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Abstract 

The present study proposes a stochastic simulation scheme to model reactive 
boundaries through a position jump process which can be readily imple-
mented into the Inhomogeneous Stochastic Simulation Algorithm by mod-
ifying the propensity of the diffusive jump over the reactive boundary. As 
compared to the literature, the present approach does not require any correc-
tion factors for the propensity. Also, the current expression relaxes the con-
straint on the compartment size allowing the problem to be solved with a 
coarser grid and therefore saves considerable computational cost. The mod-
ified algorithm is then applied to simulate three reaction-diffusion systems 
with reactive boundaries. 
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1. Introduction 

Two of the most important events taking place in biochemical systems are diffu-
sion and reactions. Particles constantly diffuse throughout the system as a result 
of their thermal energy. In the meantime, particles also have collisions with one 
another, some of which may lead to chemical reactions. As long as there are a 
large number of reactive particles, the behavior of the system may be modeled 
using reaction-diffusion partial differential equations. However, a deterministic 
model may be inaccurate or even inapplicable for systems with a small abun-
dance of particles [1]. A remedy to this problem is to use stochastic models, 
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which can take into consideration the innate randomness in the number of par-
ticles. 

Different simulation algorithms for stochastic models of biochemical systems 
have so far been developed [2] [3] [4]. In modelling stochastic reaction-diffusion 
systems, the problem domain is usually divided into the so-called subcells or 
compartments and each compartment is assumed to be a well-mixed system in 
which particles can interact with one another. Particles can also move to their 
neighboring compartments. Such mesoscopic algorithms can be either time-driven 
or event-driven [5]. In a time-driven algorithm, a fixed time step Δt is chosen 
during which at most one event, a reaction or a diffusion, can take place de-
pending on a scaled uniform random number. In an event-driven algorithm, the 
system evolves by choosing the time step until the next event which is either a 
reaction or a diffusive jump. The most commonly used event-driven algorithms 
are the Gillespie algorithm [2], the next reaction method [6] and the next sub-
volume method [7]. These compartment-based algorithms produce exact realiza-
tions of the Chemical Master Equation (CME) and the Reaction Diffusion Master 
Equation (RDME). Other stochastic simulation algorithms for the RDME have 
also been reported in the literature [8] [9] [10].  

The particles in a system also interact with the boundaries. In the determinis-
tic regime, the governing partial differential equation of the system may be sub-
ject to different boundary conditions. Three main types of boundary conditions 
are defined for partial differential equations as follows: 

(i) u   (ii) u
n
∂
∂

  (iii) u C
n
∂

+
∂

                   (1) 

where u
n
∂
∂

 denotes the derivative of u perpendicular to the boundary. Type (i)  

is called a Dirichlet boundary condition. Type (ii) is known as a Neumann 
boundary condition and type (iii) is referred to as a Robin boundary condition. 
When using stochastic techniques, these boundary conditions need to be trans-
lated from their deterministic to a stochastic framework [11]. Certain types of 
the above-mentioned boundary conditions can be readily implemented in a sto-
chastic regime. For instance, the Neumann boundary condition 0u

n
∂

=
∂

, also 
called the zero-flux condition, is represented as a reflective boundary, meaning 
that a particle gets reflected whenever it hits the boundary. The Dirichlet boun-
dary condition 0u = , also called a fully-adsorbing boundary, is modelled such 
that upon hitting the boundary, the particle is totally removed from the system. 
However, other types of boundary conditions, in particular the so-called mixed 
or Robin boundary conditions, may not be easily implemented within a stochas-
tic framework. The reason is that upon hitting this type of boundary, some par-
ticles are removed and some are reflected. As a result, the Robin boundary con-
dition is also referred to as a radiative or a partially adsorbing boundary. Exam-
ples of Robin boundary condition in biology are cell membranes with receptors 
[12] and polymer coating of a virus surface [13] [14]. 
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In accordance with Erban and Chapman [15], in a stochastic framework, any 
boundary condition may be formulated as follows: whenever a molecule hits 
the boundary, it is reflected with some probability, and removed (adsorbed) 
otherwise. As such, this probability is one and zero for the zero-flux and ful-
ly-adsorbing boundaries, respectively. Partially adsorbing boundary condi-
tions have been implemented in both microscopic and mesoscopic stochastic 
algorithms. Andrew and Bray [3] and Singer et al. [16] derived expressions 
for the relationship between the particle adsorption probability of the boun-
dary with the deterministic Robin boundary constant κ for Brownian Dynamics. 
Sayyidmousavi and Rohlf [17] modelled partial adsorption of the boundary in 
the Reactive Multi Particle Collision (RMPC) method by drawing an analogy 
between the RMPC and Brownian Dynamics through the mean free path of par-
ticles. Erban and Chapman [15] calculated the probability of a particle being ad-
sorbed by the boundary to be  

