which we swear”. Inadvertently, the tetractys occurs in the following: the ar-
rangement of bowling pins in ten-pin bowling, the baryon decuplet, an arch-
bishop’s coat of arms, the “Christmas Tree” formation in association football, a 
Chinese checkers board, and the list continues. The number 5 15t =  gives the 
number and arrangement of balls in Billiards. The 36th triangular number, i.e., 
is 666 (The Beast of Revelation-Christians often seems to have difficulties with 
numbers). The 666th triangular number, i.e., 666t  is 222111. On triangular 
numbers an interesting article is due to Fearnehough [7]. 

 

 

Figure 3. Alternative form of tetraktys. 
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 No triangular number has as its last digit (unit digit) 2, 4, 7 or 9. For this, let 
( )mod10n k≡ , then ( ) ( )( )1 1 mod10n k+ ≡ + ; here 0 9k≤ ≤ . Thus, it fol-

lows that ( ) ( ) ( )1 2 1 2 mod10nt n n k k= + ≡ + . This relation gives only 
choices for k as 0,1,3,5,6  and 8.  

 We shall show that for an integer 1k > , ( )mod , 1nt k n ≥  repeats every k 
steps if k is odd, and every 2k steps if k is even, i.e., if   is the smallest posi-
tive integer such that for all integers n 

( )( ) ( ) ( )
1 1

  mod ,
2 2

n n n n
k

+ + + +
≡

 

                 (8) 

then k=  if k is odd, and 2k=  if k is even. For this, note that  

( )( ) ( ) ( )1 1 1
  ,

2 2 2
n n n n

n
+ + + + +

− = +
   

  

and hence if (8) holds, then 

( ) ( )
1

  0 mod .
2

n k
+

+ ≡
 

  

For n k=  and 1n =  the above equation respectively gives 

( ) ( ) ( ) ( )
1 1

0   0 mod and   0 mod .
2 2

k k
+ +

+ ≡ + ≡
   

  

Combining these two relations, we find  

( )  0 mod k≡  

and hence 

     for some positive integer .ck c=                  (9) 

Now if k is odd, then in view of ( )1 2k +  is an integer, we have  

( ) ( )
1

  0 mod .
2

k k
nk k

+
+ ≡  

This implies that k ≥  , because   is the smallest integer for which (8) 
holds. But, then from (9) it follows that k =  . 

If k is even, then 1k +  is odd, and so ( ) ( )1 2  0 modk k k+ ≡/ . Thus, k≠ , 
but  

( ) ( ) ( )
2 1

2   0 mod
2

k k
n k k

+
+ ≡  

and so 2k satisfies (8). This implies that 2k ≥  , which again from (9) gives 
2k= . 

For example, for ( )mod3 , 1nt n ≥ , we have 
1,0,0,  1,0,0,  1,0,0,  1,0,0,  

and for ( )mod 4 , 1nt n ≥ ,  
1,3,2,2,3,1,0,0,  1,3, 2, 2,3,1,0,0, .  

 Triangular numbers and binomial coefficients are related by the relation 

1 1
.

2 1n

n n
t

n
+ +   

= =   −   
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Thus, triangular numbers are associated with Pascal’s triangle 

1
1  1
  2  

1      1
1  4    4  1

1  5      5  1
1  6    20    6  1

1  7    35  35    7  1
1  6    56  70  56    8  1

1 1
3 3
6

10 10
15 15

21 21
28 28

 

For the origin of Pascal triangle see Agarwal and Sen [5]. 
 The only triangular numbers which are the product of three consecutive in-

tegers are 6, 120, 210, 990, 185,136, 258, 474, 216, see Guy [8]. 
 A number is called palindromic if it is identical with its reverse, i.e., reading 

the same forward as well as backward. There are 28 palindromic triangular 
numbers less than 1010, namely, 1, 3, 6, 55, 66, 171, 595, 666, 3003, 5995, 8778, 
15,051, 66,066, 617,716, 828,828, 1,269,621, 1,680,861, 3,544,453, 5,073,705, 
5,676,765, 6,295,926, 351,335,153, 61,477,416, 178,727,871, 1,264,114,621, 
1,634,004,361, 5,289,009,825, 6,172,882,716. The largest known palindromic 
triangular numbers containing only odd digits and even digits are  

32850970 539593131395935t =  and 128127032 8208268228628028t = . It is 
known, see Trigg [9], that an infinity of palindromic triangular numbers exist 
in several different bases, for example, three, five, and nine; however, no infi-
nite sequence of such numbers has been found in base ten. 

 Let m be a given natural number, then it is n-th triangular number, i.e., 

nm t=  if and only if ( )1 1 8 2n m= − + + . This means if and only if 8 1m +  
is a perfect square. 

 If n is a triangular number, then 9 1, 25 3n n+ +  and 49 6n +  are also tri-
angular numbers. This result of 1775 is due to Euler. Indeed, if mn t= , then 

3 19 1 mn t ++ = , 5 225 3 mn t ++ =  and 7 349 6 mn t ++ = . An extension of Euler’s 
result is the identity  

( ) ( )
2

2 12 1 ,   1, 2,m k k m kk t t t k+ ++ + = =   

i.e., 

( ) ( ) ( ) ( ) ( )2 2 1 2 1 11 1
2 1 .

2 2 2
k m k k m km m k k

k
+ + + + +   + +    + ⋅ + =  

 From the identity  

( ) ( ) ( ) ( )2 21 1
4 1 1

2 2
x x y y

x y x y
+ + 

+ + = + + + − 
 

 

it follows that if n is the sum of two triangular numbers, then 4 1n +  is a sum of 
two squares. 
 Differentiating the expansion ( ) 1

01 n
nx x− ∞

=
− = ∑  twice, we get  
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( )
( ) ( )( )2 1

3
2 1

2 1 1 ,
1

n n

n n
n n x n n x

x

∞ ∞
− −

= =

= − = +
−

∑ ∑           (10) 

and hence 

( )
( )( ) ( )( )0

3
1 0 0

1 1
0 .

2 21
n n n

n
n n n

n n n nx x x x t x
x

∞ ∞ ∞

= = =

+ +
= + = =

−
∑ ∑ ∑  

Hence, ( ) 31x x −−  is the generating function of all triangular numbers. In 
1995, Sloane and Plouffe [10] have shown that 

2
1

0

11 2 e .
2 !

n
x

n
n

xx x t
n

∞

+
=

 + + = 
 

∑  

 To find the sum of the first n triangular numbers, we need an expression for 
2

1
n
k k
=∑  (a general reference for the summation of series is Davis [11]). For 

this, we begin with Pascal’s identity  

( )33 21 3 3 1,   1k k k k k− − = − + ≥  

and hence 

( ) ( ) ( ) ( )( )33 3 3 3 3 3 3 2

1 1 1
1 0 2 1 3 2 1 3 3 1,

n n n

k k k
n n k k

= = =

− + − + − + + − − = − +∑ ∑ ∑  

which in view of (2) gives  

( )( )2 3 2 3 2

1

1 1 1 1 1 1 1 1 1 2 1 .
3 2 2 3 3 2 6 6

n

k
k n n n n n n n n n n

=

= + + − = + + = + +∑   (11) 

Archimedes as proposition 10 in his text On Spirals stated the formula 

( ) ( ) ( )2 2 2 21 1 2 3 1 2n n n n+ + + + + = + + +              (12) 

from which (11) is immediate. It is believed that he obtained (12) by letting k the 
successive values 1,2, , 1n −  in the relation  

( ) ( ) ( )2 22 2 2 ,n k n k k k n k n k= + − = + − + −    

and adding the resulting 1n −  equations, together with the identity 
2 22 2n n= , to arrive at 

( ) ( ) ( ) ( ) ( )2 2 2 21 2 1 2 2 1 1 2 2 1 1 .n n n n n n+ = + + + + − + − + + −       (13) 

Next, letting 1, 2, ,k n=   in the formula  

( )2   2 1 2 1k k k= + + + + −    

and adding n equations to get  

( ) ( ) ( ) ( )2 2 21 2 1 2 2 1 1 2 2 1 1 .n n n n n+ + + = + + + + − + − + + −       (14) 

From (13) and (14), the Formula (12) follows. 
Another proof of (11) is given by Fibonacci. He begins with the identity  

( )( ) ( ) ( ) 21 2 1 1 2 1 6 .k k k k k k k+ + = − − +  

and takes 1,2,3, ,k n=   to get the set of equations  
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( ) ( ) ( )( )( ) ( )
( )( ) ( ) ( )

2

2

2

2

2

1 2 3 6 1
2 3 5 1 2 3 6 2
3 4 7 2 3 5 6 3

1 2 1 2 1 2 3 6 1

1 2 1 1 2 1 6 .

n n n n n n n

n n n n n n n

⋅ ⋅ = ⋅

⋅ ⋅ = ⋅ ⋅ + ⋅

⋅ ⋅ = ⋅ ⋅ + ⋅

− − = − − − + −

+ + = − − +



 

On adding these n equations and cancelling the common terms, (11) follows. 
Now from (2) and (11), we have  

( )( )2

1 1 1

1 1 1    1 2 .
2 2 6

n n n

k
k k k

t k k n n n
= = =

= + = + +∑ ∑ ∑             (15) 

Relation (15) is due to Aryabhata. 
For an alternative proof of (15), we note that  

( ) ( )

( ) ( ) ( )
0 0

2 2 2 2

1

1

1 2 3 2 3 3

1 2 ,

n n

n k n k
k k

n

k

n t t t t

n n n n

n k

= =

=

+ − = −

= + + + + + + + + + + + + +

= + + + =

∑ ∑

∑

   



 

and hence in view of (11), we have 

( )

( ) ( ) ( )( )

( )( )

2

1 1
  1

1 1  1 1 2 1
2 6

1  1 2 .
6

n n

k n
k k

t n t k

n n
n n n n

n n n

= =

= + −

+
= + − + +

= + +

∑ ∑

 

From (15) it follows that  

( ) ( ) ( )( )2

1

1  3 1 1 1 ,
6

n

k
k m

t n m n m n m
= +

 = − − + + + − ∑  

which in particular for 4, 7m n= =  gives 2
5 6 7 64 8t t t+ + = = , i.e., three suc-

cessive triangular numbers whose sum is a perfect square. Similarly, we have 
2

5 6 7 8 10t t t t+ + + = . 
From (15), we also have ( )( )1 1 3 2n

k nk t n t
=

= +∑ , which means nt  divides 

1
n

kk t
=∑  if 3 2n m= − , 1,2,m =  . 

 The reciprocal of the ( )1n + -th triangular number is related to the integral  

( )( )
1 1

0 0
1

2 1d d     .
1 2

n

n

x y x y
n n t +

− = =
+ +∫ ∫  

 The sum of reciprocals of the first n triangular numbers is  

( )1 1 1

1 2 1 1 1    2   2 1 ,
1 1 1

n n n

k k kkt k k k k n= = =

   = = − = −   + + +   
∑ ∑ ∑         (16) 

and hence 
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1

1 1  2 lim 1   2.
1nk kt n

∞

→∞=

 = − = + 
∑                    (17) 

Jacob Bernoulli (1654-1705, Switzerland) in 1689 summed numerous conver-
gent series, the above is one of the examples. In the literature this procedure is 
now called telescoping, also see Lesko [12]. 
 Pythagoras theorem states that if a and b are the lengths of the two legs of a 

right triangle and c is the length of the hypothenuse, then the sum of the 
areas of the two squares on the legs equals the area of the square on the hy-
potenuse, i.e., 

2 2 2  .a b c+ =                         (18) 

A set of three positive integers a, b and c which satisfy (18) is called Pythago-
rean triple and written as ordered triple ( ), ,a b c . A Pythagorean triangle 
( ), ,a b c  is said to be primitive if , ,a b c  have no common divisor other than 1. 
For the origin, patterns, extensions, astonishing directions, and open problems, 
of Pythagoras theorem and his triples, see Agarwal [13] [14], and an interesting 
article of Beauregard and Suryanarayan [15]. There are Pythagorean triples (not 
necessarily primitive) each side of which is a triangular number, for example, 
( ) ( )132 143 164, , 8778,10296,13530t t t = . It is not known whether infinitively many 
such triples exist. 
 A number is called perfect if and only if it is equal to the sum of its positive 

divisors, excluding itself. For example, 3 6t =  is perfect, because  
( )6 1 2 3 6+ + = . The numbers ( )7 31 12728,496,8128 , ,t t t  are also perfect that 

Pythagoreans discovered. For mystical reasons, such numbers have been 
given considerable attention in the past. Especially, Pythagoreans praised the 
number six eulogistically, concluding that the universe is harmonized by it 
and from it comes wholeness, permanence, as well as perfect health. In fact, 
Plato asserted that the creation is perfect because the number 6 is perfect. 
They also realized that like squares, six equilateral triangles (see Figure 4) 
meeting at a point (add up to 360˚) leave no space in tilling a floor. 

Till very recently only 51 even perfect numbers of the form ( )12 2 1p p− −  
have been discovered. It is not known whether there are any odd perfect num-
bers, and if there exist infinitely many perfect numbers. The following result due  
 

 

Figure 4. Tilling a floor. 
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to Euclid of Alexandria (around 325-265 BC, Greece) and Euler states that an 
even number is perfect if and only if it has the form ( )12 2 1p p− − , where 2 1p −  
is a prime number (known as Pére Marin Mersenne’s, 1588-1648, France, prime 
number). In 1575 it was observed that ( ) ( )1

2 1
2 2 1 2 2 1 2 p

p p p p t−
−

− = − = , i.e., 
every known perfect number is also a triangular number. 
 Fermat numbers are defined as 22 1, 0

n

nF n= + ≥ . First few Fermat’s num-
bers are 3, 5, 17, 257, 65537. We shall show that for 0n > , Fermat number 

nF  is never a triangular number, i.e., there is no integer m which satisfies 
( )22 1 1 2

n
m m+ = + . This means the discriminant of the equation  

( )2 22 2 1 0
n

m m+ − + =  is not an integer. Suppose to contrary that there ex-

ists an integer p such that ( )21 8 2 1
n

p+ + = , but then  

( )( )2 3 22 9 3 3
n

p p p+ = − = + − , which implies that there exist integers r and s 
such that 3 2rp + =  and 3 2sp − = . Hence, we have 2 2 6r s− =  for which 
the only solution is 3, 1r s= = . This means, 2 3 32 2 2

n + = × , or 22 2
n
= , 

which is true only for 0n = . 
 We shall find all square triangular numbers, i.e., all positive integers n and 

the corresponding m so that ( ) 21 2n n m+ = . This equation can be written 
as, so called Pell’s Equation (for its origin, see Agarwal [5]) 2 22 1b a− = , 
where 2 1b n= +  and 2a m= . We note that if ( )1 1, , 1k ka b k− − ≥  is an in-
teger solution of 2 22 1b a− = ± , then ( ),k ka b  defined by the recurrence re-
lations  

1 1 1 1  ,     2 ,   1k k k k k ka a b b a b k− − − −= + = + ≥                 (19) 

satisfy 

( ) ( ) ( )2 22 2 2 2
1 1 1 1 1 12   2 2   2 ,k k k k k k k kb a a b a b b a− − − − − −− = + − + = − −  

and hence 2 22 1b a− =  . From this observation we conclude that if  
( )1 1, , 1k ka b k− − ≥  is an integer solution of 2 22 1b a− = , then so is  
( ) ( )1 1 1 1 1 1, 3 2 ,4 3k k k k k ka b a b a b+ + − − − −= + + . Since ( ) ( )0 0, 0,1a b =  is a solution of 

2 22 1b a− =  (its fundamental solution is ( ) ( ), 2,3a b = ), it follows that the iter-
ative scheme 

1 1

1 1 0 0

3 2
4 3 ,   0, 1

k k k

k k k

x x y
y x y x y

− −

− −

= +

= + = =
                 (20) 

gives all solutions of 2 22 1b a− = . System (20) can be written as  

1 1 0 1

1 1 0 1

6 ,   0, 2
6 ,   1, 3.

k k k

k k k

x x x x x
y y y y y

+ −

+ −

= − = =

= − = =
                 (21) 

Now in (21) using the substitution 2 , 2 1,k k k kx m y n= = +  we get  

1 1 0 1

1 1 0 1

6 ,   0, 1
6 2,   0, 1

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − + = =
                 (22) 

Clearly, (22) generates all (infinite) solutions ( ),k km n  of the equation 
( ) 21 2n n m+ = . First few of these solutions are  
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
1,1 , 6,8 , 35,49 , 204,288 , 1189,1681 ,

6930,9800 , 40391,57121 , 235416,332928 .
 

For 1k ≥ , explicit solution of the system (22) can be computed (for details 
see Agarwal [16] [17]) rather easily, and appears as  

( ) ( )

( ) ( )

1 3 2 2 3 2 2
4 2
1 3 2 2 3 2 2 2
4

k k

k

k k

k

m

n

 = + − −  

 = + + − −  

               (23) 

This result is originally due to Euler which he obtained in 1730. While com-
pare to the explicit solution (23) the computation of ( ),k km n  from the recur-
rence relations (22) is very simple, the following interesting relation follows 
from (23) by direct substitution  

2 2
1 2 1  .k k km m m− −− =                          (24) 

Hence the difference between two consecutive square triangular numbers is 
the square root of another square triangular number. 

Now we note that the system (19) can be written as  

1 1 0 1

1 1 0 1

2 ,   0, 1
2 ,   1, 1

n n n

n n n

a a a a a
b b b b b

+ −

+ −

= + = =

= + = =
 

and its (integer) solution is  

( ) ( )

( ) ( )

1 1 2 1 2 ,
2 2
1 1 2 1 2 .
2

n n

n

n n

n

a

b

 = + − −  

 = + + −  

                 (25) 

From this, and simple calculations the following relations follow  

( )22 2 2
2 2 2 1 2 1 2 1,   1 2 2 ,   2 1.k k k k k k k k km a b n b m n b a+ + += = − = = = −  

It is apparent that if ( ),k km n  is a solution of ( ) 21 2n n m+ = , then  
( ) ( )( )2 1 , 2 1 , 1k kp m p n p+ + ≥  is a solution of ( ) 22 1 2n n p m+ + = . Now, if n 

is even, we have  

( ) ( )

( ) ( )

2 2
2 2

1 2

2
2

2 4 1 3
2 2

2 122 1 ,
2 2

n n n p
n nt t t n n

n n pn pn p

+ +
+ +   = + +   

   
+ + + + −   

   





       (26) 

and, when n is odd, 

( ) ( )

( ) ( )

2 2
2 2

1 2

2
2

1 32 4
2 2

2 12 1 2
2 2

n n n p
n nt t t n n

n n pn p n p

+ +
+ +   = + +   

   
+ + + −  +   

   





       (27) 

and hence the right side is a perfect square for ( )2 1 kn p n= + . Therefore, the 
product of ( )2 1p +  consecutive triangular numbers is a perfect square for each 
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1p ≥  and 1k ≥ . In particular, for 2p k= = , 25 40n n= = , from (26) we 
have  

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
40 41 42 43 44 41 21 43 22 30 24435180t t t t t = =  

and for 33, 7 343p k n n= = = = , from (27), we find  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

343 344 345 346 347 348 349
2 2 2 2 2 2 2

2

172 345 173 347 174 349 245

52998536784979800 .

t t t t t t t

=

=

 

Similarly, if n is even, we have 

( ) ( )

( ) ( )

2 2
2 2

1 2 1

2
2

2 42 1 3
2 2

22 2 2 1 ,
2 2

n n n p
n nt t t n n

n n pn p n p

+ + −
+ +   = + +   

   
+ + −  + −   

   





     (28) 

and hence the right side is a perfect square for 2 kn pn=  (which is always 
even). Therefore, two times the product of 2 p  consecutive triangular numbers 
is a perfect square for each 1p ≥  and 1k ≥ . In particular, for 2p k= = , 

24 32n n= = , from (28) we have 

( ) ( ) ( ) ( ) ( )2 2 2 2 2
32 33 34 352 33 17 35 24 471240t t t t = =  

and for 33, 6 294p k n n= = = = , we find  

( ) ( ) ( ) ( ) ( ) ( )
( )

2 2 2 2 2 2
294 295 296 297 298 299

2

2 295 148 297 149 299 210

121315678684200 .

t t t t t t =

=
 

From the equality 

( )( ) ( )( ) ( ) ( )24 1 4 1 1 1
4 2 1

2 2
n n n n n n

n
+ + + +

= +  

it follows that if the triangular number nt  is square, then ( )4 1n nt +  is also square. 
Since 1t  is square, it follows that there are infinite number of square triangular 
numbers. This clever observation was reported in 1662, see Pietenpol et al. [18]. 
From this, the first four square triangular numbers, we get are 1 8 288, ,t t t  and 

332928t . 
 There are infinitely many triangular numbers that are simultaneously expres-

sible as the sum of two cubes and the difference of two cubes. For this, Bur-
ton [19] begins with the identity  

( ) ( ) ( ) ( ) ( )2 3 3 3 36 4 3 4 327 1 9 3 9 1 9 3 9 1k k k k k k k− = − + − = + − +  

and observed that if k is odd then this equality can be written as  

( ) ( ) ( ) ( ) ( )2 3 3 3 32 1 1 2 2 2 2 ,n a b c d+ − = + = −  

which is the same as  
3 3 3 3.nt a b c d= + = −  

For 1,3k =  and 5 this gives  
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( ) ( ) ( )
( ) ( ) ( ) ( )

3 3 3 3
13

3 3 33
9841

3 3 3 3
210937

3 4 6 5

360 121 369 122

2805 562 2820 563

t

t

t

= + = −

= + = −

= + = −

 

 In 1844, Eugéne Charles Catalan (1814-1894) conjectured that 8 and 9 are the 
only numbers which differ by 1 and are both exact powers 38 2= , 29 3= . 
This conjecture was proved by Preda Mihăilescu (Born 1955, Romania) after 
one hundred and fifty-eight years, and published two years later in [20]. Thus 
the only solution in natural numbers of the Diophantine equation 

1a bx y− =  for , 1a b > , , 0x y >  is 3x = , 2a = , 2y = , 3b = . Now 
since ( ) 31 2n n m+ =  can be written as ( ) ( )2 32 1 2 1n m+ − = , the only solu-
tion of this equation is 2 1 3n + = , 2 2m = , i.e., ( )1,1  is the only cubic tri-
angular number. 

