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Abstract 
The irreversible mechanism of heat engines is studied in terms of thermody-
namic consistency and thermomechanical dynamics (TMD) which is pro-
posed for a method to study nonequilibrium irreversible thermodynamic sys-
tems. As an example, a water drinking bird (DB) known as one of the heat 
engines is specifically examined. The DB system suffices a rigorous experi-
mental device for the theory of nonequilibrium irreversible thermodynamics. 
The DB nonlinear equation of motion proves explicitly that nonlinear diffe-
rential equations with time-dependent coefficients must be classified as inde-
pendent equations different from those of constant coefficients. The solutions 
of nonlinear differential equations with time-dependent coefficients can ex-
press emergent phenomena: nonequilibrium irreversible states. The couplings 
among mechanics, thermodynamics and time-evolution to nonequilibrium 
irreversible state are defined when the internal energy, thermodynamic work, 
temperature and entropy are integrated as a spontaneous thermodynamic 
process in the DB system. The physical meanings of the time-dependent en-

tropy, ( ) ( )dT t t , internal energy, ( )d t , and thermodynamic work, 

( )dW t , are defined by the progress of time-dependent Gibbs relation to 
thermodynamic equilibrium. The thermomechanical dynamics (TMD) ap-
proach constitutes a method for the nonequilibrium irreversible thermody-
namics and transport processes. 
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Nonlinear Differential Equation with Time-Dependent Coefficients,  
Nonequilibrium Irreversible States 

 

1. Introduction 

A water drinking bird (DB) is a delightful, scientific toy that produces a simple 
back and forth motion by occasionally dipping its beak in water as if it keeps 
moving only with water supply. On the contrary to the delicate and slender fig-
ure, the DB system is an excellent educational tool for mechanical and thermo-
dynamic transport systems of heat and energy as Albert Einstein and many other 
scientists have been fascinated [1] [2] [3]. It demonstrates thermodynamic phe-
nomena, or more precisely, irreversible thermodynamic phenomena. We have dis-
cussed the equation of motion and solution to the thermomechanical DB model 
and practical applications through thermoelectric energy conversions [4] [5]. Based 
on the papers, the irreversible thermodynamic DB system and thermodynamic 
consistency, time-evolution to thermodynamic equilibrium, the concept of coupl-
ing and decoupling of mechanical and thermodynamic systems will be discussed 
and numerically evaluated in the current paper. 

The mathematical definition of thermodynamic equilibrium is given by the 
fundamental relation in thermodynamics [6] [7]:  

( )
, ,

, 1 ,
V N

V
T

∂
=

∂
�

 


                  (1.1) 

with the entropy  , internal energy  , temperature T, at fixed volume V and 
particle number N, � , at thermodynamic equilibrium (Boltzmann constant, 

1Bk ≡ ). The first and the second laws of thermodynamics and relations among 
thermodynamic functions are incorporated in Equation (1.1) at thermal equili-
brium. The drinking bird begins with a simple pendulum motion of classical me-
chanics; gas in head-bulb and volatile water in a glass tube are at thermal equili-
brium but gradually evolve to nonequilibrium irreversible states and then, the 
mechanism leads to a drinking motion. One may think that motion of the drink-
ing bird is easy and simple, but one should be very careful that the drinking 
bird’s motion develops from mechanical and thermodynamic equilibriums to a 
nonequilibrium irreversible state, which is one of the fundamental topics for the 
research and the laws of physics. 

We employ the fundamental relation (1.1) for the time-evolution from me-
chanical and thermodynamic equilibriums to a nonequilibrium irreversible state 
and vice versa. The change of the thermal state is related to time-evolution of the 
internal energy, ( )t , entropy ( )t , temperature ( )T t  and work ( )W t  in 
the DB system, and the work ( )W t  includes a time-change of volume ( )V t . 
Hence, we suppose the transformation from mechanical and thermodynamic 
states to a nonequilibrium irreversible state (NIS) by:  
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where the time ct  is a “critical time” (onset time) for the transition, and dt  is 
the corresponding drinking (dipping) time. The transition from a NIS to an 
equilibrium state after dipping is similarly investigated by:  

( ) ( ) ( )( )
( )( )

( )
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, , ,
1 .