hR
D
κ

=                           (2) 

by developing a position jump process that corresponds to a time-driven me-
soscopic stochastic algorithm. Here h denotes the compartment size, i.e., the 
distance between jumping positions, and D and κ represent the diffusion coeffi-
cient of the particle and the reactivity constant of the boundary, respectively. 
Lier and Marquez-Lago [18] argued that the probability R being bounded by the 
value of one from above imposes an upper limit on the size of the compartment  

h as Dh
κ

≤ . 

This restriction on the compartment size will therefore result in excessive 
computational cost for low ratios between the diffusion coefficient and the Rob-
in boundary constant. In addition, this upper limit may even require h to be too 
small for the RDME to be valid. To resolve this shortcoming, Lier and Mar-
quez-Lago [18] presented an alternative approach by introducing a discretization 
permeability factor β for diffusive jumps across the partially adsorbing boundary 
such that the new propensity for diffusive jumps from the very subcell next to 
the boundary is given by 2

D
h

β . Note that β is calculated by imposing that the 
steady-state stochastic mean summed over all subcells be equal to a pre-defined 
value. In this paper, we have modified the derivation proposed by Erban and 
Chapman [15] through the position jump process, to obtain an adsorption 
probability of the boundary which relaxes the restriction on the compartment 
size to a great extent. This probability can be readily incorporated into the Gil-
lespie algorithm for reaction-diffusion systems with reactive boundaries. The 
paper is organized as follows: Section 2 gives an overview of the Inhomogeneous 
Stochastic Simulation Algorithm. In Section 3, the adsorption probability of the 
reactive boundary is obtained through a modified position jump process. In Sec-
tion 4, the obtained probability is applied to model three reaction-diffusion sys-
tems with partially adsorbing boundaries, and finally, the paper is concluded 
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with a summary and discussion in Section 5. 

2. Materials and Methods 
2.1. Inhomogeneous Stochastic Simulation Algorithm 

First, confirm that you have the correct template for your paper size. This tem-
plate has been tailored for output on the custom paper size (21 cm * 28.5 cm). 
Stochastic Simulation Algorithm (SSA), initially developed by Gillespie [2], is 
one of the most commonly used stochastic algorithms for well-mixed biochemi-
cal systems. Other scholars [19] [20] extended the SSA to account for the spatial 
variations in particle numbers in the problem domain and developed the 
so-called Inhomogeneous Stochastic Simulation Algorithm (ISSA) to solve the 
Reaction-Diffusion Master Equation. The ISSA has been enhanced in terms of 
speed through the development of hybrid and adaptive algorithms [21]-[27]. 
Some scholars have also utilized the ISSA to simulate delayed reactions [28] [29]. 
In the RDME, the problem domain is discretized into NV cubic subvolumes of 
length h, each being considered a well-mixed system. The system consists of Nsp 
species subject to M reactions. Rjk represents reaction Rj in subvolume Ωk that 
can occur with the propensity of ( )jk ka ∗x . xik denotes the number of particles 
of type Si in subvolume Ωk, in the current state of the system. The occurrence of 
reaction Rjk changes the state of the system from x to jk kv e+ ⋅x . Here, vjk is an 
Nsp dimensional column vector that represents the system state due to reaction 
Rjk, while ek is an NV dimensional row vector with all entries being zero except 
for the k-th entry which is equal to 1. 