 In 2001, Bennett [21] proved that if a, b and n are positive integers with 
3n ≥ , then the equation 1n nax by− = , possesses at most one solution in 

positive integers x and y. This result is directly applicable to show that for the 
equation ( )1 2 , 3pn n m p+ = ≥  the only solution is ( )1,1 . For this, first we 
note that integers , 2 1t t +  and 1,2 1t t+ +  are coprime, i.e., they do not 
have any common factor except 1. We also recall that if the product of co-
prime numbers is a p-th power, then both are also of p-the power. Now let n 
be even, i.e., 2n t= , then the equation ( )1 2 pn n m+ =  is the same as 
( )2 1 pt t m+ = . Thus, it follows that pt x=  and 2 1 pt y+ = , and hence 

2 1p py x− = , which has only one solution, namely, 0, 1x y= =  which gives 
0t = , and hence 0n =  and so ( )0,0  is the solution of ( )1 2 pn n m+ = , 

but we are not interested in this solution. Now we assume that n is odd, i.e., 
2 1n t= + , then the equation ( )1 2 pn n m+ =  is the same as  

( )( )1 2 1 pt t m+ + = . Thus, we must have 1 pt x+ =  and 2 1 pt y+ = , which 
gives 2 1p py x− = − . The only solution of this equation is 1x y= = , and 
hence again 0t =  and so ( )0,0  is the undesirable solution of  
( )1 2 pn n m+ = . 

 Startling generating function of all square triangular numbers is recorded by 
Plouffe [22] as  

( )
( )( )

2 2 2 3
2

1
  6 35 .

1 34 1
x x

x x x
x x x

+
= + + +

− − +
            (29) 

3. Square Numbers Sn 

In this arrangement rows as well as columns contain 1,2,3,4, ,n
 dots, (see 

Figure 5). 
From Figure 5 it is clear that a square made up of ( )1n +  dots on a side can 

be divided into a smaller square of side n and an L, shaped border (a gnomon), 
which has ( )1 2 1n n n+ + = +  dots (called ( )1n + th gnomonic number and 
denoted as 1ng + ), and hence  

( ) ( )2 2
1   1 2 1 ,n nS S n n n+ − = + − = +                (30) 
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Figure 5. Square numbers. 
 
i.e., the differences between successive nested squares produce the sequence of 
odd numbers. From (30) it follows that  

( ) ( ) ( ) ( )( ) ( )22 2 2 2 2 2 21 0 2 1 3 2 1  1 3 5 2 1n n n− + − + − + + − − = + + + + − 
 

and hence  

( ) ( ) 2

1
2 1 1 3 5 7 2 1 .

n

n
k

k n n S
=

− = + + + + + − = =∑             (31) 

An alternative proof of (31) is as follows  

( ) ( )1 3 5 2 3 2 1nS n n= + + + + − + −  

( ) ( ) ( )2 1 2 3 2 5 3 1.nS n n n= − + − + − + + +  

An addition of these two arrangements immediately gives  
22 2 2 2 2 .nS n n n n= + + + =  

Figure 6 provides proof of (31) without words. Here odd integers, one block, 
three blocks, five blocks, and so on, arranged in a special way. We begin with a 
single block in the lower left corner; three shaded blocks surrounded it to form a 
2 2×  square; five unshaded blocks surround these to form a 3 3×  square; with 
the next seven shaded blocks we have a 4 4×  square; and so on. The diagram 
makes clear that the sum of consecutive odd integers will always yield a (geome-
tric) square. 

Comparing Figure 1 and Figure 5 or Figure 2 and Figure 6, it is clear that 
n-th square number is equal to the n-th triangular number increased by its pre-
decessor, i.e.,  

2
1 .n n nS t t n−= + =                       (32) 

Indeed, we have 

( )1 2 3 1nt n n= + + + + − +  

( ) ( )1 1 2 2 1 .nt n n− = + + + − + −  

An addition of these two arrangements in view of (31) gives  

( ) 2
1 1 3 5 2 1 .n n nt t n n S−+ = + + + + − = =  

Of course, directly from (1), (2), and (32), we also have  

( ) ( ) ( )22
1 1

1 1
,

2 2n n n n n

n n n n
t t n t t S− −

+ −
+ = + = = − =  

or simply from (1) and (2), 
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Figure 6. Proof of (31) without words. 
 

( ) 2
1 12 1 .n n n nt t t n n n n n S− −+ = + = − + = =  

From (32), we find the identities  

( ) ( ) ( )

( )

2

2 1 4 3 2 2 1
1

22 22 4 2

n

k n n
k

t t t t t t t

n

−
=

= + + + + + +

= + + +

∑ 



 

and 

( ) ( ) ( )

( )

2 1

1 3 2 5 4 2 1 2
1

22 2 21 3 5 2 1 .

n

k n n
k

t t t t t t t t

n

+

+
=

= + + + + + + +

= + + + + +

∑ 



 

It also follows that  

( ) ( ) 2
2

2 2 1 1
2 2 .

2 2n n n

n n n n
t t n S

+ +
− = − = =              (33) 

We also have equalities  

( ) ( )
2

9 4 3 1 3 2 13 2 1 ,n n nt t n S+ + +− = + =                   (34) 

( ) ( )1 1
1 2 3 4 1 1 ,n n

n nS S S S S t+ +− + − + + − = −             (35) 

and 

( ) ( )2 2
2

0 1
4 ,

n n

n n
k k

t k t k
= =

+ = +∑ ∑                    (36) 

which is the same as 

( ) ( ) 2 2

2 22 2
2 2 2

0 1 0 1
2 2 2 or   

n n n n

n n k n n k
k k k k

n n k n n k S S
+ + + +

= = = =

+ + = + + =∑ ∑ ∑ ∑  

and, in particular, for 4n =  reduces to 
2 2 2 2 2 2 2 2 236 37 38 39 40 41 42 43 44 .+ + + + = + + +  

The following equality is of exceptional merit  

( ) ( )1 1 1 1 ,n n n n n nS S S S+ + + ++ = −                    (37) 

which, in particular, for 5n =  gives 2 2 2 25 6 31 30+ = − . 
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 Relation (30) reveals that every odd integer ( )2 1n +  is the difference of two 
consecutive square numbers 1nS +  and nS . Relation (32) shows that every 
square integer 2n  is a sum of two consecutive triangular numbers nt  and 

1nt − , whereas (33) displays it is the difference of 2n-th and two times n-th 
triangular numbers. 

 From the equalities  

( ) ( )2 22 2 28 ,nt n n n n= + + +  

( ) ( )2 22 2 28 1 1 2 ,nt n n n+ = − + +  

( ) ( )2 22 2 28 2 1 1nt n n n n+ = + − + + +  

it follows that there are infinite triples of consecutive numbers which can be 
written as the sum of two squares. 
 No square number has as its last digit (unit digit) 2, 3, 7 or 8.  
 From (10) it follows that  

( )
2 1 2

3
0 1 0

2 d 1
d 11

n n n

n n n

x n x x nx n x x
x xx

∞ ∞ ∞
−

= = =

= + = +
−−

∑ ∑ ∑  

and hence 

( ) ( )
( )
( )

2
3 2 3

0

12     .
1 1 1

n

n

x xx x n x
x x x

∞

=

+
− = =

− − −
∑                (38) 

Therefore, ( )( ) 31 1x x x −+ −  is the generating function of all square numbers. 
From (38) it also follows that the generating function for all gnomonic numbers 
is  

( )
( )

( )2
1 1

1
  2 1   .

1
n n

n
n n

x x
n x g x

x

∞ ∞

= =

+
= − =

−
∑ ∑  

 The sum of the first n square numbers is given in (11). For the exact sum of 
the reciprocals of the first n square numbers no formula exists; however, the 
problem of summing the reciprocals of all square numbers has a long history 
and in the literature it is known as the Basel problem. Euler in 1748 consi-
dered sin , 0x x x ≠  which has roots at , 1n n± π ≥ . Then, he wrote this 
function in terms of infinite product  

2 4 6

2 2 2

2 2 2 2 2 2

sin 1
3! 5! 7!

1 1 1 ,
1 2 3

x x x x
x

x x x

= − + − +

   
= − − −   
 π π π  





 

which on equating the coefficients of 2x , gives  

2 2 2 2 2 2

1 1 1 1 ,
6 1 2 3

+ +
π π

= +
π

  

and hence  
2

2 2 2

1 1 1   1.6449340668.
61 2 3
π

+ + + = ≈               (39) 
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The above demonstration of Euler is based on manipulations that were not 
justified at the time, and it was not until 1741 that he was able to produce a truly 
rigorous proof. Now in the literature for (39) several different proofs are known, 
e.g., for a recent elementary, but clever demonstration, see Murty [23]. 
 The following result provides a characterization of all Pythagorean triples, i.e., 

solutions of (18): Let u and v be any two positive integers, with u v> , then 
the three numbers  

2 2 2 2,   2 ,   a u v b uv c u v= − = = +                 (40) 

form a Pythagorean triple. If in addition u and v are of opposite parity-one even 
and the other odd-and they are coprime, i.e., that they do not have any common 
factor other than 1, then ( ), ,a b c  is a primitive Pythagorean triple. The con-
verse, i.e., any Pythagorean triple is necessarily of the form (40) also holds. For 
the proof and history of this result see, Agarwal [14]. From (18), (32), and (40) 
the following relations hold  

( ) ( ) ( )
2 2 2 2

1 1 1

2

,   ,
.

a b c a a b b c c

uvu v u v

S S S t t t t t t
S S S

− − −

− +

+ = + + + = +

+ =
            (41) 

The relation (30) can be written as ( ) ( )22 2 1 1n n n+ + = + . With the help of 
this relation we can find Pythagorean triples ( ), ,a b c . For this, we let 

22 1n m+ = , (and hence m is odd), then 2 1 2n m= − , 2 21 1n m+ = + . Thus, it 
follows that  

( ) ( ) ( )2 2

2 22 2
2

1 2 1 2

1 1 ,   i.e.,
2 2

,   odd .m m m

m mm

S S S m
− +

   − +
+ =   
   

+ =
                 (42) 

For 3,5,7,9,m = 
 Equation (42) gives solutions of (18): 

3 3 4 5
5 5 12 13
7 7 24 25
9 9 40 41

m a b c

 

Similar to (42) for m even we also have the relation  

( )2 2

22 2
2

( 4) 4 ( 4) 4

1 1 ,   i.e.,
4 4

    even .m m m

m mm

S S S m
− +

   
+ − = +   
   

+ =

                (43) 

For 4,6,8,10,m = 
 Equation (43) gives solutions of (18):  

4 4 3 5
6 6 8 10
8 8 15 17
10 10 24 26

m a b c
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In (40), letting ( )22u m= +  and ( )21v m= + , from (18) and (32), we get the 
relations  

( ) ( )( )( ) ( ) ( )( )222 2 22 3 2 1 2 1 2 ,   i.e.,m m m m m+ + + + = + + +  

( )( ) ( ) ( )2 22 3 2 1 2 1 2
,m m m m m

S S S+ + + + + +
+ =  

which is the same as 

( ) ( )22
2 3 2 2 1 2 116 2 .m m m m m mt t t t t t+ + + + ++ + = + +  

 In 1875, Francois Edouard Anatole Lucas (1842-1891, French) challenged the 
mathematical community to prove that the only solution of the equation  

( )( )2 2

1

1 1 2 1  
6

n

k
k n n n m

=

= + + =∑  

with 1n >  is when 24n =  and 70m = . In the literature this has been termed 
as the cannonball problem, in fact, it can be visualized as the problem of taking a 
square arrangement of cannonballs on the ground and building a square pyra-
mid out of them. It was only in 1918, George Neville Watson (1886-1965, Britain) 
used elliptic functions to provide correct (filling gaps in earlier attempts) proof 
of Lucas assertion. Simplified proofs of this result are available, e.g., in Ma [24] 
and Anglin [25]. 

4. Rectangular (Oblong, Pronic, Heteromecic) Numbers Rn 

In this arrangement rows contain ( )1n +  whereas columns contain n dots, see 
Figure 7. 

From Figure 7 it is clear that the ratio ( )1n n+  of the sides of rectangles 
depends on n. Further, we have  

( ) ( )
2 4 6 8 2
2 1 2 3 4 2 1

n

n

R n
n t n n

= + + + + +

= + + + + + = = +





              (44) 

i.e., we add successive even numbers, or two times triangular numbers. It also 
follows that rectangular number 1nR +  is made from nR  by adding an L--shaped 
border (a gnomon), with ( )2 1n +  dots, i.e.,  

( )1 2 1 ,n nR R n+ − = +                        (45) 

i.e., the differences between successive nested rectangular numbers produce the 
sequence of even numbers. 
 

 

Figure 7. Rectangular numbers. 
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Thus the odd numbers generate a limited number of forms, namely, squares, 
while the even ones generate a multiplicity of rectangles which are not similar. 
From this the Pythagoreans deduced the following correspondence:  

odd limited and even unlimited.↔ ↔  

We also have the relations  

( ) ( ) ( ) ( )

( )
1 2

1 1

1 1 2 2 1
2 3

2 2 2
2

n n n n n n

n n n n n n n

n n n n n n
R S t t t t

R S t t t t t n

−

− −

+ − +
+ = + + = + = =

− = − + = − =
      (46) 

( )
( ) ( ) ( ) ( )

2
1 1 1

2 222
2 1

2 6 2 1

2 1 4 1 1 8 1 4 1 4
n n n n n n

n n n n

R S S t t t n

S n n n t t t
+ − +

+

+ + = + + = +

= + = + + = + = + −
       (47) 

( )2
2 1 9 4 3 13 n n nS t t+ + += −  

1 1 1.n n nR t t+ −= + −  

From (31) and (46) it follows that  

( ) ( ) ( )

( )

2 1 1
1 3 2 2 1 2 2

1
2

1

1 3 2 1 .

n k
k n n

k
t t t t t t

n n

−
+

− −
=

− = + − + + −

= + + + − =

∑ 



 

 Relation (44) shows that the product of two consecutive positive integers n 
and ( )1n +  is the same as two times n-th triangular numbers. According to 
historians with this relation Pythagoreans’ enthusiasm was endless. Relation 
(45) reveals that every even integer 2n is the difference of two consecutive 
rectangular numbers nR  and 1nR − . Relation (46) displays that every positive 
integer n is the difference of n-th and ( )1n − -th triangular numbers. Rela-
tion (47) is due to Plutarch), it says an integer n is a triangular number if and 
only if 8 1n +  is a perfect odd square. 

 Let m be a given natural number, then it is n-th rectangular number, i.e., 

nm R=  if and only if ( )1 1 4 2n m= − + + . 
 From (10) it is clear that ( ) 32 1x x −−  is the generating function of all rec-

tangular numbers. 
 From (15)-(17) and (44) it is clear that  

( )( )
1

1 1

1  1 2 ,
3

1 1 1  1 ,    1.
1

n

k
k

n

k kk k

R n n n

R n R

=

∞

= =

= + +

 = − = + 

∑

∑ ∑
                  (48) 

 There is no rectangular number which is also a perfect square, in fact, the 
equation ( ) 21n n m+ =  has no solutions (the product of two consecutive in-
tegers cannot be a prefect square). 

 To find all rectangular numbers which are also triangular numbers, we need 
to find integer solutions of the equation ( ) ( )1 1 2n n m m+ = + . This equa-
tion can be written as Pell’s equation 2 22 1b a− = −  (its fundamental solu-
tion is ( ) ( ), 1,1a b = ) where 2 1b m= +  and 2 1a n= + . For this, corres-
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ponding to (22) the system is  

1 1 1 2

1 1 1 2

34 16,   3, 119
34 16,   2, 84.

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − + = =
            (49) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )1 1 2n n m m+ = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )3,2 , 119,84 , 4059,2870 , 137903,97512 , 4684659,3312554 .  

For 1k ≥ , explicit solution of the system (49) can be written as  

( ) ( )

( ) ( )

4 1 4 1

4 1 4 1

1 2 1 2 1 2
4
2 2 1 2 1 2 2

8

k k

k

k k

k

m

n

− −

− −

 = + − − −  

 = + + − −  

 

 Fibonacci numbers denoted as nF  are defined by the recurrence relation 

1 2 0 1,   0,   1n n nF F F F F− −= + = =  

or the closed from expression  

1 1 5 1 5 .
2 25

n n

nF
    + − = −           

 

First few of these numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. For the 
origin of Fibonacci numbers, see Agarwal and Sen [5]. Lucas numbers denoted 
by nL  are defined by the same recurrence relation as Fibonacci numbers except 
first two numbers as 0 12, 1L L= =  or the closed from expression  

1 5 1 5 .
2 2

n n

nL
   + −

= +      
   

 

First few of these numbers are 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 
843, 1364, 2207, 3571, 5778, 9349. Clearly, Fibonacci numbers 1, 3, 21, 55 are al-
so triangular numbers 1 2 6 10, , ,t t t t . In 1989, Luo [26] had used (47) to show that 
these are the only Fibonacci numbers which are also triangular. This conjecture 
was made by Verner Emil Hoggatt Jr. (1921-1980, USA) in 1971. Similarly, only 
Lucas numbers which are also triangular are 1, 3, 5778, i.e., 1 2 107, ,t t t . From the 
above explicit expressions the following relations can be obtained easily 

1 1n n nL F F− += +  and ( )1 1 5n n nF L L− += + . 

5. Pentagonal Numbers Pn 

The pentagonal numbers are defined by the sequence 1,5,12,22,35,51, , i.e., 
beginning with 5 each number is formed from the previous one in the sequence 
by adding the next number in the related sequence ( )4,7,10, , 3 2n − . Thus, 
5 1 4= + , 12 1 4 7 5 7= + + = + , 22 1 4 7 10 12 10= + + + = + , and so on (see Fig-
ure 8 and Figure 9). 

Thus, n-th pentagonal number is defined as  

( ) ( )1 3 2 1 4 7 3 2 .n nP P n n−= + − = + + + + −              (50) 
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Figure 8. Pentagonal numbers. 
 

 

Figure 9. Pentagonal numbers. 
 

Comparing (50) with (3), we have 1, 3a d= =  and hence from (4) it follows 
that  

( ) ( )( )
3 1

3 1 31 13 1 .
2 3 2 3n n

n nnP n t −

−
= − = =               (51) 

It is interesting to note that nP  is the sum of n integers starting from n, i.e.,  

( ) ( ) ( )1 2 2 1 ,nP n n n n= + + + + + + −                (52) 

whose sum from (4) is the same as in (51). 
Note that from (50), we have  

( ) ( )
( ) ( )

1 2 1 2

1 2

1 2

2 3 2

2 3 3 2 3 2
2 3.

n n n n n

n n

n n

P P P P P n

P P n n
P P

− − − −

− −

− −

= − − − + −

= − − − − + −

= − +

 

From (32) and (51), we also have  

( ) ( )2
1 1

1 2 1 1

1
2
2 .

n n n n

n n n n

n n
P n t t t

t t t t

− −

− − −

−
= + = + +

= + = −
                (53) 

 Relation (51) shows that pentagonal number nP  is the one-third of the 
( )3 1n − -th triangular number, whereas relation (53) reveals that it is the sum 
of n-th triangular number and two times of ( )1n − -th triangular number, 
and it is the difference of ( )2 1n − -th triangular number and ( )1n − -th tri-
angular number. 

 Let m be a given natural number, then it is n-th pentagonal number, i.e., 

nm P=  if and only if ( )1 1 24 6n m= + + . 

https://doi.org/10.4236/jamp.2021.98132


R. P. Agarwal 
 

 

DOI: 10.4236/jamp.2021.98132 2061 Journal of Applied Mathematics and Physics 
 

 As in (38), we have  

( )
( ) ( )

( )
( )3 2 3

0

1 2 13 1
2 21 1 1

n
n

n

x x x xxP x
x x x

∞

=

+ +
= − =

− − −
∑  

and hence ( )( ) 32 1 1x x x −+ −  is the generating function of all pentagonal num-
bers. 
 From (2), (11) and (51) it is easy to find the sum of the first n pentagonal 

numbers  

( )2

1

1 1 .
2

n

k
k

P n n
=

= +∑                         (54) 

 To find the sum of the reciprocals of all pentagonal numbers, we begin with 
the series  

( ) ( )
3

1

2
3 1

k

k
f x x

k k

∞

=

=
−∑  

and note that  

( ) ( )1 1

2 11 ,
3 1k k k

f
k k P

∞ ∞

= =

= =
−∑ ∑  

( ) 3 1

1

16 ,
3 1

k

k
f x x

k

∞
−

=

′ =
−∑  

( ) 3 2
3

1

66  .
1

k

k

xf x x
x

∞
−

=

′′ = =
−∑  

Now since ( ) ( )0 0 0f f ′= = , we have  

( ) ( ) 30

6 d
1

x tf x x t t
t

= −
−∫  

and hence 

( ) ( )

( ) ( )

1

30

1 1

2 20 0 2

61  1 d
1

2 1 13 d d ,
1 1 2 3 2

tf t t
t

t t t
t t t

= −
−

 
+ = − + + + +  

∫

∫ ∫
 

which immediately gives 

1

1   3ln 3   1.4820375018.
3k kP

∞

=

π
= − ≈∑               (55) 

 To find all square pentagonal numbers, we need to find integer solutions of 
the equation ( ) 23 1 2n n m− = . This equation can be written as Pell’s equa-
tion 2 26 1b a− =  (its fundamental solution is ( ) ( ), 2,5a b = ), where 

6 1b n= −  and 2a m= . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

98 ,   1, 99
98 16,   1, 81

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
               (56) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation  
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( ) 23 1 2n n m− = . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 99,81 , 9701,7921 , 950599,776161 , 93149001,76055841 .  

For 1k ≥ , explicit solution of the system (56) can be written as  

( ) ( )

( ) ( )1 2

2 1 2 1

2 1 2 1

1 5 6 12 5 6 12
4 6

1 15 6 12 5 6 12 .
62 6

k k

k k

k k

k k

m

n

− −

− −

+

 = + − −  ×
 = + + − +  ×

 

 To find all pentagonal numbers which are also triangular numbers, we need 
to find integer solutions of the equation ( ) ( )3 1 2 1 2n n m m− = + . This eq-
uation can be written as Pell’s equation 2 23 2b a− = −  (its fundamental so-
lution is ( ) ( ), 3,5a b = ) where 6 1b n= −  and 2 1a m= + . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

14 6,   1, 20
14 2,   1, 12

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
               (57) 

This system generates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )3 1 2 1 2n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 20,12 , 285,165 , 3976,2296 , 55385,31977 .  

For 1k ≥ , explicit solution of the system (57) can be written as  

( )( ) ( )( )

( )( ) ( )( )

2 1 2 1

2 1 2 1

1 3 3 2 3 3 3 2 3 6
12
1 1 3 2 3 1 3 2 3 2

12

k k

k

k k

k

m

n

− −

− −

 = + + + − − −  

 = + + + − − +  

 

 To find all pentagonal numbers which are also rectangular numbers, we need 
to find integer solutions of the equation ( ) ( )3 1 2 1n n m m− = + . This equa-
tion can be written as Pell’s equation 2 26 5b a− = −  (its fundamental solu-
tion is ( ) ( ), 1,1a b = ) where 6 1b n= −  and 2 1a m= + . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

98 48,   3, 341
98 16,   3, 279

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
             (58) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )3 1 2 1n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )3,3 , 341,279 , 33463,27323 , 3279081, 2677359 , 321316523,262353843 .  

For 1k ≥ , explicit solution of the system (58) can be written as  

( )( ) ( )( )

( )( ) ( )( )

2 1 2 1

2 1 2 1

1 6 6 5 2 6 6 6 5 2 6 12
24
1 6 1 5 2 6 6 1 5 2 6 2

12

k k

k

k k

k

m

n

− −

− −

 = + + + − − −  

 = + + + − − +  

 

6. Hexagonal Numbers Hn 

The hexagonal numbers are defined by the sequence 1,6,15,28,45, , i.e., be-
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ginning with 6 each number is formed from the previous one in the sequence by 
adding the next number in the related sequence ( )5,9,13,17,21, , 4 3n − . 
Thus, 6 1 5= + , 15 1 5 9 6 9= + + = + , 28 1 5 9 13 15 13= + + + = + , and so on 
(see Figure 10). 

Thus, n-th hexagonal number is defined as  

( ) ( )1 4 3 1 5 9 13 4 3 .n nH H n n−= + − = + + + + + −           (59) 

Comparing (59) with (3), we have 1, 4a d= =  and hence from (4) it follows 
that  

( ) ( )( ) ( )
2 1 2

4 2 2 1 .
2 2n

n nnH n n n
−

= − = = −             (60) 

 From (60) it is clear that 2 1n nH t −= , i.e., alternating triangular numbers are 
hexagonal numbers. 

 Let m be a given natural number, then it is n-th hexagonal number, i.e., 

nm H=  if and only if ( )1 1 8 4n m= + + . 
 As in (38), we have  

( )
( ) ( )

( )
( )3 2 3

0

1 3 1
2

1 1 1
n

n
n

x x x xxH x
x x x

∞

=

+ +
= − =

− − −
∑  

and hence ( )( ) 33 1 1x x x −+ −  is the generating function of all hexagonal num-
bers. 
 From (2), (11), and (60) it is easy to find the sum of the first n hexagonal 

numbers  

( )( )
1

1 1 4 1 .
6

n

k
k

H n n n
=

= + −∑                    (61) 

 To find the sum of the reciprocals of all hexagonal numbers, as for pentagon-
al numbers we begin with the series ( ) ( )2

1 2 1n
kf x x n n∞

=
= −  ∑ , and get  

( ) 1

20
1

1 11 2 d 2ln 2  1.3862943611.
1k k

tf t
H t

∞

=

−
= = = ≈

−∑ ∫         (62) 

 To find all square hexagonal numbers, we need to find integer solutions of 
the equation ( ) 22 1n n m− = . This equation can be written as Pell’s equation 

2 22 1b a− =  (its fundamental solution is ( ) ( ), 2,3a b = ), where 4 1b n= −  
and 2a m= . For this, corresponding to (22) the system is  

 

 

Figure 10. Hexagonal numbers. 
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1 1 1 2

1 1 1 2

34 ,   1, 35
34 8,   1, 25

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
              (63) 

This system generates all (infinite) solutions ( ),k km n  of the equation 
( ) 22 1n n m− = . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 35,25 , 1189,841 , 40391,28561 , 1372105,970225 .  

For 1k ≥ , explicit solution of the system (63) appears as  

( ) ( )

( ) ( )

2 1 2 1

2 1 2 1

2 1 2 12
2 1

1  3 2 2 3 2 2
4 2

1  3 2 2 3 2 2 2
8

k k

k k k

k k

k k

m a b

n a

− −

− −

− −

−

 = = + − −  

 = = + + − +  

 

here, na  and nb  are as in (25). 
 To find all hexagonal numbers which are also rectangular numbers, we need 

to find integer solutions of the equation ( ) ( )2 1 1n n m m− = + . This equation 
can be written as Pell’s equation 2 22 1b a− = −  (its fundamental solution is 
( ) ( ), 1,1a b = ) where 4 1b n= −  and 2 1a m= + . For this, corresponding to 
(22) the system is  

1 1 1 2

1 1 1 2

34 16,   2, 84
34 8,   2, 60

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
              (64) 

This system generates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )2 1 1n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )2,2 , 84,60 , 2870,2030 , 97512,68952 , 3312554, 2342330 .  

For 1k ≥ , explicit solution of the system (64) can be written as  

( ) ( )

( ) ( )

4 1 4 1

4 1 4 1

2 2 1 2 1 2 2
8

1 2 1 2 1 2
8

k k

k

k k

k

m

n

− −

− −

 = + + − −  

 = + − − +  

 

 To find all hexagonal numbers which are also pentagonal numbers, we need 
to find integer solutions of the equation ( ) ( )2 1 3 1 2n n m m− = − . This equa-
tion can be written as Pell’s equation 2 23 2b a− = −  (its fundamental solu-
tion is ( ) ( ), 1,1a b = ) where 6 1b m= −  and 4 1a n= − . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

194 32,   1, 165
194 48,   1, 143

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (65) 

This system generates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )2 1 3 1 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 165,143 , 31977,27693 , 6203341,5372251 ,

1203416145,1042188953 .
 

For 1k ≥ , explicit solution of the system (65) can be written as  

( )( ) ( )( )

( )( ) ( )( )

4 2 4 2

4 4 4 4

1 3 1 2 3 3 1 2 3 2
12
1 9 5 3 2 3 9 5 3 2 3 6
24

k k

k

k k

k

m

n

− −

− −

 = − + − + − +  

 = + + + − − +  
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7. Generalized Pentagonal Numbers (Centered Hexagonal  
Numbers, Hex Numbers) (GP)n 

The generalized pentagonal numbers are defined by the sequence 1,7,19,37,61, , 
i.e., beginning with 7 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )6,12,18, ,6 1n − . Thus, 7 1 6= + , 19 1 6 12 7 12= + + = + ,  
37 1 6 12 18 19 18= + + + = + , and so on (see Figure 11). These numbers are also 
called centered hexagonal numbers as these represent hexagons with a dot in the 
center and all other dots surrounding the center dot in a hexagonal lattice. These 
numbers have practical applications in materials logistics management, for ex-
ample, in packing round items into larger round containers, such as Vienna 
sausages into round cans, or combining individual wire strands into a cable. 

Thus, n-th generalized pentagonal number is defined as  

( ) ( ) ( ) ( )
( )

1 6 1 1 6 12 6 1

1 6 1 2 1 .
n nGP GP n n

n
−

= + − = + + + + −

= + + + + −  





          (66) 

Hence, from (2) it follows that  

( ) ( ) ( )

1 1 1 2

1
1 6 1 3 1

2
6 4 .

n

n n n n

n n
GP n n

t t t t t− − −

−
= + = + −

= + = + +
                (67) 

 Incidentally, ( )2 7GP =  occurs in uds baryon octet, whereas ( )5 61GP =  
makes a part of a Chinese checkers board. 

 Since ( ) ( )331 3 1 1n n n n+ − = − − , generalized pentagonal numbers are dif-
ferences of two consecutive cubes, so that the ( )nGP  are the gnomon of the 
cubes. 

 Clearly, ( ) ( ) ( )2 2
1 12 1 1 2n nnn GP n n R t− −− − = − = = . 

 Let m be a given natural number, then it is n-th generalized pentagonal 
number, i.e., ( )nm GP=  if and only if ( )3 12 3 6n m= + − . 

 From (10) and (67), we have  

( )
( )

( )
( )

22

3 3
0

1 46
1 1 1

n
n

n

x x xx xGP x
x x x

∞

=

+ +
= + =

− − −
∑  

and hence ( )( ) 321 4 1x x x x −+ + −  is the generating function of all generalized 
pentagonal numbers. 
 

 

Figure 11. Generalized pentagonal numbers (centered hexagonal numbers). 
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 From (15) and (67) it is easy to find the sum of the first n generalized penta-
gonal numbers  

( ) ( ) ( )
1

3
1

1 1 1
 6 6 1 1 .

n n n

k kk
k k k

GP n t n t n n n n n
−

−
= = =

= + = + = + − + =∑ ∑ ∑      (68) 

 Since from (32) and (46), we have  

( )( )2 2 3
1 1 1n n n n n nt t t t t t n− − −− = + − =  

from (68) it follows that  

( ) 2 2 3
1

1
.

n

n nk
k

GP t t n−
=

= − =∑                    (69) 

Thus the equation 2 3 2c a b= +  has an infinite number of integer solutions. 
In fact, for each 1n ≥  equations 2 2 nc a b= +  and 2 2nc a b= +  have infinite 
number of solutions (see Agarwal [14]). 
 To find the sum of the reciprocals of all generalized pentagonal numbers we 

need the following well-known result, e.g., see Andrews et al. [27], page 536, 
and Efthimiou [28]  

2

2 2
1

1 1 1 e2   .
1 e

s

s
ks k s s

−

−

π

π

∞

=

π +
+ =

+ −
∑                  (70) 

Now from (70), we have  

( ) ( )

( ) ( )

2 2
1 1 1

2 2
1 1

3 3

3 3

3
3

33

3

3

1 1 4 1  
33 3 1 2 1 1 3

4 1 1 1
3 41 3 1 12

4 1 1 e 1 1 e3 3 2 3 12
3 2 81 e 1 e

1 e2 1 e
1 e3 1 e

1 e
3 1 e

k k kk

k k

GP k k k

k k

∞ ∞ ∞

= = =

∞ ∞

= =

−2π π

2π π

2π
π

ππ

−

− −

−
−

−−

−

π

π

−

= =
− + − +

 
= − + + 

    + +
= − − −       − −     

 +
= − +

π π

π


+ −  

−
=

+

π

∑ ∑ ∑

∑ ∑

 

and hence 

( )1

1   tanh   1.3052841530.
3 2 3k kGP

∞

=

π π
= ≈∑              (71) 

 To find all square generalized pentagonal numbers, we need to find integer 
solutions of the equation ( ) 21 3 1n n m+ − = . This equation can be written as 
Pell’s equation 2 23 1b a− =  (its fundamental solution is ( ) ( ), 1, 2a b = ), 
where 2b m=  and 2 1a n= − . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

14 ,   1, 13
14 6,   1, 8

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
                (72) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation 
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( ) 21 3 1n n m+ − = . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 13,8 , 181,105 , 2521,1456 , 35113,20273 .  

For 1k ≥ , explicit solution of the system (72) appears as  

( ) ( )

( ) ( )

2 1 2 1

2 1 2 1

1 2 3 2 3
4
3 12 3 2 3

12 2

k k

k

k k

k

m

n

− −

− −

 = + + −  

 = + − − +  

 

 To find all generalized pentagonal numbers which are also triangular num-
bers, we need to find integer solutions of the equation  

( ) ( )1 3 1 1 2n n m m+ − = + . This equation can be written as Pell’s equation 
2 26 3b a− =  (its fundamental solution is ( ) ( ), 1,3a b = ), where 2 1b m= +  

and 2 1a n= − . For this, corresponding to (22) the system is 

1 1 1 2

1 1 1 2

10 4,   1, 13
10 4,   1, 6

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
              (73) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation  
( ) ( )1 3 1 1 2n n m m+ − = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 13,6 , 133,55 , 1321,540 , 13081,5341 .  

For 1k ≥ , explicit solution of the system (73) can be written as  

( )( ) ( )( )

( )( ) ( )( )

1 1

1 1

1 3 6 5 2 6 3 6 5 2 6 2
4

1 2 6 5 2 6 2 6 5 2 6 4
8

k k

k

k k

k

m

n

− −

− −

 = + + + − − −  

 = + + + − − +  

 

 There is no generalized pentagonal number which is also a rectangular num-
ber, in fact, the equation ( ) ( )1 3 1 1n n m m+ − = +  has no solutions. For this, 
we note that this equation can be written as Pell’s equation 2 23 2b a− = , 
where 2 1b m= +  and 2 1a n= − . Now reducing this equation to ( )mod3  
gives ( )2 2 mod 3b = , which is impossible since all squares ( )mod3  are ei-
ther 0 or 1 ( )mod3 . 

 To find all generalized pentagonal numbers which are also pentagonal num-
bers, we need to find integer solutions of the equation  

( ) ( )1 3 1 3 1 2n n m m+ − = − . This equation can also be written as Pell’s equa-
tion 2 218 7b a− =  (its fundamental solution is ( ) ( ), 1,5a b = ), where 

6 1b m= −  and 2 1a n= − . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

1154 192,   1, 889
1154 576,   1, 629

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
         (74) 

This system genetrates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )1 3 1 3 1 2n n m m+ − = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 889,629 , 1025713,725289 , 1183671721,836982301 ,

1365956140129,965876849489 .
 

For 1k ≥ , explicit solution of the system (74) can be written as  
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( )( )
( )( )

1 378879 267903 2 577 408 2
10404

378879 267903 2 577 408 2 1734

k

k

k

m = − +
+ + − + 

 

( )( )
( )( )

1 126293 2 178602 577 408 2
6936

126293 2 178602 577 408 2 3468 .

k

k

k

n = − +
− + − + 

 

 To find all generalized pentagonal numbers which are also hexagonal num-
bers, we need to find integer solutions of the equation  

( ) ( )1 3 1 2 1n n m m+ − = − . This equation can also be written as Pell’s equation 
2 26 3b a− =  (its fundamental solution is ( ) ( ), 1,3a b = ), where 4 1b m= −  

and 2 1a n= − . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

10 2,   1, 7
10 4,   1, 6

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
               (75) 

This system generates all (infinite) solutions ( ),k km n  of the equation 
( ) ( )1 3 1 2 1n n m m+ − = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 7,6 , 67,55 , 661,540 , 6541,5341 .  

For 1k ≥ , explicit solution of the system (75) can be written as  

( )( ) ( )( )

( )( ) ( )( )

1 1

1 1

1 3 6 5 2 6 3 6 5 2 6 2
8
1 2 6 5 2 6 2 6 5 2 6 4
8

k k

k

k k

k

m

n

− −

− −

 = + + + − − +  

 = + + + − − +  

 

8. Heptagonal Numbers (Heptagon Numbers) (HEP)n 

These numbers are defined by the sequence 1,7,18,34,55,81, , i.e., beginning 
with 7 each number is formed from the previous one in the sequence by adding 
the next number in the related sequence ( )6,11,16,21, , 5 4n − . Thus, 
7 1 6= + , 18 1 6 11 7 11= + + = + , 34 1 6 11 16 18 16= + + + = + , and so on (see 
Figure 12). 