Diffusion events are modeled as unimolecular reactions such that d
iklR  

indicates the movement of one particle of species Si between two adjacent sub-
volumes k and l. The propensity of such a unimolecular reaction is denoted by  

( )d
ikl ia ∗x , which amounts to 2

i ikD x
h

 with Di representing the diffusion constant  

for species Si. Each diffusion event changes the state of the system from x to 
d

i iklEν+x , where Ei is an Nsp dimensional column vector with all entries being 
zero except the i-th entry which is equal to 1. The state change vector d

iklν  is 
characterized by an NV dimensional row vector. An inhomogeneous system can 
be modeled as a finite state continuous Markovian process. If ( )0 0, | ,P t tx x  is 
the probability of the system being in the state x at time t, provided that at time 
t0, the system was at state x0, the master equation for a system including only 
reactions and no diffusion may be written as: 

( ) ( )

( ) ( )
( ) ( )

0 0 0 0

1 0 01 1

0 0

d , | , , | ,
d

, , , , , | ,

, | ,

VN
jk k jk k jk Nj k

jk k

M

P t t MP t t
t

a P t t

a P t t

ν ν∗ ∗ ∗ ∗= =

∗

=

= − × −
− × 

∑ ∑  

x x x x

x x x x x

x x x

    (3) 

For a system in which only diffusions and no reactions occurs, the master eq-
uation is 
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( ) ( )

( ) ( )
( ) ( )

0 0 0 0

1 0 01 1 1

0 0

d , | , , | ,
d

, , , , , | ,

, | ,

sp V VN N N d d d
ikl i ikl i ikl Ni k l

d
ikl i

P t t DP t t
t

a P t t

a P t t

ν ν∗ ∗ ∗ ∗= = =

∗

=

= − × −
− × 

∑ ∑ ∑  

x x x x

x x x x x

x x x

  (4) 

Subsequently, for a system in which both reactions and diffusions happen. 
The dynamics of the Markov Process is governed by the Reaction Diffusion 
Master equation as follows: 

( ) ( ) ( )0 0 0 0 0 0
d , | , , | , , | ,
d

P t t MP t t DP t t
t

= +x x x x x x          (5) 

At each step of the ISSA, two uniformly distributed random numbers r1 and r2 
between 0 and 1 are generated. With a0(x) representing the sum of the propensi-
ties for all the events in the system at state x including both reactions and diffu-
sions, the time until the next event, δt, is calculated as 

( )0 1

1 1lnt
a r

δ =
x

                       (6) 

with a0 being 

( ) ( ) ( )0 1 1 1 1 1
V sp V VN N N N d

jk k ik
M

l ij k i l ka a a∗ ∗= = = = =
= +∑ ∑ ∑∑ ∑x x x         (7) 

The next event is predicted as follows: if the index (j, k) is the minimum such 
that 

( ) ( )2 01 1
j k

j k kj k a r a′ ′ ′∗′ ′= =
>∑ ∑ x x                (8) 

then the reaction Rjk occurs first. If, however, the index follows 

( ) ( ) ( )2 01 1 1 1 1
VM N i l k d

j k k i k l ij k i l ka a r a′′ ′′ ′ ′ ′ ′ ′∗ ∗′′ ′′ ′ ′ ′= = = ==
+ >∑ ∑ ∑ ∑ ∑x x x      (9) 

then diffusion event d
iklR  will take place first. 

2.2. Modified Position Jump Process 

As previously mentioned, diffusion or position jump in the ISSA is modelled as a 
unimolecular reaction, the probability of which is equal to 2

iD t
h
δ

. As a result, in 
a one dimensional case, a particle of type Si in subvolume Ωk, at time t + δt, can  

stay in its current position with a probability equal to 2

21 D t
h

δ−  or it can jump  

to its adjacent right or left subvolume, each with a probability of 2

D t
h

δ . Now, if 
a particle is located in a subvolume Ωk adjacent to a partially adsorbing boun-
dary on its left side, the probability of the particle remaining in its current posi-
tion at time t + δt can be calculated as: 

( ) ( ) ( )12 21k ads k k
D Dp t t t P p t t p t
h h

δ δ δ +
   + = − − +   
   

      (10) 

Pads in the above-given equation is the adsorption probability of the boundary. 
It can be seen that Pads = 0 and 1 will correspond to a fully reflective and fully 
adsorbing boundary, respectively. Equation (10) can be rearranged as follows: 
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( ) ( ) ( ) ( ) ( )1k k k k ads
k

p t t p t p t p t hPD p t
t h h D t

δ
δ δ

++ − − 
= − 

 
     (11) 