Thus, n -th heptagonal number is defined as  

( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 5 4 1 6 11 16 5 4

1 1 5 1 2 5 1 1 5 .
n nHEP HEP n n

n
−

= + − = + + + + + −

= + + + + × + + + −





     (76) 

 

 

Figure 12. Heptagonal numbers. 
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Comparing (76) with (3), we have 1, 5a d= = , and hence from (4) it follows 
that  

( ) ( ) ( ) ( ) 1
15 3 1 4 1 4 .

2 2 n nn

nHEP n n n n t t −= − = + + − = +          (77) 

 For all integers 0k ≥  it follows that ( )4 1kHEP
+

 and ( )4 2kHEP
+

 are odd, 
whereas ( )4 3kHEP

+
 and ( )4 4kHEP

+
 are even. 

 From (77) the following equality holds  

( ) ( )( )
1 5 2

5 2 5 1
5 1 5 20 1 .

2n n nn

n n
HEP t t t− −

− −
+ = + + = =  

 Let m be a given natural number, then it is n-th heptagonal number, i.e., 
( )nm HEP=  if and only if ( )3 9 40 10n m= + + . 

 From (10) and (77), we have  

( )
( )

2 3 4
3

4 1
  7 18 34

1

x x
x x x x

x

+
= + + + +

−
  

and hence ( )( ) 34 1 1x x x −+ −  is the generating function of all heptagonal num-
bers. 
 In view of (15) and (77), we have  

( ) ( )( )
1

1  1 5 2 .
6

n

k
k

HEP n n n
=

= + −∑                (78) 

 The sum of reciprocals of all heptagonal numbers is (see  
https://en.wikipedia.org/wiki/Heptagonal_number) 

( ) ( )
1

1 1 2 1 5 125 10 5 ln 5 ln 10 2 5
15 3 3 2

1 5 1ln 10 2 5
3 2

1.3227792531.

k kHEP

∞

=

+  = π − + + − 
 

−  + + 
 

≈

∑

    (79) 

 To find all square heptagonal numbers, we need to find integer solutions of 
the equation ( ) 25 3 2n n m− = . This equation can be written as Pell’s equa-
tion 2 240 9b a− =  (its fundamental solutions are ( ) ( ) ( ), 1,7 , 2,13a b =  and 
( )9,57 ), where 10 3b n= −  and a m= . For ( )1,7 , corresponding to (22) 
the system is  

1 1 1 2

1 1 1 2

1442 , 1, 1519
1442 432, 1, 961

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
               (80) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) 25 3 2n n m− = . First four of these solutions are  

( ) ( ) ( ) ( )1,1 , 1519,961 , 2190397,1385329 , 3158550955,1997643025 .  

For ( )2,13  recurrence relations remain the same as in (80) with  

1 277, 111035m m= =  and 1 249, 70225n n= = . This leads to another set of in-
finite number of solutions ( ),k km n  of the equation ( ) 25 3 2n n m− = . First 
four of these solutions are  
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( ) ( ) ( )
( )
77,49 , 111035,70225 , 160112393,101263969 ,

230881959671,146022572641 .
 

For ( )9,57  also recurrence relations remain the same as in (80) with  

1 29, 12987m m= =  and 1 26, 8214n n= = . This leads to further set of infinite 
number of solutions ( ),k km n  of the equation ( ) 25 3 2n n m− = . First four of 
these solutions are  

( ) ( ) ( ) ( )9,6 , 12987,8214 , 18727245,11844150 , 27004674303,17079255654 .  

 To find all heptagonal numbers which are also triangular numbers, we need 
to find integer solutions of the equation ( ) ( )5 3 2 1 2n n m m− = + . This eq-
uation can be written as Pell’s equation 2 25 4b a− =  (its fundamental solu-
tions are ( ) ( ), 3,7a b =  and ( )1,3 ), where 10 3b n= −  and 2 1a m= + . 
For ( )3,7  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

322 160,   1, 493
322 96,   1, 221

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
               (81) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 1 2n n m m− = + . First four of these solutions are  

( ) ( ) ( ) ( )1,1 , 493,221 , 158905,71065 , 51167077, 22882613 .  

For ( )1,3  recurrence relations remain the same as in (81) with  

1 210, 3382m m= =  and 1 25, 1513n n= = . This leads to another set of infinite 
number of solutions ( ),k km n  of the equation ( ) ( )5 3 2 1 2n n m m− = + . First 
four of these solutions are  

( ) ( ) ( ) ( )10,5 , 3382,1513 , 1089154,487085 , 350704366,156839761 .  

 To find all heptagonal numbers which are also rectangular numbers, we need 
to find integer solutions of the equation ( ) ( )5 3 2 1n n m m− = + . This equa-
tion can be written as Pell’s equation 2 210 1b a− = −  (its fundamental solu-
tion is ( ) ( ), 1,3a b = ), where 10 3b n= −  and 2 1a m= + . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

1442 720,   18, 26676
1442 432,   12, 16872

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
           (82) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 1n n m m− = + . First four of these solutions are  

( ) ( ) ( ) ( )18,12 , 26676,16872 , 38467494,24328980 , 55470100392,35082371856 .  

To find all heptagonal numbers which are also pentagonal numbers, we need 
to find integer solutions of the equation ( ) ( )5 3 2 3 1 2n n m m− = − . This equa-
tion can be written as Pell’s equation 2 215 66b a− =  (its fundamental solution 
is ( ) ( ), 1,9a b = − ), where ( )3 10 3b n= −  and 6 1a m= − . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

62 10,   1, 54
62 18,   1, 42

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
               (83) 
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This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 3 1 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 54,42 , 3337,2585 , 206830,160210 , 12820113,9930417 .  

 To find all heptagonal numbers which are also hexagonal numbers, we need 
to find integer solutions of the equation ( ) ( )5 3 2 2 1n n m m− = − . This equ-
ation can be written as Pell’s equation 2 25 4b a− =  (its fundamental solu-
tion is ( ) ( ), 1,3a b = − ), where 10 3b n= −  and 4 1a m= − . For this, cor-
responding to (22) the system is  

1 1 1 2

1 1 1 2

322 80,   1, 247
322 96,   1, 221

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (84) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 2 1n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 247,221 , 79453,71065 , 25583539, 22882613 ,

8237820025,7368130225 .
 

 To find all heptagonal numbers which are also generalized pentagonal num-
bers, we need to find integer solutions of the equation  
( ) ( )5 3 2 1 3 1n n m m− = + − . This equation can be written as Pell’s equation 
2 230 19b a− =  (its fundamental solution is ( ) ( ), 1,7a b = ), where 10 3b n= −  

and 2 1a m= − . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

22 10,   1, 13
22 6,   1, 14

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (85) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 1 3 1n n m m− = + − . First few of these solutions are 

( ) ( ) ( ) ( ) ( )1,1 , 13,14 , 275,301 , 6027,6602 , 132309,144937 .  

9. Octagonal Numbers On 

These numbers are defined by the sequence 1,8,21,40,65,96,133,176, , i.e., 
beginning with 8 each number is formed from the previous one in the sequence 
by adding the next number in the related sequence ( )7,13,19,25, , 6 5n − . 
Thus, 8 1 7= + , 21 1 7 13 8 13= + + = + , 40 1 7 13 19 21 19= + + + = + , and so on 
(see Figure 13). 

Thus, n-th octagonal number is defined as 
 

 

Figure 13. Octagonal numbers. 
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( ) ( )
( ) ( ) ( )( )
1 6 5 1 7 13 19 6 5

1 1 6 1 2 6 1 1 6 .
n nO O n n

n
−= + − = + + + + + −

= + + + + × + + + −





          (86) 

Comparing (86) with (3), we have 1, 6a d= = , and hence from (4) it follows 
that  

( ) ( ) 16 4 3 2 5 .
2n n n
nO n n n t t −= − = − = +               (87) 

 For all integers 0k ≥  it follows that 2 1kO +  are odd, whereas 2 2kO +  are 
even (in fact divisible by 4). 

 Let m be a given natural number, then it is n-th octagonal number, i.e., 

nm O=  if and only if ( )1 1 3 3n m= + + . 
 From (10) and (87), we have  

( )
( )

2 3 4
3

5 1
  8 21 40

1

x x
x x x x

x

+
= + + + +

−
  

and hence ( )( ) 35 1 1x x x −+ −  is the generating function of all octagonal num-
bers. 
 In view of (15) and (87), we have  

( )( )
1

1 1 2 1 .
2

n

k
k

O n n n
=

= + −∑                    (88) 

 To find the sum of the reciprocals of all octagonal numbers, following 
Downey [29] we begin with the series  

( ) ( )
3 2

1

1
3 2

k

k
f x x

k k

∞
−

=

=
−∑  

and note that 

( ) ( ) ( )
( )3

3 3
3

1 1 1

ln 11 1 11 ,   .
3 2

k

k k kk

x
f f x x

k k O k x

∞ ∞ ∞
−

= = =

−
′= = = = −

−∑ ∑ ∑  

Thus, we have 

( )
( ) ( )

( )

( )
( )

( ) ( )

( )

3 3

3 2 30 0

3

2 20

3

2 20

2

2 2

2 1

ln 1 ln 1 3 1d   d
22 1

ln 1 1 2 2 1
4 12 1

ln 113 d    lim 0
2

ln 1 ln 1 1 ln 1
22 2

1 3 2 1 3ln 1 tan .
4

1 2 3 4

2 123

x x

x

t

t x
f x t t

t x t
x t

tx t t

t
t

tt

x x x
x

x x
xx x

+ +

+

+→

−

− −
= − = −

−
− += − − − + +

  −
 − =
 + +   

+ + −
= + − −

+
+ + + + −

π

∫ ∫

∫

 

Now since 

( ) 21

1 1lim ln 1 1  0
2x

x
x−→

 − − = 
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it follows that 

1

1 3 3  ln 3   1.2774090576.
4 12k kO

∞

=

= ≈π+∑                (89) 

 To find all square octagonal numbers, we need to find integer solutions of the 
equation ( ) 23 2n n m− = . This equation can be written as Pell’s equation 

2 23 1b a− =  (its fundamental solution is ( ) ( ), 1, 2a b = ), where 3 1b n= −  
and a m= . For this, corresponding to (22) the system is 

1 1 1 2

1 1 1 2

14 ,   1, 15
14 4,   1, 9

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
               (90) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) 23 2n n m− = . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 15,9 , 209,121 , 2911,1681 , 40545,23409 .  

 To find all octagonal numbers which are also triangular numbers, we need to 
find integer solutions of the equation ( ) ( )3 2 1 2n n m m− = + . This equation 
can be written as Pell’s equation 2 26 10b a− =  (its fundamental solutions 
are ( ) ( ), 1, 4a b =  and ( )3,8 ), where ( )4 3 1b n= −  and 2 1a m= + . For 
( )1,4  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

98 48,   6, 638
98 82,   3, 261

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
               (91) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )3 2 1 2n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( )
( )
6,3 , 638,261 , 62566,25543 , 6130878,2502921 ,

600763526,245260683 .
 

For ( )3,8  recurrence relations remain the same as in (91) with 1 21, 153m m= =  
and 1 21, 63n n= = . This leads to another set of infinite number of solutions 
( ),k km n  of the equation ( ) ( )3 2 2 1 2n n m m− = + . First few of these solutions 
are  

( ) ( ) ( ) ( ) ( )1,1 , 153,63 , 15041,6141 , 1473913,601723 , 144428481,58962681 .  

 There is no octagonal number which is also a rectangular number, in fact, the 
equation ( ) ( )3 2 1n n m m− = +  has no solutions. For this, we note that this 
equation can be written as Pell’s equation 2 23 1b a− =  (its fundamental so-
lution is ( ) ( ), 1, 2a b = ), where ( )2 3 1b n= −  and 2 1a m= + . For this, 
Pell’s equation all solutions can be generated by the system (corresponding to 
(21))  

2 1 1 2

2 1 1 2

4 ,   1, 4
4 ,   2, 7

k k k

k k k

a a a a a
b b b b b

+ +

+ +

= − = =

= − = =
                 (92) 

Now an explicit solution of the second equation of (92) can be written as  

( ) ( )1  2 3 2 3 .
2

k k

kb  = + + −  
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Next, if ( )2 3 3
k

k ks t+ = + , then ( )2 3 3
k

k ks t− = − , and hence it fol-
lows that k kb s= . We note that ( )1 2 mod 6s ≡  and ( )2 1 mod 6s ≡ . Thus, from 
the second equation of (92) mathematical induction immediately gives  

( )2 1 2 mod 6s − ≡


 and ( )2 1 mod 6s ≡


 for all 1≥ . In conclusion 1k kb s= ≡  
or ( )2 mod 6 . Finally, reducing the relation ( )2 3 1b n= −  to ( )mod 6  gives 

( )2 mod 6b ≡ − . Hence, in view of 0b > , we conclude that kb s≠  for all in-
tegers k, and therefore, the equation ( ) ( )3 2 1n n m m− = +  has no solution. 
 To find all octagonal numbers which are also pentagonal numbers, we need 

to find integer solutions of the equation ( ) ( )3 2 3 1 2n n m m− = − . This equ-
ation can be written as Pell’s equation 2 28 7b a− = −  (its fundamental solu-
tions are ( ) ( ), 1,1a b =  and ( )2,5 ), where 6 1b m= −  and 3 1a n= − . For 
( )1,1  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

1154 192,   1, 1025
1154 384,   1, 725

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (93) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )3 2 3 1 2n n m m− = − . First four of these solutions are  

( ) ( ) ( ) ( )1,1 , 1025,725 , 1182657,836265 , 1364784961,965048701 .  

For ( )2,5  recurrence relations remain the same as in (93) with  

1 211, 12507m m= =  and 1 28, 8844n n= = . This leads to another set of infinite 
number of solutions ( ),k km n  of the equation ( ) ( )3 2 3 1 2n n m m− = − . First 
four of these solutions are  

( ) ( ) ( ) ( )11,8 , 12507,8844 , 14432875,10205584 , 16655525051,11777234708 .  

 To find all octagonal numbers which are also hexagonal numbers, we need to 
find integer solutions of the equation ( ) ( )3 2 2 1n n m m− = − . This equation 
can be written as Pell’s equation 2 26 10b a− =  (its fundamental solutions 
are ( ) ( ), 1, 4a b =  and ( )3,8 ), where ( )4 3 1b n= −  and 4 1a m= − . For 
( )3,8  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

98 24,   1, 77
98 32,   1, 63

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (94) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )3 2 2 1n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 77,63 , 7521,6141 , 736957,601723 , 72214241,58962681 .  

With ( ) ( ), 1, 4a b =  the system corresponding to (21) is  

2 1 1 2

2 1 1 2

10 ,   1, 13
10 ,   4, 32

k k k

k k k

a a a a a
b b b b b

+ +

+ +

= − = =

= − = =
               (95) 

Now note that ( )1 1 mod 4a ≡  and ( )2 1 mod 4a ≡ . Thus, from the first equa-
tion of (95) mathemtical induction immediately gives  

( ) ( ) ( )2 10 mod 4 1 mod 4 1 mod 4ka + ≡ − ≡  for all 1k ≥ . Next reducing the rela-
tion 4 1a m= −  to ( )mod 4  gives ( )1 mod 4a ≡ − . Hence, in view of 0b > , 
we conclude that ka a≠  for all integers k, and therefore, the equation  
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( ) ( )3 2 2 1n n m m− = −  has no solution. 
 To find all octagonal numbers which are also generalized pentagonal numbers, 

we need to find integer solutions of the equation ( ) ( )3 2 1 3 1n n m m− = + − . 
This equation can be written as Pell’s equation 2 2 7b a− = , where 

( )2 3 1b n= −  and ( )3 2 1a m= − . For the equation 2 2 7b a− =  the only 
meaningful integer solution is 4, 3b a= =  and it gives ( ) ( ), 1,1m n = . 

 To find all octagonal numbers which are also heptagonal numbers, we need 
to find integer solutions of the equation ( ) ( )3 2 5 3 2n n m m− = − . This equ-
ation can be written as Pell’s equation 2 230 39b a− = −  (its fundamental 
solution is ( ) ( ), 2, 9a b = − ), where ( )3 10 3b m= −  and ( )2 3 1a n= − . For 
this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

482 144,   1, 345
482 160,   1, 315

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (96) 

This system genetrates infinite number of solutions ( ),k km n  of the equation 
( ) ( )3 2 5 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 345,315 , 166145,151669 , 80081401,73103983 ,

38599068993,35235967977 .
 

10. Nonagonal Numbers Nn 

These numbers are defined by the sequence 1,9,24,46,75,111,154, , i.e., be-
ginning with 9 each number is formed from the previous one in the sequence by 
adding the next number in the related sequence ( )8,15,22,29, , 7 6n − . Thus, 
9 1 8= + , 24 1 8 15 9 15= + + = + , 46 1 8 15 22 24 22= + + + = + , and so on (see 
Figure 14). 

Thus, n-th nonagonal number is defined as 

( ) ( )
( ) ( ) ( )( )
1 7 6 1 8 15 22 7 6

1 1 7 1 2 7 1 1 7 .
n nN N n n

n
−= + − = + + + + + −

= + + + + × + + + −





        (97) 

Comparing (97) with (3), we have 1, 7a d= = , and hence from (4) it follows 
that 

( ) 17 5 6 .
2n n n
nN n t t −= − = +                    (98) 

 For all integers 0k ≥  it follows that 4 1 4 2,k kN N+ +  are odd, whereas  

4 3 4 4,k kN N+ +  are even. 
 

 

Figure 14. Nonagonal numbers. 
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 Let m be a given natural number, then it is n-th nonagonal number, i.e., 

nm N=  if and only if ( )5 25 56 14n m= + + . 
 From (10) and (98), we have 

( )
( )

2 3 4
3

6 1
9 24 46

1

x x
x x x x

x

+
= + + + +

−
  

and hence ( )( ) 36 1 1x x x −+ −  is the generating function of all nonagonal num-
bers. 
 In view of (15) and (98), we have 

( )( )
1

1 1 7 4 .
6

n

k
k

N n n n
=

= + −∑                    (99) 

 The sum of reciprocals of all nonagonal numbers is  

( ) ( )1 1 1

1 2 14 2
7 5 5 7 5 5

2 55 7 5
25 7

1.2433209262;

k k kkN k k k n

γ

∞ ∞ ∞

= = =

 
= = −  − − 

  = − Ψ − − +  
  

≈

∑ ∑ ∑

           (100) 

here, ( )xΨ  is the digamma function defined as the logarithmic derivative of 
the gamma function ( )xΓ , i.e., ( ) ( ) ( )x x x′Ψ = Γ Γ , and 0.5772156649γ =  
is the Euler-Mascheroni constant. 
 To find all square nonagonal numbers, we need to find integer solutions of 

the equation ( ) 27 5 2n n m− = . This equation can be written as Pell’s equa-
tion 2 214 25b a− =  (its fundamental solution are ( ) ( ), 2,9a b =  and 
( )6,23 ), where 14 5b n= −  and 2a m= . For ( )2,9  corresponding to (22) 
the system is 

1 1 1 2

1 1 1 2

30 ,   1, 33
30 10,   1, 18

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
               (101) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) 27 5 2n n m− = . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 33,18 , 989,529 , 29637,15842 , 888121,474721 .  

For ( )6,23  recurrence relations remain the same as in (101) with  

1 23, 91m m= =  and 1 22, 49n n= = . This leads to another set of infinite number 
of solutions ( ),k km n  of the equation ( ) 27 5 2n n m− = . First few of these so-
lutions are  

( ) ( ) ( ) ( ) ( )3,2 , 91,49 , 2727,1458 , 81719,43681 , 2448843,1308962 .  

 To find all nonagonal numbers which are also triangular numbers, we need 
to find integer solutions of the equation ( ) ( )7 5 2 1 2n n m m− = + . This 
equation can be written as Pell’s equation 2 27 18b a− =  (its fundamental 
solutions are ( ) ( ) ( ), 1,5 , 3,9a b =  and ( )7,19 ), where 14 5b n= −  and  

2 1a m= + . For ( )3,9  corresponding to (22) the system is 
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1 1 1 2

1 1 1 2

16 7,   1, 25
16 5,   1, 10

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
              (102) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )7 5 2 1 2n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 25,10 , 406,154 , 6478,2449 , 1032249,39025 .  

For ( )1,5  and ( )7,19  there are no integer solutions. 
 There is no nonagonal number which is also a rectangular number, in fact, 

the equation ( ) ( )7 5 2 1n n m m− = +  has no solutions. 
 To find all nonagonal numbers which are also pentagonal numbers, we need 

to find integer solutions of the equation ( ) ( )7 5 2 3 1 2n n m m− = − . This 
equation can be written as Pell’s equation 2 221 204b a− =  (its fundamental 
solutions are ( ) ( ), 5, 27a b =  and ( )125,573 ), where ( )3 14 5b n= −  and 

6 1a m= − . For ( )5,27  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

12098 2016,   1, 10981
12098 4320,   1, 7189

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

+ − − = =
        (103) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )7 5 2 3 1 2n n m m− = − . First four of these solutions are  

( ) ( ) ( )
( )
1,1 , 10981,7189 , 132846121,86968201 ,

1607172358861,1052141284189 .
 

For ( )125,573  recurrence relations remain the same as in (103) with  

1 221, 252081m m= =  and 1 214, 165026n n= = . This leads to another set of in-
finite number of solutions ( ),k km n  of the equation ( ) ( )3 2 3 1 2n n m m− = − . 
First four of these solutions are  

( ) ( ) ( )
( )
21,14 , 252081,165026 , 3049673901,1996480214 ,

36894954600201,24153417459626 .
 

 To find all nonagonal numbers which are also hexagonal numbers, we need 
to find integer solutions of the equation ( ) ( )7 5 2 2 1n n m m− = − . This equ-
ation can be written as Pell’s equation 2 27 18b a− =  (its fundamental solu-
tions are ( ) ( ) ( ), 1,5 , 3,9a b =  and ( )7,19 ), where 14 5b n= −  and 

4 1a m= − . For ( )3,9  corresponding to (20) the system is  

1

1 1 1

8 21
8 3 ,   9, 3

k k k

k k k

b b a
a a b b a

+

+

= +

= + = =
 

This system gives first four integer solutions ( ),k km n  of the equation  
( ) ( )7 5 2 2 1n n m m− = −  rather easily, which appear as  

( ) ( ) ( ) ( )1,1 , 13,10 , 51625,39025 , 822757,621946 . Now the following system ge-
nerates infinite number of solutions ( )2 1 2 1, , 2k km n k+ + ≥   

2 1 2 1 2 3 1 3

2 1 2 1 2 3 1 3

64514 16128,   1, 51625
64514 23040,   1, 39025

k k k

k k k

m m m m m
n n n n n

+ − −

+ − −

= − − = =

= − − = =
      (104) 

Similarly, the following system generates infinite number of solutions  
( )2 2, , 2k km n k ≥  
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2 2 2 2 2 2 4

2 2 2 2 2 2 4

64514 16128, 13, 822757
64514 23040, 10, 621946

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
      (105) 

The first eight solutions ( ),k km n  are  

( ) ( ) ( ) ( )
( ) ( )
( )
( )

1,1 , 13,10 , 51625,39025 , 822757,621946 ,

3330519121,2517635809 , 53079328957,40124201194 ,

214865110504441,162422756519761 ,

3424359827493013,2588572715184730 .

 

With ( ) ( ), 1,5a b =  and ( )7,19  there are no integer solutions of the re-
quired equation. 
 To find all nonagonal numbers which are also generalized pentagonal num-

bers, we need to find integer solutions of the equation  
( ) ( )7 5 2 1 3 1n n m m− = + − . This equation can be written as Pell’s equation 
2 242 39b a− =  (its fundamental solutions are ( ) ( ), 1,9a b =  and ( )5,33 ), 

where 14 5b n= −  and 2 1a m= − . For ( )1,9 , corresponding to (22) the 
system is  

1 1 1 2

1 1 1 2

674 336, 1, 403
674 240, 1, 373

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (106) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )5 3 2 1 3 1n n m m− = + − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 403,373 , 271285,251161 , 182845351,169281901 ,

123237494953,114095749873 .
 

For ( )5,33  recurrence relations remain the same as in (106) with  

1 266, 44148m m= =  and 1 261, 40873n n= = . This leads to another set of infi-
nite number of solutions ( ),k km n  of the equation ( ) ( )7 5 2 1 3 1n n m m− = + − . 
First four of these solutions are  

( ) ( ) ( ) ( )66,61 , 44148,40873 , 29755350,27548101 , 20055061416,18567378961 .  

 To find all nonagonal numbers which are also heptagonal numbers, we need 
to find integer solutions of the equation ( ) ( )7 5 2 5 3 2n n m m− = − . This 
equation can be written as Pell’s equation 2 235 310b a− =  (its fundamental 
solution is ( ) ( ), 7, 45a b = ), where ( )5 14 5b n= −  and 10 3a m= − . For this, 
corresponding to (22) the system is  

1 1 1 2

1 1 1 2

142 42, 1, 104
142 50, 1, 88

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
             (107) 

This system generates 
 infinite number of solutions ( ),k km n  of the equation  
( ) ( )7 5 2 5 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 104,88 , 14725,12445 , 2090804,1767052 , 296879401,250908889 .  

 To find all nonagonal numbers which are also octagonal numbers, we need to 
find integer solutions of the equation ( ) ( )7 5 2 3 2n n m m− = − . This equa-
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tion can be written as Pell’s equation 2 242 57b a− =  (its fundamental solu-
tion is ( ) ( ), 4, 27a b = ), where ( )3 14 5b n= −  and ( )2 3 1a m= − . For this, 
corresponding to (22) the system is 

1 1 1 2

1 1 1 2

674 224, 1, 459
674 240, 1, 425

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (108) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )7 5 2 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 459,425 , 309141,286209 , 208360351,192904201 ,

140434567209,130017145025 .
 

11. Decagonal Numbers Dn 

These numbers are defined by the sequence 1,10,27,52,85,126,175, , i.e., be-
ginning with 10 each number is formed from the previous one in the sequence 
by adding the next number in the related sequence ( )9,17,25,33, , 8 7n − . 
Thus, 10 1 9= + , 27 1 9 17 10 17= + + = + , 52 1 9 17 25 27 25= + + + = +  and so 
on (see Figure 15). 

Hence, n-th decagonal number is defined as  

( ) ( )
( ) ( ) ( )( )
1 8 7 1 9 17 25 8 7

1 1 8 1 2 8 1 1 8 .
n nD D n n

n
−= + − = + + + + + −

= + + + + × + + + −





         (109) 

Comparing (109) with (3), we have 1, 8a d= = , and hence from (4) it follows 
that  

( ) ( ) 18 6  4 3 7 .
2n n n
nD n n n t t −= − = − = +              (110) 

 For all integers 0k ≥  it follows that 2 1kD +  are odd, whereas 2kD  are even. 
 Let m be a given natural number, then it is n-th decagonal number, i.e., 

nm D=  if and only if ( )3 9 16 8n m= + + . 
 From (10) and (110), we have  

( )
( )

2 3 4
3

7 1
  10 27 52

1

x x
x x x x

x

+
= + + + +

−


 

and hence ( )( ) 37 1 1x x x −+ −  is the generating function of all decagonal num-
bers. 
 In view of (15) and (110), we have 
 

 

Figure 15. Decagonal numbers. 
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( )( )
1

1  1 8 5 .
6

n

k
k

D n n n
=

= + −∑                  (111) 

 To find the sum of the reciprocals of all decagonal numbers, as in (89) we be-
gin with the series 

( ) ( )
4 3

1

1  
4 3

k

k
f x x

k k

∞
−

=

=
−∑  

and following the same steps Downey [29] obtained 

( ) ( )1 1

1 11       ln 2  1.2167459562.
4 3 6k k k

f
k k D

∞ ∞

= =

= = = +
−

π
≈∑ ∑       (112) 

 To find all square decagonal numbers, we need to find integer solutions of 
the equation ( ) 24 3n n m− = . This equation can be written as Pell’s equation 

2 2 9b a− = , where 8 3b n= −  and 4a m= . For the equation 2 2 9b a− =  
the only meaningful integer solution is 5, 4b a= =  and it gives ( ) ( ), 1,1m n = . 

 To find all decagonal numbers which are also triangular numbers, we need to 
find integer solutions of the equation ( ) ( )4 3 1 2n n m m− = + . This equation 
can be written as Pell’s equation 2 22 7b a− =  (its fundamental solutions are 
( ) ( ), 1,3a b =  and ( )3,5 ), where 8 3b n= −  and 2 1a m= + . For ( )3,5  
corresponding to (22) the system is  

1 1 1 2

1 1 1 2

34 16, 1, 55
34 12, 1, 20

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
            (113) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 1 2n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 55,20 , 1885,667 , 64051,22646 , 2175865,769285 .  

For ( )1,3  recurrence relations remain the same as in (113) with  

1 24, 154m m= =  and 1 22, 55n n= = . This leads to another set of infinite num-
ber of solutions ( ),k km n  of the equation ( ) ( )4 3 1 2n n m m− = + . First few of 
these solutions are  

( ) ( ) ( ) ( ) ( )4,2 , 154,55 , 5248,1856 , 178294,63037 , 6056764,2141390 .  

 There is no decagonal number which is also a rectangular number, in fact, 
the equation ( ) ( )4 3 1n n m m− = +  has no solutions. 

 To find all decagonal numbers which are also pentagonal numbers, we need 
to find integer solutions of the equation ( ) ( )4 3 3 1 2n n m m− = − . This equ-
ation can be written as Pell’s equation 2 26 75b a− =  (its fundamental solu-
tion is ( ) ( ), 5,15a b = ), where ( )3 8 3b n= −  and 6 1a m= − . For ( )5,15  
corresponding to (22) the system is  

1 1 1 2

1 1 1 2

98 16, 1, 91
98 36, 1, 56

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (114) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 3 1 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 91,56 , 8901,5451 , 872191,534106 , 85465801,52336901 .  

https://doi.org/10.4236/jamp.2021.98132


R. P. Agarwal 
 

 

DOI: 10.4236/jamp.2021.98132 2081 Journal of Applied Mathematics and Physics 
 

 To find all decagonal numbers which are also hexagonal numbers, we need to 
find integer solutions of the equation ( ) ( )4 3 2 1n n m m− = − . This equation 
can be written as Pell’s equation 2 22 7b a− =  (its fundamental solution is 
( ) ( ), 3,5a b = ), where 8 3b n= −  and 4 1a m= − . For this, corresponding to 
(22) the system is  

1 1 1 2

1 1 1 2

34 8,   1, 28
34 12,   1, 20

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (115) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 2 1n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 28,20 , 943,667 , 32026,22646 , 1087933,769285 .  

 To find all decagonal numbers which are also generalized pentagonal num-
bers, we need to find integer solutions of the equation  
( ) ( )4 3 1 3 1n n m m− = + − . This equation can be written as Pell’s equation 
2 212 13b a− =  (its fundamental solution is ( ) ( ), 1,5a b = ), where 8 3b n= −  

and 2 1a m= − . For this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

194 96,   1, 119
194 72,   1, 103

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (116) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 1 3 1n n m m− = + − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 119,103 , 22989,19909 , 4459651,3862171 ,

865149209,749241193 .
 

 To find all decagonal numbers which are also heptagonal numbers, we need 
to find integer solutions of the equation ( ) ( )4 3 5 3 2n n m m− = − . This equ-
ation can be written as Pell’s equation 2 210 540b a− =  (its fundamental so-
lution is ( ) ( ), 14,50a b = ), where ( )10 8 3b n= −  and ( )2 10 3a m= − . For 
this, corresponding to (22) the system is  

1 1 1 2

1 1 1 2

1442 432,   1, 1075
1442 540,   1, 850

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
           (117) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 5 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 1075,850 , 1549717,1225159 , 2234690407,1766677888 ,

3222422016745,2547548288797 .
 

 To find all decagonal numbers which are also octagonal numbers, we need to 
find integer solutions of the equation ( ) ( )4 3 3 2n n m m− = − . This equation 
can be written as Pell’s equation 2 23 33b a− =  (its fundamental solution is 
( ) ( ), 8,15a b = ), where ( )3 8 3b n= −  and ( )4 3 1a m= − . For this, corres-
ponding to (22) the system is  

1 1 1 2

1 1 1 2

194 64,   1, 135
194 72,   1, 117

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (118) 

This system generates infinite number of solutions ( ),k km n  of the equation 
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( ) ( )4 3 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 135,117 , 26125,22625 , 5068051, 4389061 ,

983175705,851455137 .
 

 To find all decagonal numbers which are also nonagonal numbers, we need 
to find integer solutions of the equation ( ) ( )4 3 7 5 2n n m m− = − . This equ-
ation can be written as Pell’s equation 2 214 91b a− =  (its fundamental solu-
tion is ( ) ( ), 9,35a b = ), where ( )7 8 3b n= −  and 14 5a m= − . For this, 
corresponding to (22) the system is  

1 1 1 2

1 1 1 2

898 320,   1, 589
898 336,   1, 551

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (119) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )4 3 7 5 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 589,551 , 528601,494461 , 474682789, 444025091 ,

426264615601,398734036921 .
 

12. Tetrakaidecagonal Numbers (TET)n 

These numbers are defined by the sequence 1,14,39,76,125, , i.e., beginning 
with 14 each number is formed from the previous one in the sequence by adding 
the next number in the related sequence ( )13,25,37,49, , 12 11n − . Thus, 
14 1 13= + , 39 1 13 25 14 25= + + = + , 76 1 13 25 37 39 37= + + + = + , and so on 
(see Figure 16). 

Hence, n-th tetrakaidecagonal number is defined as  

( ) ( ) ( ) ( )
( ) ( ) ( )( )

1 12 11 1 13 25 37 12 11

1 1 12 1 2 12 1 1 12 .
n nTET TET n n

n
−

= + − = + + + + + −

= + + + + × + + + −





    (120) 

Comparing (120) with (3), we have 1, 12a d= = , and hence from (4) it fol-
lows that  

( ) ( ) ( ) 112 10 6 5  11 .
2 n nn

nTET n n n t t −= − = − = +               (121) 

 For all integers 0k ≥  it follows that ( )2 1kTET
+

 are odd, whereas ( )2kTET  
are even. 

 Let m be a given natural number, then it is n-th tetrakaidecagonal number, 
i.e., ( )nm TET=  if and only if ( )5 25 24 12n m= + + . 

 

 
Figure 16. Tetrakaidecagonal numbers. 

https://doi.org/10.4236/jamp.2021.98132


R. P. Agarwal 
 

 

DOI: 10.4236/jamp.2021.98132 2083 Journal of Applied Mathematics and Physics 
 

 From (10) and (121), we have 

( )
( )

2 3 4
3

11 1
  14 39 76

1

x x
x x x x

x

+
= + + + +

−


 

and hence ( )( ) 311 1 1x x x −+ −  is the generating function of all tetrakaidecagonal 
numbers. 
 In view of (15) and (121), we have  

( ) ( )( )
1

1  1 4 3 .
2

n

k
k

TET n n n
=

= + −∑                (122) 

 To find the sum of the reciprocals of all tetrakaidecagonal numbers, as in (89) 
we begin with the series 

( ) ( )
6 5

1

1  
6 5

k

k
f x x

k k

∞
−

=

=
−∑  

and following the same steps Downey [29] obtained  

( ) ( ) ( ) ( )
1 1

1 1 11 4ln 2 3ln 3 3
6 5 10

1.1509823681.
k k k

f
k k TET

∞ ∞

= =

= = = +
−

≈

π+∑ ∑     (123) 

 To find all square tetrakaidecagonal numbers, we need to find integer solu-
tions of the equation ( ) 26 5n n m− = . This equation can be written as Pell’s 
equation 2 26 25b a− =  (its fundamental solution are ( ) ( ), 2,7a b =  and 
( )4,11 ), where 12 5b n= −  and 2a m= . For (2,7) corresponding to (22) 
the system is  

1 1 1 2

1 1 1 2

98 ,   1, 119
98 40,   1, 49

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − = =

= − − = =
              (124) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) 26 5n n m− = . First few of these solutions are 

( ) ( ) ( ) ( ) ( )1,1 , 119,49 , 11661,4761 , 1142659,466489 , 111968921,45711121 .  

For ( )4,11  recurrence relations remain the same as in (124) with  

1 221, 2059m m= =  and 1 22, 841n n= = . This leads to another set of infinite 
number of solutions ( ),k km n  of the equation ( ) 26 5n n m− = . First few of 
these solutions are  

( ) ( ) ( ) ( )
( )
21,9 , 2059,841 , 201761,82369 , 19770519,8071281 ,

1937309101,790903129 .
 

 To find all tetrakaidecagonal numbers which are also triangular numbers, we 
need to find integer solutions of the equation ( ) ( )6 5 1 2n n m m− = + . This 
equation can be written as Pell’s equation 2 23 22b a− =  (its fundamental 
solutions are ( ) ( ), 1,5a b =  and ( )3,7 ), where 12 5b n= −  and 

2 1a m= + . For ( )3,7  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

194 96, 1, 341
194 80, 1, 99

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − + = =

= − − = =
             (125) 
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This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 1 2n n m m− = + . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 341,99 , 66249,19125 , 12852061,3710071 ,

2493233681,719734569 .
 

For ( )1,5  recurrence relations remain the same as in (125) with  

1 250, 9798m m= =  and 1 215, 2829n n= = . This leads to another set of infinite 
number of solutions ( ),k km n  of the equation ( ) 26 5n n m− = . First few of 
these solutions are  

( ) ( ) ( )
( ) ( )
50,15 , 9798,2829 , 1900858,548731 ,

368756750,106450905 , 71536908738,20650926759 .
 

 There is no tetrakaidecagonal number which is also a rectangular number, in 
fact, the equation ( ) ( )6 5 1n n m m− = +  has no solutions. 

 To find all tetrakaidecagonal numbers which are also pentagonal numbers, 
we need to find integer solutions of the equation ( ) ( )6 5 3 1 2n n m m− = − . 
This equation can be written as Pell’s equation 2 2 24b a− = , where 12 5b n= −  
and 6 1a m= − . For the equation 2 2 24b a− =  the only meaningful integer 
solution is 7, 5b a= =  and it gives ( ) ( ), 1,1m n = . 

 To find all tetrakaidecagonal numbers which are also hexagonal numbers, we 
need to find integer solutions of the equation ( ) ( )6 5 2 1n n m m− = − . This 
equation can be written as Pell’s equation 2 23 22b a− =  (its fundamental 
solutions are ( ) ( ), 1,5a b =  and ( )3,7 ), where 12 5b n= −  and 4 1a m= − . 
For ( )3,7  corresponding to (22) the system is  

1 1 1 2

1 1 1 2

194 48, 1, 171
194 80, 1, 99

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
            (126) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 2 1n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 171,99 , 33125,19125 , 6426031,3710071 ,

1246616841,719734569 .
 

With ( ) ( ), 1,5a b =  there are no integer solutions of the required equation. 
 To find all tetrakaidecagonal numbers which are also generalized pentagonal 

numbers, we need to find integer solutions of the equation  
( ) ( )6 5 1 3 1n n m m− = + − . This equation can be written as Pell’s equation 
2 218 31b a− =  (its fundamental solutions are ( ) ( ), 1,7a b =  and ( )11,47 ), 

where 12 5b n= −  and 2 1a m= − . For ( )1,7 , corresponding to (22) the 
system is  

1 1 1 2

1 1 1 2

1154 576, 1, 765
1154 480, 1, 541

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
           (127) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 1 3 1n n m m− = + − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 765,541 , 882233,623833 , 1018095541,719902261 ,

1174881371505,830766584881 .
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For ( )11,47  recurrence relations remain the same as in (127) with  

1 2188, 216376m m= =  and 1 2133, 151001n n= = . This leads to another set of 
infinite number of solutions ( ),k km n  of the equation ( ) ( )6 5 1 3 1n n m m− = + − . 
First four of these solutions are  

( ) ( ) ( )
( )
188,133 , 216376,153001 , 249697140,176562541 ,

288150282608,203753018833 .
 