In order to comply with the diffusive limit [30], both sides of this equation are 

multiplied by tδ  and by letting both h and δt approach zero while t
h
δ  is  

kept constant, the term in the right-hand side parenthesis of Equation (11) ap-
proaches zero which is analogous to the following deterministic Robin boundary 
condition with n(x,t) representing the particle density: 

nD n
t

κ∂
=

∂
                        (12) 

This analogy will result in the adsorption probability being 

ads
tP

h
δκ=                         (13) 

Unlike h
D

κ  obtained by Erban and Chapman [15], the above-calculated 
probability imposes a lower bound on the compartment size h relaxing the re-
striction on the compartment size. However, it should be noted that, in order to 
ensure spatial variations in the system, h is restricted from above, i.e., h L

 
where L denotes the size of the domain. Also, h has to be significantly larger 
than the binding radius for the molecular based Smoluchowski model [19], that 
is h ρ . 

The ISSA can therefore be modified such that the propensity of diffusion 
jump over a partially adsorbing boundary is set equal to 

h
κ . Therefore, in Equa-

tion (7), the diffusive propensity is calculated as:  

( )
0 fully reflective boundary

Partially adsorbing boundary
d
ikl i ik

a kx
h

∗


= 


x          (14) 

As can be seen, using Equation (14), the partially adsorbing boundary condi-
tion can be easily implemented into the ISSA algorithm as opposed to the prob-
ability approach developed by Erban and Chapman [15]. In fact, in the latter 
approach, for each iteration, an additional uniformly distributed random num-
ber needs to be generated and compared to the adsorption probability in Equa-
tion (2). 

3. Results and Discussions 
3.1. Case Study I: Diffusion 

The first system contains a number of particles that can diffuse throughout the 
domain. For this purpose, we assume that 100,000 particles exist in a computa-
tion domain [0, 5] such that initially, 75,000 of the particles are at x = 1 and the 
remaining 25,000 are at x = 2. The domain is discretized into 50 subvolumes of 
length h = 0.1. The left boundary, i.e., x = 0 is assumed to be subject to a Robin 
boundary condition with κ = 2. The boundary at x = 5 is considered to be fully 
reflective. The diffusion coefficient of the particles is set equal to D = 1. The 
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given values of h, κ and D correspond to an adsorption probability of 0.2h
D

κ =  
for the left hand-side boundary according to Erban and Chapman [15]. Follow-
ing Equation (13) obtained in this paper, the propensity of the diffusion jump 
over the partially adsorbing boundary in the ISSA algorithm is calculated to be 

20
h
κ
= . Figure 1 shows the distribution profile, obtained using the modified 

ISSA, at t = 1 compared to the PDE solution.  
Now, if the diffusion coefficient is changed to D = 0.1, the adsorption proba-

bility of the boundary, as calculated by Equation (2), will be equal to 
2 1h

D
κ = > , making it physically meaningless unless the compartment size h is 
considerably refined (h < 0.05) which results in additional computational cost. 
However, according to Equation (13), the new diffusion jump propensity over 
the left hand-side boundary remains 20

h
κ
= , with h = 0.1, resulting in the dis-

tribution given in Figure 2 when applied to the ISSA. Figure 3 shows the dis-
tribution profiles obtained through the present method with h = 0.1 compared 
to using Equation (2) with h = 0.04. The results are seen to be in good agreement 
with one another. However, the use of the present method has resulted in a de-
crease of 87% in the computational time. 

3.2. Case Study II: Reaction and Diffusion 

In the second example [18], we consider a square domain of [0, 1] × [0, 1] in 
which the particles of type A can diffuse with a constant coefficient of D = 0.1. 
The system also consists of a production reaction as follows: 

sk A∅→                          (15) 

where 100sk = . Such a system can be described by the following PDE in the 
deterministic framework 

( ) ( )2, ,
, ,A s

n x y t
D n x y t k

t
∂

= ∇ +
∂

                 (16) 

 

 
Figure 1. Stochastic simulation of diffusive system with D = 1 and κ = 2 at t = 1. 
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Figure 2. Stochastic simulation of diffusive system with D = 0.1 and κ = 2 at t = 1. 
 