 To find all tetrakaidecagonal numbers which are also heptagonal numbers, 
we need to find integer solutions of the equation ( ) ( )6 5 5 3 2n n m m− = − . 
This equation can be written as Pell’s equation 2 215 490b a− =  (its funda-
mental solutions are ( ) ( ), 3, 25a b =  and ( )7,35 ), where ( )5 12 5b n= −  
and 10 3a m= − . For (7,35), corresponding to (22) the system is  

1 1 1 2

1 1 1 2

3842 1152, 1, 3081
3842 1600, 1, 1989

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
         (128) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 5 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 3081,1989 , 11836049,7640137 , 45474096025,29353402765 ,

174711465090849,112775765781393 .
 

With ( ) ( ), 3, 25a b =  there are no integer solutions of the required equation. 
 To find all tetrakaidecagonal numbers which are also octagonal numbers, we 

need to find integer solutions of the equation ( ) ( )6 5 3 2n n m m− = − . This 
equation can be written as Pell’s equation 2 22 17b a− =  (its fundamental 
solutions are ( ) ( ), 2,5a b =  and ( )4,7 ), where 12 5b n= −  and 6 2a m= − . 
For (4,7), corresponding to (22) the system is  

1 1 1 2

1 1 1 2

1154 384, 1, 861
1154 480, 1, 609

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
          (129) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 3 2n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( )
( )
1,1 , 861,609 , 993209,702305 , 1146161941,810458881 ,

1322669886321,935268845889 .
 

With ( ) ( ), 2,5a b =  there are no integer solutions of the required equation. 
 To find all tetrakaidecagonal numbers which are also nonagonal numbers, we 

need to find integer solutions of the equation ( ) ( )6 5 7 5 2n n m m− = − . This 
equation can be written as Pell’s equation 2 221 700b a− =  (its fundamental 
solutions are ( ) ( ) ( ), 2, 28 , 5,35a b =  and ( )9,49 ), where ( )7 12 5b n= −  
and 14 5a m= − . For (9,49), corresponding to (22) the system is  

1 1 1 2

1 1 1 2

12098 4320,   1, 8509
12098 5040,   1, 6499

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
        (130) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 7 5 2n n m m− = − . First four of these solutions are  
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( ) ( ) ( ) ( )1,1 , 8509,6499 , 102937561,78619861 , 1245338600149,951143066839 .  

With ( ) ( ), 2, 28a b =  and ( )5,35  there are no integer solutions of the re-
quired equation. 
 To find all tetrakaidecagonal numbers which are also decagonal numbers, we 

need to find integer solutions of the equation ( ) ( )6 5 4 3n n m m− = − . This 
equation can be written as Pell’s equation 2 26 46b a− =  (its fundamental 
solutions are ( ) ( ), 3,10a b =  and ( )5,14 ), where ( )2 12 5b n= −  and  

8 3a m= − . For (5,14), corresponding to (22) the system is  

1 1 1 2

1 1 1 2

98 36,   1, 66
98 40,   1, 54

k k k

k k k

m m m m m
n n n n n

+ −

+ −

= − − = =

= − − = =
              (131) 

This system generates infinite number of solutions ( ),k km n  of the equation 
( ) ( )6 5 4 3n n m m− = − . First few of these solutions are  

( ) ( ) ( ) ( ) ( )1,1 , 66,54 , 6431,5251 , 630136,514504 , 61746861,50416101 .  

With ( ) ( ), 3,10a b =  there are no integer solutions of the required equation. 

13. Centered Triangular Numbers (ct)n 

These numbers are defined by the sequence 1,4,10,19,31,46,64,85,109, , i.e., 
beginning with 4 each number is formed from the previous one in the sequence 
by adding the next number in the related sequence ( )3,6,9,12, ,3 1n −

. Thus, 
4 1 3= + , 10 1 3 6 4 6= + + = + , 19 1 3 6 9 10 9= + + + = + , and so on (see Figure 
17). 

Hence, n-th centered triangular number is defined as  

( ) ( ) ( ) ( )
( )( )

1 3 1 1 3 6 9 3 3

1 3 1 2 3 1 .
n nct ct n n

n
−

= + − = + + + + + −

= + + + + + −





        (132) 

Thus, from (2) it follows that  

( ) ( )
1 1 2

1
1 3 1 3 .

2 n n n nn

n n
ct t t t t− − −

−
= + = + = + +           (133) 

 Let m be a given natural number, then it is n-th centered triangular number, 
i.e., ( )nm ct=  if and only if ( )( )3 9 24 1 6n m= + + − . 

 From (10) and (133), we have  
 

 

Figure 17. Centered triangular numbers. 
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( )
( )

2
2 3 4

3

1
4 10 19

1

x x x
x x x x

x

+ +
= + + + +

−
  

and hence ( )( ) 32 1 1x x x x −+ + −  is the generating function of all centered tri-
angular numbers. 

In view of (15) and (133), we have  

( ) ( )2

1

1 1 .
2

n

k
k

ct n n
=

= +∑                    (134) 

 To find the sum of the reciprocals of all centered triangular numbers we fol-
low as in (71), to obtain  

( )1

1 2 5tanh 1.5670651313.
2 315k kct

∞

=

 
= ≈ 

 

π π
∑          (135) 

14. Centered Square Numbers (cS)n 

These numbers are defined by the sequence 1,5,13,25,41,61,85,113, , i.e., 
beginning with 5 each number is formed from the previous one in the sequence 
by adding the next number in the related sequence ( )4,8,12,16, , 4 1n −

. Thus, 
5 1 4= + , 13 1 4 8 5 8= + + = + , 25 1 4 8 12 13 12= + + + = + , and so on (see Fig-
ure 18). 

Hence, n-th centered square number is defined as  

( ) ( ) ( ) ( )
( )( )

1 4 1 1 4 8 12 4 4

1 4 1 2 3 1 .
n ncS cS n n

n
−

= + − = + + + + + −

= + + + + + −





        (136) 

Thus, from (2) it follows that  

( ) ( ) ( )22 2
1

1 1 2

1
1 4 1 4 1 2 2 1

2
2 .

nn

n n n n n

n n
cS t n n n n

S S t t t

−

− − −

−
= + = + = + − = + −

= + = + +
     (137) 

 Let m be a given natural number, then it is n-th centered square number, i.e., 
( )nm cS=  if and only if ( )1 2 1 2n m= + − . 

 From (10) and (137), we have 
 

 

Figure 18. Centered square numbers. 
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( )
( )

2
2 3 4

3

1
5 13 25

1

x x
x x x x

x

+
= + + + +

−


 

and hence ( ) ( )2 31 1x x x −+ −  is the generating function of all centered square 
numbers. 
 In view of (15) and (137), we have  

( ) ( )2

1

1 2 1 .
3

n

k
k

cS n n
=

= +∑                    (138) 

 To find the sum of the reciprocals of all centered triangular numbers we fol-
low as in (71), to obtain  

( )1

1 tanh 1.44065952.
2 2k kcS

∞

=

 = ≈ 


π π


∑               (139) 

15. Centered Pentagonal Numbers (cP)n 

These numbers are defined by the sequence 1,6,16,31,51,76,106,141,181, , 
i.e., beginning with 6 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )5,10,15,20, ,5 1n −
. Thus, 6 1 5= + , 16 1 5 10 6 10= + + = + ,  

31 1 5 10 15 16 15= + + + = + , and so on (see Figure 19). 
Hence, n-th centered pentagonal number is defined as  

( ) ( ) ( ) ( )
( )( )

1 5 1 1 5 10 15 5 5

1 5 1 2 3 1 .
n ncP cP n n

n
−

= + − = + + + + + −

= + + + + + −





     (140) 

Thus, from (2) it follows that  

( ) ( )
1 1 2

1
1 5 1 5 3 .

2 n n n nn

n n
cP t t t t− − −

−
= + = + = + +         (141) 

 Let m be a given natural number, then it is n-th centered pentagonal number, 
i.e., ( )nm cP=  if and only if ( )( )5 25 40 1 10n m= + + − . 

 From (10) and (141), we have  

( )
( )

2
2 3 4

3

3 1
6 16 31

1

x x x
x x x x

x

+ +
= + + + +

−
  

 

 

Figure 19. Centered pentagonal numbers. 
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and hence ( )( ) 32 3 1 1x x x x −+ + −  is the generating function of all centered 
pentagonal numbers. 
 In view of (15) and (141), we have  

( ) ( )2

1

1 5 1 .
6

n

k
k

cP n n
=

= +∑                    (142) 

 To find the sum of the reciprocals of all centered pentagonal numbers we 
follow as in (71), to obtain  

( )1

1 2 3  tanh   1.36061317.
2 515k kcP

∞

=

π π 
= ≈  

 
∑            (143) 

16. Centered Heptagonal Numbers (cHEP)n 

These numbers are defined by the sequence 1,8,22,43,71,106,148,197,253, , 
i.e., beginning with 8 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )7,14,21,28, ,7 1n −
. Thus, 8 1 7= + , 22 1 7 14 8 14= + + = + ,  

43 1 7 14 21 22 21= + + + = + , and so on (see Figure 20). 
Hence, n-th centered heptagonal number is defined as 

( ) ( ) ( ) ( )
( )( )

1 7 1   1 7 14 21 7 7

1 7 1 2 3 1 .
n ncHEP cHEP n n

n
−

= + − = + + + + + −

= + + + + + −





  (144) 

Thus, from (2) it follows that 

( ) ( )
1 1 2

1
1 7 1 7 5 .

2 n n n nn

n n
cHEP t t t t− − −

−
= + = + = + +        (145) 

 Let m be a given natural number, then it is n-th centered heptagonal number, 
i.e., ( )nm cHEP=  if and only if ( )( )7 49 56 1 14n m= + + − . 

 From (10) and (145), we have  

( )
( )

2
2 3 4

3

5 1
  8 22 43

1

x x x
x x x x

x

+ +
= + + + +

−
  

and hence ( )( ) 32 5 1 1x x x x −+ + −  is the generating function of all centered 
heptagonal numbers. 
 

 

Figure 20. Centered heptagonal numbers. 
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 In view of (15) and (145), we have  

( ) ( )2

1

1  7 1 .
6

n

k
k

cHEP n n
=

= −∑                   (146) 

 To find the sum of the reciprocals of all centered heptagonal numbers we 
follow as in (71), to obtain  

( )1

1 2  tanh   1.264723172.
7 2 7k kcHEP

∞

=

π  
= ≈ 



π


∑           (147) 

17. Centered Octagonal Numbers (cO)n 

These numbers are defined by the sequence  
1,9,25,49,81,121,169,225,289,361, , i.e., beginning with 9 each number is 
formed from the previous one in the sequence by adding the next number in the 
related sequence ( )8,16,24,32, ,8 1n − . Thus, 9 1 8= + ,  
25 1 8 14 9 16= + + = + , 49 1 8 16 24 25 24= + + + = + , and so on (see Figure 21). 

Hence, n-th centered octagonal number is defined as  

( ) ( ) ( ) ( )
( )( )

1 8 1 1 8 16 24 8 8

1 8 1 2 3 1 .
n ncO cO n n

n
−

= + − = + + + + + −

= + + + + + −





     (148) 

Thus, from (2) it follows that  

( ) ( ) ( )2
1 2 1 1 2

1
1 8 1 8 2 1 6 .

2 n n n n nn

n n
cO t n S t t t− − − −

−
= + = + = − = = + +   (149) 

Hence, the centered octagonal numbers are the same as the odd square num-
bers. 
 Let m be a given natural number, then it is n-th centered octagonal number, 

i.e., ( )nm cO=  if and only if ( )1 2n m= + . 
 From (10) and (149), we have  

( )
( )

2
2 3 4

3

6 1
9 25 49

1

x x x
x x x x

x

+ +
= + + + +

−
  

and hence ( )( ) 32 6 1 1x x x x −+ + −  is the generating function of all centered oc-
tagonal numbers. 
 

 

Figure 21. Centered octagonal numbers. 
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 In view of (15) and (149), we have  

( ) ( )2

1

1 4 1 .
3

n

k
k

cO n n
=

= −∑                    (150) 

 To find the sum of the reciprocals of all centered octagonal numbers we use 
(39), to obtain  

( ) ( )

2

2 2 2
1 1 1 1

1 1 1 1 1   1.2337005501.
4 82 1k k k kkcO k kk

∞ ∞ ∞ ∞

= = = =

π
= = − = ≈

−
∑ ∑ ∑ ∑    (151) 

18. Centered Nonagonal Numbers (cN)n 

These numbers are defined by the sequence 1,10,28,55,91,136,190,253,325, , 
i.e., beginning with 10 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )9,18,27,36, ,9 1n −
. Thus, 10 1 9= + , 28 1 9 18 10 18= + + = + ,  

55 1 9 18 27 28 27= + + + = + , and so on (see Figure 22). 
Hence, n-th centered nonagonal number is defined as  

( ) ( ) ( ) ( )
( )( )

1 9 1 1 9 18 27 9 1

1 9 1 2 3 1 .
n ncN cN n n

n
−

= + − = + + + + + −

= + + + + + −





       (152) 

Thus, from (2) it follows that  

( ) ( ) ( )( )
1

3 2 1 2

1 3 2 3 1
1 9 1 9

2 2
7 .

nn

n n n n

n n n n
cN t

t t t t

−

− − −

− − −
= + = + =

= = + +
          (153) 

 In 1850, Frederick Pollock (1783-1870, England) conjectured that every nat-
ural number is the sum of at most eleven centered nonagonal numbers, 
which has not been proved. 

 Let m be a given natural number, then it is n-th centered nonagonal number, 
i.e., ( )nm cN=  if and only if ( )( )9 81 72 1 18n m= + + − . 

 From (10) and (153), we have  

( )
( )

2
2 3 4

3

7 1
10 28 55

1

x x x
x x x x

x

+ +
= + + + +

−
  

 

 

Figure 22. Centered nonagonal numbers. 
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and hence ( )( ) 32 7 1 1x x x x −+ + −  is the generating function of all centered 
nonagonal numbers. 
 In view of (15) and (153), we have  

( ) ( )2

1

1 3 1 .
2

n

k
k

cN n n
=

= −∑                    (154) 

 To find the sum of the reciprocals of all centered heptagonal numbers we 
follow as in (71), to obtain  

( )1

1 2 2 3tan 1.2091995762.
3 6 9k kcN

∞

=

 = = ≈ 
 

π π π∑          (155) 

19. Centered Decagonal Numbers (cD)n 

These numbers are defined by the sequence 1,11,31,61,101,151,211,281, , 
i.e., beginning with 11 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )10,20,30,40, ,10 1n − . Thus, 11 1 10= + , 31 1 10 20 11 20= + + = + ,  
61 1 10 20 30 31 30= + + + = + , and so on (see Figure 23). 

Hence, n-th centered decagonal number is defined as  

( ) ( ) ( ) ( )
( )( )

1 10 1 1 10 20 30 10 1

1 10 1 2 3 1 .
n ncD cD n n

n
−

= + − = + + + + + −

= + + + + + −





    (156) 

Thus, from (2) it follows that  

( ) ( ) 2
1 1 2

1
1 10 1 10 5 5 1 8 .

2 n n n nn

n n
cD t n n t t t− − −

−
= + = + = − + = + +   (157) 

 For each ( )ncD  the last digit is 1.  
 Let m be a given natural number, then it is n-th centered decagonal number, 

i.e., ( )nm cD=  if and only if ( )( )5 25 20 1 10n m= + + − . 
 From (10) and (157), we have  

( )
( )

2
2 3 4

3

8 1
11 31 61

1

x x x
x x x x

x

+ +
= + + + +

−
  

 

 

Figure 23. Centered decagonal numbers. 
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and hence ( )( ) 32 8 1 1x x x x −+ + −  is the generating function of all centered de-
cagonal numbers. 
 In view of (15) and (157), we have  

( ) ( )2

1

1 5 2 .
3

n

k
k

cD n n
=

= −∑                    (158) 

 To find the sum of the reciprocals of all centered heptagonal numbers we 
follow as in (71), to obtain  

( )1

1 tan 1.189356247.
5 2 5k kcD

∞

=

 
= ≈ 



π π


∑            (159) 

20. Star Numbers (ST)n 

These numbers are defined by the sequence 1,13,37,73,121,181,253,337, , 
i.e., beginning with 13 each number is formed from the previous one in the se-
quence by adding the next number in the related sequence  

( )12,24,36,48, ,12 1n − . Thus, 13 1 12= + , 37 1 12 24 13 24= + + = + ,  
73 1 12 24 36 37 36= + + + = + , and so on (see Figure 24). 

Hence, n-th star number is defined as  

( ) ( ) ( ) ( )
( )( )

1 12 1 1 12 24 36 12 1

1 12 1 2 3 1 .
n nST ST n n

n
−

= + − = + + + + + −

= + + + + + −





   (160) 

Thus, from (2) it follows that  

( ) ( ) 2
1 1 2

1
1 12 1 12 6 6 1 10 .

2 n n n nn

n n
ST t n n t t t− − −

−
= + = + = − + = + +  (161) 

 All star numbers are odd. The star number ( )77 35113ST =  is unique, since 
its prime factors 13, 37, 73 are also consecutive star numbers. There are infi-
nite number of star numbers which are also triangular numbers, also square 
numbers. 

 Let m be a given natural number, then it is n-th star number, i.e., ( )nm ST=  
if and only if ( )( )3 9 6 1 6n m= + + − . 

 

 

Figure 24. Star number (ST)3. 
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 From (10) and (161), we have  

( )
( )

2
2 3 4

3

10 1
13 37 73

1

x x x
x x x x

x

+ +
= + + + +

−
  

and hence ( )( ) 32 10 1 1x x x x −+ + −  is the generating function of all star num-
bers. 
 In view of (15) and (161), we have  

( ) ( )2

1
2 1 .

n

k
k

ST n n
=

= −∑                     (162) 

 To find the sum of the reciprocals of all star numbers we follow as in (71), to 
obtain  

( )1

1 tan 1.15917332.
2 3 2 3k kST

∞

=

π π 
= ≈ 

 
∑             (163) 

21. Centered Tetrakaidecagonal Numbers (cTET)n 

These numbers are defined by the sequence 1,15,43,85,141, , i.e., beginning 
with 15 each number is formed from the previous one in the sequence by adding 
the next number in the related sequence ( )14,28,42,56, ,14 1n − . Thus, 
15 1 14= + , 43 1 14 28 15 28= + + = + , 85 1 14 28 42 43 42= + + + = + , and so on 
(see Figure 25). 

Hence, n-th centered tetrakaidecagonal number is defined as  
( ) ( ) ( ) ( )

( )( )
1 14 1 1 14 28 42 14 1

1 14 1 2 3 1 .
n ncTET cTET n n

n
−

= + − = + + + + + −

= + + + + + −





  (164) 

Thus, from (2) it follows that  

( ) ( ) 2
1 1 2

1
1 14 1 14 7 7 1 12 .

2 n n n nn

n n
cTET t n n t t t− − −

−
= + = + = − + = + +  (165) 

 Each ( )ncTET  is odd. 
 Let m be a given natural number, then it is n-th centered tetrakaidecagonal 

number, i.e., ( )nm cTET=  if and only if ( )( )7 49 28 1 14n m= + + − . 
 From (10) and (165), we have  

 

 

Figure 25. Centered tetrakaidecagonal numbers. 
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( )
( )

2
2 3 4

3

12 1
15 43 85

1

x x x
x x x x

x

+ +
= + + + +

−
  

and hence ( )( ) 32 12 1 1x x x x −+ + −  is the generating function of all centered te-
trakaidecagonal numbers. 
 In view of (15) and (165), we have  

( ) ( )2

1

1 7 4 .
3

n

k
k

cTET n n
=

= −∑                   (166) 

 To find the sum of the reciprocals of all centered tetrakaidecagonal numbers 
we follow as in (71), to obtain  

( )1

1 3tan 1.1372969963.
2 721k kcTET

∞

=

 
= ≈ 

 

π π
∑           (167) 

22. Cubic Numbers Cn 

A cubic number can be written as a product of three equal factors of natural 
numbers. Thus, 31,8, 27,64, , n  are first few cubic numbers (see Figure 26). 
 Last digit of a number is the same as the last digit of its cube, except that 2 

becomes 8 (and 8 becomes 2) and 3 becomes 7 (and 7 becomes 3). 
 Nicomachus considered the following infinite triangle of odd numbers. It is 

clear that the sum of the numbers in the nth row is n3. 
3

3

3

3

3

3

3

3

3

          1   1
         3 5   2
        7 9 11   3
       13 15 17 19   4
      21 23 25 27 29   5
     31 33 35 37 39 41   6
    43 45 47 49 51 53 55   7
   57 59 61 63 65 67 69 71   8
  73 75 77 79 81 83 85 87 89   9
 91 93 95 97 99 101 103 105 107 10 39   10

  ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

 

 

 

Figure 26. Cubic numbers. 
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In the literature often the above representation is referred to as Pascal’s trian-
gle. Now noting that numbers in each row are odd, so the general term in view 
of (31) can be written as  

( ) ( ) ( ) ( ) ( )
( ) ( ) 3 2 2 3

1 1 1 3 1 5 1 2 1

1 1 3 5 2 1 .

k k k k k k k k k

k k k k k k k k

− + + − + + − + + + − + −              
= × − + + + + + − = − + =  





 

Taking successively 1,2,3, ,k n=   in the above relation, adding these n eq-
uations, and observing that ( ) ( ) ( )1 2 1 2 1 2 1n n n n n− + − = + − , we find 

( ) 3 3 3 31
1 3 5 7 9 11 2 1 1 2 3 ,

2
n n

n
+ 

+ + + + + + + − = + + + + 
 

 
 

i.e., the number of terms in the left side are ( )1 2n n + . Now again from (31) we 
find that the left hand side is the same as ( ) 2

1 2n n +   , and hence it follows 
that 

( ) 2
3 3 3 3 4 3 2 21 1 1 11 2 3 ,

2 4 2 4 n

n n
n n n n t

+ 
+ + + + = = + + = 

 


    (168) 

i.e., a perfect square number. This identity is sometimes called Nicomachus’s 
theorem. 
 From (69), the relation (168) follows immediately. In fact, we have  

( )3 2 2 2
1

1 1
.

n n

k k n
k k

k t t t−
= =

= − =∑ ∑  

 The generating function for all cubic numbers is  

( )
( )

2
2 3

4

4 1
8 27 .

1

x x x
x x x

x

+ +
= + + +

−
  

 From the relations ( )2 21 2 1k k k+ − = +  and ( ) ( )2 21 1 4k k k+ − − =  it fol-
lows that all odd and multiple of 4 integers can be expressed as the difference of 
two squares. However, 4 2k +  cannot be expressed as the difference of two 
squares. Indeed, if ( )( )2 2 4 2a b a b a b k− = + − = + , then letting  

, x a b y a b= + = −  gives ( ) ( )2, 2a x y b x y= + = − , which implies that 
both x and y must be of the same parity. If both x and y are odd (even) then 
xy is odd (multiple of 4), hence in either case we have a contradiction. Now 
since cube of any odd (even) integer is odd (multiple of 4), we can conclude 
that every cube is a difference of two squares. Clearly, in the conclusion cube 
can be replaced by any power greater than 3. For example, 3 2 23 14 13= − , 

3 2 24 17 15= − , 7 2 25 39063 39062= − . 
 There are infinite number of square cubic numbers, in fact,  

( ) ( )3 22 3 , 1, 2,k k k= =  . 
 The well known Riemann zeta function after George Friedrich Bernhard 

Riemann (1826-1866, Germany) is defined as  

( ) 1 11 ,    .
2 3s ss s itζ σ= + + + = +  
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In 1979, Roger Apéry (1916-1994, Greek-French) published an unexpected 
proof of the irrationality of ( )3ζ . In the literature ( )3ζ  is known as Apéry 
constant. In July 2020, Seungmin Kim (Korea) has computed the value of ( )3ζ  
to one trillion two hundred billion and one hundred decimal places. 
 Related with cubic numbers there are centered cubic numbers  

( ) ( ) ( )( )33 21 2 1 1ncC n n n n n= + − = − − + . Thus, ( )ncC  is the count of 
number of points in a body-centered cubic pattern within a cube that has 

1n +  points along each of its edges. First few centered cubic numbers are 1, 
9, 35, 91, 189, 341. Clearly, no centered cubic number is prime. Further, the 
only centered cube number that is also a square number is 9. The generating 
function for all centered cube numbers is  

( )
( )

3 2
2 3 4

4

5 5 1
  9 35 91 .

1

x x x x
x x x x

x

+ + +
= + + + +

−
  

From (168) it follows that  

( ) ( )2 2

1

1  1 .
2

n

k
k

cC n n
=

= +∑                    (169) 

Further, from (39) and (70), we find  

( ) ( ) 2 22 2
1 1 1

2

1 2 1 12
11

1 coth 1.1365200388.
3

k k kkcC k kk k

∞ ∞ ∞

= = =

 = = − ++  

=
π

π+ − ≈π

∑ ∑ ∑
          (170) 

23. Tetrahedral Numbers (Triangular Pyramidal Numbers)  
Tn 

These numbers count the number of dots in pyramids built up of triangular 
numbers. If the base is the triangle of side n, then the pyramid is formed by 
placing similarly situated triangles upon it, each of which has one less in its sides 
than that which precedes it (see Figure 27). 

In general, the nth tetrahedral number Tn is given in terms of the sum of the 
first n triangular numbers, i.e., 

1 1 2 3 ,n n n nT T t t t t t−= + = + + + +  

which in view of (15) is the same as 
 

 

Figure 27. Tetrahedral numbers. 
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( )( )1 2 2 .
6 3n n

n n n nT t
+ + +

= =                 (171) 

Thus, first few tetrahedral numbers are 1, 4, 10, 20, 35, 56, 84, 120, 165.  
 In 1850, Pollock conjectured that every natural number is the sum of at most 

five tetrahedral numbers, which has not been proved. Tetrahedral numbers 
are even, except for 4 1, 0,1, 2,nT n+ =  , which are odd, see Conway and Guy 
[30]. The only numbers which are simultaneously square and tetrahedral are 

1 21, 4T T= = , and 48 19600T = , see Meyl [31]. 
 The generating function for all tetrahedral numbers is 

( )
2 3 4

4   4 10 20 .
1

x x x x x
x

= + + + +
−

  

 From (2), (11), and (168) it follows that  

( ) ( )3 2 3 2

1 1

1 13 2 6 11 6 .
6 24

n n

k
k k

T k k k n n n n
= =

= + + = + + +∑ ∑        (172) 

 To find the sum of the reciprocals of all tetrahedral numbers we follow as in 
(16) and (17), to obtain  

( )( )1 1 1

6 1 1 1 1lim 3 3
1 2 1 1 2

1 1 1 3lim 3 1 3 .
1 2 2 2

n n

nk k k

n

k k k k k k k

n n

∞

→∞= = =

→∞

    = − − −    + + + + +    

    = − − − =    + +    

∑ ∑ ∑
   (173) 

 As in (173), we find 

( )
( )( ) ( ) ( )

( ) ( )

( )

1
1 1

1 1 1

1 1

2 3

6 1 1 1 1 13 1 3 1
1 2 1 1 2

1 113 1 2 3 2
2

13 1 2ln 2 2 3 2ln 2 1
2

1512ln 2   0.8177661667.
2

k
k k

k k k

k k

k k

k k k k k k k

k k

−∞ ∞ ∞
− −

= = =

− −∞ ∞

= =

−    = − − − − −   + + + + +   

   − −
   = + − −
   
   

 = + − − − + 
 

= − ≈

∑ ∑ ∑

∑ ∑
 (174) 

 The numbers ( )2
3 2 14 23 27 10 6n nT T n n n− −− = − +  are called truncated te-

trahedral numbers and denoted as ( )nTT . These numbers are assembled by 
removing the ( )1n − th tetrahedral number from each of the four corners 
from the ( )3 2n − th tetrahedral number. First few of these numbers are 1, 16, 
68, 180, 375, 676, 1106. The generating function for all truncated tetrahedral 
numbers is  

( )
( )

2
2 3 4

4

10 12 1
 16 68 180 .

1

x x x
x x x x

x

+ +
= + + + +

−
  

24. Square Pyramidal Numbers (SP)n 

These numbers count the number of dots in pyramids built up of square num-
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bers. First few square pyramidal numbers are 1, 5, 14, 30, 55, 91, 140. In general, 
the nth square pyramidal number ( )nSP  is given in terms of the sum of the 
first n square numbers, i.e.,  

( ) ( ) 2 2 2 2
1 1 2 ,n nSP SP n n
−

= + = + + +  

which in view of (11) and (171) is the same as  

( ) ( )( ) ( )( ) ( )2 2

1 2 1 2 2 2 2 1 1 1 1 .
6 4 6 4 6n nn

n n n n n n
SP T n t

+ + + +
= = = = +

×
  (175) 

 In 1918, George Neville Watson (1886-1965, England) proved that besides 1, 
there is only one other number that is both a square and a pyramid number, 
4900, (as conjectured by Lucas in 1875), the 70th square number and the 24th 
square pyramidal number, i.e., ( )70 24S SP= . 

 The generating function for all square pyramidal numbers is  

( )
( )

2 3 4
4

1
5 14 30 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( ) ( ) ( )23 2

1 1

1 12 3 1 2 .
6 12

n n

k
k k

SP k k k n n n
= =

= + + = + +∑ ∑         (176) 

 To find the sum of the reciprocals of all square pyramidal numbers, we note 
that  

( )( ) ( )

( )

( )

( )

( ) ( )

1 1

1 2 1 2 1 2
0

1

11 2 2
0

0

21 2
20

1 2
0

6 1 1 212
1 2 1 2 2 1 2 1

12 2 d

12 1 d

1 12 1 d
1

1
12 1 d .

1

n n

k k

n
k k k

k

n
k

k

n

n

k k k k k k

x x x x

x x x x

xx x x
x

x x
x x

x

= =

− +

=

−

=

 
= + −  + + + + 

= + −

 = −  
 
−

= −
−

−
= −

+

∑ ∑

∑ ∫

∑∫

∫

∫

 

Now since 

( )1 12 2
0 0

1 1d d     0  as
1 2 1

n nx x
x x x x n

x n
−

< = → →∞
+ +∫ ∫  

it follows that 

( ) ( )( )
( )

( )

1

0
1 1

1

0

11 6lim 12 d
1 2 1 1

212 2 d 6 3 4ln 2
1

1.364467667.

n

nk kk

x x
x

SP k k k x

x x
x

∞

→∞= =

−
= =

+ + +

 = − − = − + 
≈

∑ ∑ ∫

∫        (177) 

 In 2006, Fearnehough [32] used Madhava of Sangamagramma (1340-1425, 
India) series  
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1 1 1 1 11 ,
4 3 5 7 9 11
= − + − + − +

π
  

known in the literature after James Gregory (1638-1675, England) and Gottfried 
Wilhelm von Leibniz (1646-1716, Germany) in the above partial fractions, to 
obtain 

( )
( )( )

( )

1

1

6 1
1 2 1

1 1 4 1 1 4 1 1 4 1 1 46
1 2 3 2 3 5 3 4 7 4 5 9

1 1 1 16 1 4
3 5 7 9

6 1 4 1   6 3 .
4

k

k k k k

−∞

=

−
+ +

        = + − − + − + + − − + − +                
  = + − + − + −    
  = + − = −    

π
π

∑





   (178) 

 The sum of two consecutive square pyramidal numbers, i.e.,  
( ) ( ) ( )2

1 2 1 3, 1n nSP SP n n n
−

+ = + ≥  are called octahedral numbers, and 
denoted as ( )nOH . The first few octahedral numbers are 1, 6, 19, 44, 85, 146, 
231, 344. These numbers represent the number of spheres in an octahedral 
formed from close-packed spheres. Descartes initiated the study of octahe-
dral numbers around 1630. In 1850, Pollock conjectured that every positive 
integer is the sum of at most 7 octahedral numbers, which for finitely many 
numbers have been proved by Brady [33]. The difference between two con-
secutive octahedral numbers is a centered square number, i.e.,  
( ) ( ) ( ) ( )22

1 1n n nOH OH n n cS
−

− = + − = . The generating function for all oc-
tahedral numbers is  

( )
( )

2
2 3 4

4

1
6 19 44 .

1

x x
x x x x

x

+
= + + + +

−


 

From (2) and (168) it follows that  

( ) ( )( )2

1

1 1 1 .
6

n

k
k

OH n n n n
=

= + + +∑               (179) 

Further, as in (100), we have  

( ) ( ) ( )
1

1 3 1 12 2 2 2 2 1.2781850979.
2 2 2k k

i i
OH

γ
∞

=

    = +Ψ − +Ψ + ≈    
    

∑ (180) 

 The sum of two consecutive octahedral numbers, i.e.,  
( ) ( ) ( )( )2

1 2 1 2 2 3 3n nOH OH n n n
−

+ = − − +  is called centered octahedral 
number or Haüy octahedral numbers (named after René Just Haüy, 1743-1822, 
France) and denoted as ( )ncOH . The first few centered octahedral numbers 
are 1, 7, 25, 63, 129, 231, 377. The generating function for all centered octahe-
dral numbers is 

( )
( )

3
2 3 4

4

1
7 25 63 .

1

x x
x x x x

x

+
= + + + +

−
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As earlier, we have 

( ) ( )2 2

1

1 2 .
3

n

k
k

cOH n n
=

= +∑                   (181) 

 From the definitions of ( )ncC  and ( )nSP  it follows that  
( ) ( ) ( )( )2

16 2 1 2 2 1n ncC SP n n n
−

+ = − − + . These numbers are called Haüy 
rhombic dodecahedral numbers. First few of these numbers are 1, 15, 65, 175, 
369, 671. These numbers are constructed as a centered cube with a square 
pyramid appended to each face. The generating function for all Haüy rhom-
bic dodecahedral numbers is  

( )( )
( )

2
2 3 4

4

1 10 1
15 65 175 .

1

x x x x
x x x x

x

+ + +
= + + + +

−
  

 Haüy also gave construction of another set of numbers involving cubes and 
odd square numbers, namely,  

( ) ( )

( ) ( )( )( )
( )( )

3 22 2

3

2

2 1 6 1 3 2 3

2 1 2 1 2 1 2 3

2 1 8 14 7 .

n n

n n n n

n n n

 − + + + + − 

= − + − − −

= − − +



 

First few of these numbers are 1, 33, 185, 553, 1233. These numbers are called 
Haüy rhombic dodecahedron numbers. The generating function for all of these 
numbers is  

( )
( )

2 3
2 3 4

4

1 29 59 13
33 185 553 .

1

x x x x
x x x x

x

+ + −
= + + + +

−
  

 From the definitions of ( )nOH  and ( )nSP  it follows that  
( ) ( ) 3 2

3 2 16 16 33 24 6n nOH SP n n n
− −
− = − + − . These numbers are called 

truncated octahedral numbers. First few of these numbers are 1, 38, 201, 586, 
1289, 2406. These numbers are obtained by truncating all six vertices of oc-
tahedron. The generating function for all truncated octahedral numbers is  

( )
( )

3 2
2 3 4

4

6 55 34 1
38 201 586 .

1

x x x x
x x x x

x

+ + +
= + + + +

−
  

25. Pentagonal Pyramidal Numbers (PP)n 

These numbers count the number of dots in pyramids built up of pentagonal 
numbers. First few pentagonal pyramidal numbers are 1, 6, 18, 40, 75, 126, 196, 
288. In general, the nth pentagonal pyramidal number ( )nPP  is given in terms 
of the sum of the first n pentagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 3 1 1 5 12 22 35 3 1 ,
2 2n n

n nPP PP n n
−

= + − = + + + + + + −
 

which in view of (54) is the same as  

( ) ( )21 1 .
2 nnPP n n nt= + =                    (182) 
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 The generating function for all pentagonal pyramidal numbers is  
( )
( )

2 3 4
4

2 1
6 18 40 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (11) and (168) it follows that  

( ) ( ) ( )( )3 2 2

1 1

1 1 1 3 7 2 .
2 24

n n

k
k k

PP k k n n n n
= =

= + = + + +∑ ∑        (183) 

 To find the sum of the reciprocals of all pentagonal pyramidal numbers, from 
(16), (17), and (39), we have  

( ) ( )
2

2 2
1 1 1 1

1 2 1 1 12 2 2.
1 31k k k kkPP k kk k k

∞ ∞ ∞ ∞

= = = =

 = = − − = − + 

π
+∑ ∑ ∑ ∑     (184) 

 Similar to (174) it follows that  

( )
( )

( )
( )

1 1 2

2
1 1

1 2 1
2 4ln 2 0.8723453446.

61

k k

k kkPP k k

− −∞ ∞

= =

− −
= = + − ≈

+
π∑ ∑      (185) 

26. Hexagonal Pyramidal Numbers (HP)n 

These numbers count the number of dots in pyramids built up of hexagonal 
numbers. First few pentagonal pyramidal numbers are 1, 7, 22, 50, 95, 161, 252, 
372. In general, the nth hexagonal pyramidal number ( )nHP  is given in terms 
of the sum of the first n hexagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 2 1 1 6 15 28 45 2 1 ,n nHP HP n n n n
−

= + − = + + + + + + −  

which in view of (61) is the same as  

( ) ( )( ) ( )1 11 4 1 4 1 .
6 3 nnHP n n n n t= + − = −             (186) 

 The generating function for all hexagonal pyramidal numbers is  
( )
( )

2 3 4
4

3 1
7 22 50 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (11) and (168) it follows that  

( ) ( ) ( )( )3 2 2

1 1

1 14 3 1 2 .
6 6

n n

k
k k

HP k k k n n n
= =

= + − = + +∑ ∑        (187) 

 To find the sum of the reciprocals of all hexagonal pyramidal numbers, we 
follow as in (177) and (184), to obtain  

( ) ( ) ( )

( )

1 1

1 1 1 166
5 1 5 4 1

6 12ln 2 2 1 1.2414970314.
5

k kkHP k k k

∞ ∞

= =

 
= − + +  + −

− ≈π



= −

∑ ∑
         (188) 

 Similarly, we have  

( )
( ) ( ) ( ) ( )

1
1

1 1

1 1 1 166 1
5 1 5 4 1

6 31 4 1,1, 6 ln 2 0.8892970462.
5 4

k
k

k kkHP k k k

−∞ ∞
−

= =

 −
= − − + +  + − 

  = + Φ − − ≈  
  

∑ ∑
     (189) 
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In (189), the function Φ  is the Dirichlet beta function. 

27. Generalized Pentagonal Pyramidal Numbers (GPP)n 

These numbers count the number of dots in pyramids built up of generalized pen-
tagonal numbers. First few generalized pentagonal pyramidal numbers are 1, 8, 27, 
64, 125, 216, 343, 512. In general, the nth generalized pentagonal pyramidal num-
ber ( )nGPP  is given in terms of the sum of the first n generalized pentagonal 
numbers, i.e.,  

( ) ( ) ( ) ( )1 1 3 1 1 7 19 37 1 3 1 ,n nGPP GPP n n n n
−

= + + − = + + + + + + −        

which in view of (68) is the same as  

( ) 3.nGPP n=                        (190) 

Thus, generalized pentagonal pyramidal numbers are the same as cubic num-
bers. 