 

Figure 3. Stochastic simulation of diffusive system with D = 0.1 and κ = 2 at t = 1. 
 

The left and right boundaries of the domain are subject to fully reflective and 
fully adsorbing conditions, respectively. The top and bottom boundaries satisfy 
the Robin condition with 0.1topκ =  and 5bottomκ = . In order for the adsorption  

probability formula in [15] to be used, 1
50

h < . In this paper, the problem is  

solved with 1
30

h =  applying the proposed formula. Figure 4 shows the solu-
tion to this system obtained with the modified ISSA at t = 10 compared to the 
PDE solution.  

3.3. Case Study III: Schnakenberg System 

The third system follows the Schnakenberg kinetics consisting of species U as 
the activator and V as the inhibitor, which undergoes the following reactions: 
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Figure 4. Particle density at t = 10; PDE solution (top), Stochastic solution (bottom). 
 

1 1
1, 2 seck U k −∅ = Ω→                 (17a) 

2 1
2, 6 seckU k −∅ =→                  (17b) 

3
3, 8k V k∅ → = Ω                   (17c) 

4 1
4 2

32 3 , seckU V U k −+ =
Ω

→             (17d) 

In addition, species U and V diffuse throughout the domain [0, 1] with diffu-
sion constants 1UD =  and 0.1VD = , respectively [15]. The system is described 
by a system of reaction-diffusion equations: 

2
2

2 2 6 3U
u uD u u v
t x

∂ ∂
= + − +

∂ ∂
                 (18) 

2
2

2 8 3V
v vD u v
t x
∂ ∂

= + −
∂ ∂

                    (19) 

The boundary condition at 1x =  is assumed to be fully reflective; whereas 
Robin boundary conditions are imposed at 0x = , namely: 

( ) ( ) ( ) ( )0, 10 0, , 0, 10 0,u vt u t t v t
x x
∂ ∂

= =
∂ ∂

            (20) 

The initial condition is defined as 

( ) ( )3 3,0 , ,0u x v x
h h
Ω Ω

= =                   (21) 
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(a) 

 
(b) 

Figure 5. (a) Stochastic simulation of species U in the Schnakenberg System at t = 1; (b) 
Stochastic simulation of species V in the Schnakenberg System at t = 1. 
 

The problem domain is discretized into 50 subvolumes of length 0.02h = . 
Through comparison with Equation (12), the values for the reactivity constant κ 
are obtained; 10Uκ =  and 1Vκ = . 250Ω =  particles of each species, i.e., U 
and V are initially placed in each subvolume. Figure 5 shows how the particles 
of type U and V are distributed through the system at t = 1. It can be seen that 
the results from the modified ISSA are in very good agreement with the PDE 
solution.  

4. Conclusion 

Motivated by the existence of partially permeable boundaries in cell biology, the 
present paper proposed a modified position jump process leading to an expres-
sion for the propensity of a diffusion jump over a partially adsorbing boundary, 
which can be readily implemented into the ISSA. The proposed formula imposes 
a lower bound on the compartment size which relaxes the additional restriction 
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on the compartment size as proposed by Erban and Chapman [15]. It is note-
worthy that the usual upper and lower bounds for the compartment size, i.e., 
h ρ  and h L

, will guarantee that the adsorption probability remains 
bounded between zero and unity. As indicated in case studies I and II, using the 
proposed formula, one can solve the problem with a larger compartment size, 
thus saving considerable computational cost. Also, the use of the present ap-
proach is computationally much simpler than calculating the factor β for diffu-
sive jumps, which requires imposing that the steady-state stochastic mean 
summed over all subvolumes be equal to a pre-defined value as in reference [18]. 
As can be seen in case study III, since the derivation of the propensity depends 
solely on the diffusive jump process, the existence of higher order reactions does 
not affect the boundary conditions. Another important point to notice is that, in 
general, for a small number of particles, the average stochastic solution of reac-
tion-diffusion systems can be compared with deterministic, i.e., the PDE solu-
tion, only when the reactions are of zeroth and first orders [31]. In the Schna-
kenberg model simulated in this paper, the number of particles has been chosen 
large enough to make such a comparison possible. 
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