28. Heptagonal Pyramidal Numbers (HEPP)n  

These numbers count the number of dots in pyramids built up of heptagonal 
numbers. First few heptagonal pyramidal numbers are 1, 8, 26, 60, 115, 196, 308, 
456. In general, the nth heptagonal pyramidal number ( )nHEPP  is given in 
terms of the sum of the first n heptagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 5 3 1 7 18 34 5 3 ,
2 2n n

n nHEPP HEPP n n
−

= + − = + + + + + −
 

which in view of (78) is the same as  

( ) ( )( ) ( )1 11 5 2 5 2 .
6 3 nnHEPP n n n t n= + − = −            (191) 

 The generating function for all heptagonal pyramidal numbers is  

( )
( )

2 3 4
4

4 1
8 26 60 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( )( )( )
1

1 1 2 5 1 .
24

n

k
k

HEPP n n n n
=

= + + −∑             (192) 

 The sum of reciprocals of all heptagonal pyramidal numbers appears as  

( ) ( )

( )

1

1 15 4 2 5 5 52ln 5 1 5 1 ln
14 5 5 2

5 55 1 ln
2

1.2072933193.

k kHEPP

∞

=

  −  = − − − + +
  
  

 +  − −
  

π




≈

∑

  (193) 

 Similarly, as in (189), we have  

( )
( )

1

1

1 3 32 5 1,1, 9 ln 2 0.9023419344.
7 5

k

k kHEPP

−∞

=

−   = + Φ − − ≈  
  

∑     (194) 
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29. Octagonal Pyramidal Numbers (OP)n 

These numbers count the number of dots in pyramids built up of octagonal 
numbers. First few octagonal pyramidal numbers are 1, 9, 30, 70, 135, 231, 364, 
540. In general, the nth octagonal pyramidal number ( )nOP  is given in terms 
of the sum of the first n octagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 3 2 1 8 21 40 3 2 ,n nOP OP n n n n
−

= + − = + + + + + −  

which in view of (88) is the same as  

( ) ( )( ) ( )1 1 2 1 2 1 .
2 nnOP n n n t n= + − = −              (195) 

 The generating function for all octagonal pyramidal numbers is  

( )
( )

2 3 4
4

5 1
9 30 70 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( )( )( )
1

1 1 2 3 1 .
12

n

k
k

OP n n n n
=

= + + −∑              (196) 

 The sum of reciprocals of all heptagonal pyramidal numbers appears as  

( ) ( )
1

1 2 4ln 2 1 1.1817258148.
3k kOP

∞

=

= − ≈∑             (197) 

 Similarly, we find  

( )
( ) ( )

1

1

1 2 1 4ln 2 0.9126692876.
3

k

k kOP

−∞

=

−
= + − ≈π∑           (198) 

30. Nonagonal Pyramidal Numbers (NP)n 

These numbers count the number of dots in pyramids built up of nonagonal 
numbers. First few nonagonal pyramidal numbers are 1, 10, 34, 80, 155, 266, 420, 
624. In general, the nth nonagonal pyramidal number ( )nNP  is given in terms 
of the sum of the first n nonagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 7 5 1 9 24 46 7 5 ,
2 2n n

n nNP NP n n
−

= + − = + + + + + −
 

which in view of (99) is the same as  

( ) ( )( ) ( )1 11 7 4 7 4 .
6 3 nnNP n n n t n= + − = −              (199) 

 The generating function for all nonagonal pyramidal numbers is  

( )
( )

2 3 4
4

6 1
10 34 80 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( )( )( )
1

1 1 2 7 3 .
24

n

k
k

NP n n n n
=

= + + −∑              (200) 
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 The sum of reciprocals of all heptagonal pyramidal numbers appears as  

( )1

1 3 433 28 28 1.6184840638.
88 7k kNP

γ
∞

=

  = − Ψ − − ≈  
  

∑       (201) 

 Similarly, we find  

( )
( )

1

1

1 3 34 7 1,1, 15ln 2 0.9210386965.
22 7

k

k kNP

−∞

=

−   = + Φ − − ≈  
  

∑     (202) 

31. Decagonal Pyramidal Numbers (DP)n 

These numbers count the number of dots in pyramids built up of decagonal 
numbers. First few decagonal pyramidal numbers are 1, 11, 38, 90, 175, 301, 476, 
708. In general, the n-th decagonal pyramidal number (DP)n is given in terms of 
the sum of the first n decagonal numbers, i.e.,  

( ) ( ) ( ) ( )1 4 3 1 10 27 52 4 3 ,n nDP DP n n n n
−

= + − = + + + + + −
 

which in view of (111) is the same as  

( ) ( )( ) ( )1 11 8 5 8 5 .
6 3 nnDP n n n t n= + − = −              (203) 

 The generating function for all decagonal pyramidal numbers is  

( )
( )

2 3 4
4

7 1
11 38 90 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( )( )( )
1

1 1 2 2 1 .
6

n

k
k

DP n n n n
=

= + + −∑               (204) 

 The sum of reciprocals of all decagonal pyramidal numbers appears as  

( )1

1 6 539 40 40 1.1459323453.
325 8k kDP

γ
∞

=

  = − Ψ − − ≈  
  

∑       (205) 

 Similarly, we find  

( )
( )

1

1

1 6 35 8 1,1, 18ln 2 0.9279541642.
65 8

k

k kDP

−∞

=

−   = + Φ − − ≈  
  

∑     (206) 

32. Tetrakaidecagonal Pyramidal Numbers (TETP)n 

These numbers count the number of dots in pyramids built up of tetrakaideca-
gonal numbers. First few tetrakaidecagonal pyramidal numbers are 1, 15, 54, 130, 
255, 441, 700, 1044, 1485. In general, the n-th tetrakaidecagonal pyramidal 
number ( )nTETP  is given in terms of the sum of the first n tetrakaidecagonal 
numbers, i.e.,  

( ) ( ) ( ) ( )1 6 5 1 14 39 76 6 5 ,n nTETP TETP n n n n
−

= + − = + + + + + −  

which in view of (122) is the same as  

( ) ( )( ) ( )1 1 4 3 4 3 .
2 nnTETP n n n t n= + − = −            (207) 

https://doi.org/10.4236/jamp.2021.98132


R. P. Agarwal 
 

 

DOI: 10.4236/jamp.2021.98132 2106 Journal of Applied Mathematics and Physics 
 

 The generating function for all tetrakaidecagonal pyramidal numbers is  

( )
( )

2 3 4
4

11 1
15 54 130 .

1

x x
x x x x

x

+
= + + + +

−


 

 From (2), (11), and (168) it follows that  

( ) ( )( )( )
1

1 1 2 3 2 .
6

n

k
k

TETP n n n n
=

= + + −∑              (208) 

 The sum of reciprocals of all tetrakaidecagonal pyramidal numbers appears 
as 

( ) ( )
1

1 2 2 12ln 2 3 1.1048525213.
21k kTETP

∞

=

+ − ≈π=∑         (209) 

 Similarly, we find  

( )
( )

1

1

1 2 13 4 1,1, 10ln 2 0.9466758087.
21 4

k

k kTETP

−∞

=

−   = + Φ − − ≈  
  

∑    (210) 

33. Stella Octangula Numbers (SO)n 

The word octangula for eight-pointed star was given by Johannes Kepler 
(1571-1630, Germany) in 1609. Stella octangula numbers count the number of 
dots in pyramids built up of star numbers. These numbers also arise in a para-
metric family of instances to the crossed ladders problem in which the lengths 
and heights of the ladders and the height of their crossing point are all integers. 
The ratio between the heights of the two ladders is a stella octangula number. 
First few stella octangula numbers are 1, 14, 51, 124, 245, 426, 679, 1016, 1449. In 
general, the nth stella octangula number ( )nSO  is given in terms of the sum of 
the first n star numbers, i.e.,  

( ) ( ) ( ) ( )1 1 6 1 1 13 37 73 1 6 1 ,n nSO SO n n n n
−

= + + − = + + + + + + −        

which in view of (162) is the same as  

( ) ( ) ( )2
12 1 8 .nn nSO n n OH T −= − = +               (211) 

 The only known square stella octangula numbers are 1 and  
( )2

1699653449 3107 SO= = , see Conway and Guy [30]. 
 The generating function for all stella octangula numbers is 

( )
( )

2
2 3 4

4

10 1
14 51 1124 .

1

x x x
x x x x

x

+ +
= + + + +

−
  

 From (2) and (168) it follows that  

( ) ( )( )2

1

1 1 1 .
2

n

k
k

SO n n n n
=

= + + −∑               (212) 

 The sum of reciprocals of all stella octangula numbers appears as  

( )1

1 1 1 12 1.1114472084.
2 2 2k kSO

γ
∞

=

    
= − +Ψ − +Ψ ≈    

    
∑     (213) 
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 Similarly, we find 

( )
( )

1

1

1 1 1 11,1,1 1,1,1 2ln 2
2 2 2
0.942739143439.

k

k kSO

−∞

=

−     
= Φ − + +Φ − − −    

    
≈

∑      (214) 

34. Biquadratic Numbers (BC)n 

A biquadratic number can be written as a product of four equal factors of natu-
ral numbers. Thus, 1, 16, 81, 256, 625, 1296, 2401, 4096 are first few biquadratic 
numbers. 
 Last digit of a biquadratic number can only be 0 (in fact 0000), 1, 5 (in fact 

0625), or 6.  
 The n-th biquadratic number is the sum is the sum of the first n Haüy rhombic 

dodecahedral numbers. Indeed, from (2), (11), and (168) it follows that  

( )( )2 4

1
2 1 2 2 1  .

n

k
k k k n

=

− − + =∑  

 Fermat’s Last Theorem confirms that a fourth power cannot be the sum of 
two other fourth powers, for details see Agarwal [14]. In 1770, Edward War-
ing (1736-1798, England) conjectured (known as Waring’s problem) that 
every positive integer can be expressed as the sum of at most 19 fourth pow-
ers, and every integer larger than 13,792 can be expressed as the sum of at 
most 16 fourth powers. In 1769, Euler conjectured that a fourth power can-
not be written as the sum of three fourth powers, but in 1988 [34], Noam 
David Elkies (born 1966, USA) disproved Euler’s conjecture. Out of infinite 
number of possible counterexamples the following of Elkies is notable  

4 4 4 420615673 18796760 15365639 2682440 .= + +  

 The generating function for all biquadratic numbers is  

( )
( )

3 2
2 3 4

5

11 11 1
16 81 256 .

1

x x x x
x x x x

x

+ + +
= + + + +

−
  

 From (2), (11), (168), and the identity  

( ) ( ) ( )5 5 5 4 3 2

1 1 1
1 1 1 5 10 10 5 1

n n n

k k k
n k k k k k k

= = =

 + − = + − = + + + + ∑ ∑ ∑  

it follows that 

5 4 3 2 4 4 3 2

1

5 25 315 10 10 5 5 10
2 3 6

n

k
n n n n n k n n n n

=

+ + + + = + + + +∑  

and hence 

( )( )( )4 2 5 4 3

1

1 1 1 1 11 2 1 3 3 1 .
30 5 2 3 30

n

k
k n n n n n n n n n

=

= + + + − = + + −∑    (215) 

 The following identity due to Abu-Ali al-Hassan ibn al-Hasan ibn al-Haitham 
(965-1039, Iraq) combines the sum of numbers raised to the power of four 
with different sums of numbers raised to the power of three 
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( )4 3 3

1 1 1 1
1 .

n n n k

k k k j
k k n j

= = = =

  = + −   
   

∑ ∑ ∑ ∑               (216) 

 From (11), (15), (168), and (215) it follows that  

( ) ( )2 3 2 2

1 1

1 13 12 13 2 3 6 1 .
30 10

n n

k n k
k k

t t n n n t n n
= =

 = + + + = + + 
 

∑ ∑      (217) 

 To find the sum of reciprocals of all biquadratic numbers, we shall use the 
derivation of (39). First in the two expansions of ( )sin x x , we compare the 
coefficients of 4x , to get  

4

2 2
, IN

1 .
5! p q

p q
p q∈

≠

π
= ∑                       (218) 

Now squaring (39), to obtain  
4

4 2 2
1 , IN

1 12 ,
36k p q

p q
k p q

∞

= ∈
≠

+
π

=∑ ∑  

which in view of (218) gives  
4 4 4

4
1

1 2 .
36 5! 90k k

∞

=

= =
π π

−
π∑                    (219) 

 From (219) it immediately follows that  

( ) 1 4

4
1

1 7 .
720

k

k k

−∞

=

=
π−

∑                       (220) 

35. Pentatope Numbers (PTOP)n 

The fifth cell of any row of Pascal’s triangle starting with the 5-term row 1 4 6 4 1, 
either from left to right or from right to left are defined as pentatope numbers. 
First few these numbers are 1, 5, 15, 35, 70, 126, 210, 330, 495. Thus, the n-th 
pentatope number is defined as  

( ) ( )( )( ) ( )2

3 1 1 1 1 2 3 3 .
4 24 6 4n n nn

n
PTOP n n n n t t n T+

+ 
= = + + + = = + 
 

  (221) 

These numbers can be represented as regular discrete geometric patterns, see 
Deza [3]. In biochemistry, the pentatope numbers represent the number of 
possible arrangements of n different polypeptide subunits in a tetrameric (tetra-
hedral) protein. 
 Two of every three pentatope numbers are also pentagonal numbers. In fact, 

the following relations hold  

( ) ( )2 23 2 3 1(3 ) 2 (3 ) 2
   and   .n nn n n n

PTOP P PTOP P
− −− +
= =        (222) 

 The generating function for all pentatope numbers is  

( )
2 3 4

5 5 15 35 .
1

x x x x x
x

= + + + +
−

  

 From (2), (11), (168), and (215) it follows that  
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( ) ( )( )( )( ) ( )( )
1

1 11 2 3 4 4 .
120 5

n

k n
k

PTOP n n n n n n PTOP
=

= + + + + = +∑  (223) 

 As in (17), we have  

( ) ( )( ) ( )( )( )1 1

1 8 8 4 .
1 2 1 2 3 3k kkPTOP k k k k k k

∞ ∞

= =

 
= − =  + + + + + 

∑ ∑   (224) 

 We also have  

( )
( )

1

1

1 6432ln 2 0.8473764446.
3

n

k kPTOP

−∞

=

−
= − ≈∑             (225) 

36. Partitions by Polygonal Numbers 

Recall that general polygonal number can be written as  
( ) ( )2 4 2r

np n r n r= − − −   , where r
np  is the nth r-gonal number. For exam-

ple, for 3r =  it gives triangular number, and for 4r =  gives a square number. 
Fermat in 1638 claimed that every positive integer is expressible as at most k 
k-gonal numbers (Fermat’s Polygonal Number Theorem). Fermat claimed to 
have a proof of this result, however his proof has never been found. In 1750, Eu-
ler conjectured that every odd integer can be written as a sum of four squares in 
such a way that 2 2 2 2n a b c d= + + +  and 1a b c d+ + + = . In 1770. Lagrange 
proved that every positive integer can be represented as a sum of four squares, 
known as four-square theorem. For example, the number  

2 2 2 2 2 2 2 21638 4 6 25 31 1 1 6 40= + + + = + + +  has several different patricians, 
whereas for the number 2 2 2 21536 0 16 16 32= + + +  this is the only partition. In 
1797-8, Legendre extended the theorem in with his three-square theorem, by 
proving that a positive integer can be expressed as the sum of three squares if 
and only if it is not of the form ( )4 8 7k m +  for integers k and m. Later, in 1834, 
Jacobi gave a formula for the number of ways that a given positive integer n can 
be represented as the sum of four squares. In 1796, Gauss proved the difficult 
triangular case (every positive integer is the sum of three or fewer triangular 
numbers, which is equivalent to the statement that every number of the form 
8 3m +  is a sum of three odd squares, see Duke [35]), commemorating the occa-
sion by writing in his diary the line EΓPHKA! num = ∆ + ∆ + ∆ , and published 
a proof in his book Disquisitiones Arithmeticae of 1798. For this reason, Gauss’s 
result is sometimes known as the Eureka theorem. For example, 16 6 10= + , 
25 1 3 21= + + , 39 3 15 21= + + , 150 6 66 78= + + . The full polygonal number 
theorem was resolved finally in 1813 by Cauchy. In 1872, Henri Léon Lebesgue 
(1875-1941, France) proved that every positive integer is the sum of a square 
number (possibly 02) and two triangular numbers, and every positive integer is 
the sum of two square numbers and a triangular number. For further details, see 
Grosswald [36], Ewell [37] [38], and Guy [39]. 

37. Conclusions 

Triangular numbers which are believed to have been introduced by Pythagoras 
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himself play a dominant role in all types of figurative numbers we have ad-
dressed in this article. In fact, Equation (1) says natural number n is the differ-
ence of nt  and 1nt − , whereas Gauss’s Eureka theorem stipulates that n can be 
written as the sum of three triangular numbers. Equation (32) shows that square 
number nS  is the sum of nt  and 1nt − . Equation (44) shows that square num-
ber nR  is 2 times of nt . Relation (51) says pentagonal number nP  is 
( ) 3 11 3 nt − , whereas (53) gives 1 2 1 12n n n n nP t t t t− − −= + = − . Equation (60) informs 
that hexagonal number nH  is the same as 2 1nt − . Relation (67) says generalized 
pentagonal number ( )nGP  is the same as 1 1 1 26 4n n n nt t t t t− − −+ = + + . Equation 
(77) informs that heptagonal number ( )nHEP  is the same as 14n nt t −+ . Relation 
(87) declares that octagonal number nO  is equal to 15n nt t −+ . Equation (98) im-
plies that nonagonal number nN  is equal to 16n nt t −+ . Relation (110) says de-
cagonal number nD  is the same as 17n nt t −+ . Equation (121) informs that tetra-
kaidecagonal number ( )nTET  is the same as 111n nt t −+ . Relation (133) shows 
that centered triangular number ( )nct  is the same as 1 2n n nt t t− −+ + , whereas re-
lation (137) confirms that centered square number ( )ncS  is equal to  

1 22n n nt t t− −+ + . Equation (141) says centered pentagonal number ( )ncP  is equal 
to 1 23n n nt t t− −+ + , whereas Equation (145) tells centered heptagonal number 
( )ncHEP  is the same as 1 25n n nt t t− −+ + . Relation (149) informs that centered 
octagonal number ( )ncO  is the same as 1 26n n nt t t− −+ + , whereas (153) shows 
centered nonagonal number ( )ncN  is the same as 1 27n n nt t t− −+ + , and relation 
(157) tells centered decagonal number ( )ncD  is the same as 1 28n n nt t t− −+ + . 
Equations (161) shows that star number ( )nST  is the same as 1 210n n nt t t− −+ + , 
whereas Equation (165) shows that centered tetrakaidecagonal number 
( )ncTET  is the same as 1 212n n nt t t− −+ + . Relation (168) shows that the sum of 
the first n cubic numbers is the same as 2

nt . Equation (171) shows that tetrahe-
dral number nT  is the same as ( )( )1 3 2 nn t+ . Relation (175) says square py-
ramidal number ( )nSP  is the same as ( )( ) 21 6 1 nn t+ . From the definition of 
octahedral numbers and (175) it follows that  
( ) ( ) ( )( )2 2 21 6 1n nnOH nt n t−= + + . From the relation (182) it follows that penta-
gonal pyramidal number ( )nPP  is the same as nnt . Equation (186) says hex-
agonal pyramidal number ( )nHP  is the same as ( )( )1 3 4 1 nn t− . From Equation 
(191) it follows that heptagonal pyramidal number ( )nHEPP  is the same as 
( )( )1 3 5 2 nn t− . Equation (195) suggests that octagonal pyramidal number 
( )nOP  is the same as ( )2 1 nn t− . Relation (199) tells nonagonal pyramidal num-
ber ( )nNP  is the same as ( )( )1 3 7 4 nn t− . Equation (203) informs that decagon-
al pyramidal number ( )nDP  is the same as ( )( )1 3 8 5 nn t− , whereas relation 
(207) indicates that tetrakaidecagonal pyramidal number ( )nTETP  is the same as 
( )4 3 nn t− . Thus, in conclusion almost all figurative numbers we have studied 
are directly related with triangular numbers. 
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