, d
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t t
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t W t <
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�

  


      (1.3) 

Though detailed heat conduction mechanisms should be introduced for tran-
sitions at ct  and dt  shown by arrows in (1.2) and (1.3), the transitions are ma-
thematically simplified and expressed by using piecewise continuous function 
(the step function) in the thermomechanical model [4]. The “thermodynamic 
consistency of irreversible processes” is examined by conditions: (1.1)-(1.3). 

The transition from equilibrium to a NIS starts at ct  shown by (1.2), and a 
different mode of oscillation driven by thermodynamic work (up-going volatile 
water in the glass tube) is observed until a DB’s dipping. After a DB’s dipping, 
the volatile water in the glass tube is artificially returned to the lower bulb by a 
mechanical trick. The mathematical technicality corresponding to the mechani-
cal trick is produced with the step function and termed as “initialization” [4]. 
The transition from a NIS to a thermodynamic equilibrium (1.3) is also shown 
consistently after DB’s drinking time, dt , which will be explained in detail in 
Section 2. One would realize that the DB system and motion can be a perfect 
experimental device to study fundamental laws of thermodynamics and none-
quilibrium irreversible thermodynamics [8] [9] [10]. 

The time period, c dt t t< < , characterizes a NIS, and one can check different 
modes of oscillations (slow and elongated, slightly-increasing oscillations) de-
veloping to water drinking motion, and after drinking, the DB motion is de-
coupled to an equilibrium, which is composed of independent mechanical and 
thermodynamic states. The time-evolution from equilibrium to a NIS and then, 
to an equilibrium state can be clearly observed from the change of oscillation 
modes. In other words, the emergent coupling and decoupling of mechanical 
and thermodynamic states can be numerically measured in DB’s oscillations. 
Although the nonlinear differential equation with constant coefficients is used as 
the DB’s starting equation of motion by way of Hamiltonian (or Lagrangian) 
method, the DB motion cannot be reproduced by the nonlinear differential equ-
ation with constant coefficients. The mathematical equation of motion for the 
water drinking motion is a nonlinear differential equation with time-dependent 
coefficients, which has independent solutions to those of nonlinear differential 
equation with constant coefficients. The nonlinear differential equations with 
constant or time-dependent coefficients must be categorized as different classes 
of nonlinear differential equations, which is a mathematically important prop-
erty discovered in the DB analysis, which will be explained in Section 2 and Sec-
tion 3. 
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The macroscopic (total or global) entropy, d  and microscopic (constituent 
or local) entropies d i  have been often discussed in thermodynamic equilibrium, 
or linear and near-equilibrium states so that the entropy relation, d d ii= ∑  , 
holds. One should realize that fundamental complications will arise when the 
internal energy, work, heat, particle flows of photon, electron, nuclear particles, ..., 
are self-consistently coupled to each other in nonequilibrium and irreversible 
processes, resulting in d d ii≠ ∑  . This would be a reason why one needs to 
restrict thermodynamic variables for adequate descriptions of nonequilibrium 
systems [11]. One must determine the minimum number of thermodynamic va-
riables that contributes decisively to the total system because not only constitu-
ents entropies but also internal energies and thermodynamic work would self- 
consistently interact with all other constituents. The self-consistent interactions 
of one total entropy multiplied by temperature, ( ) ( )T t t , internal energy 
( )t , work ( )W t  are sufficient to study the DB system. 
The terms, entropy, entropy production or dissipation, are known to be de-

fined and used by different researchers in different ways, such as the maximum 
or minimum entropy production, minimum energy dissipation, etc., which is 
creating much confusion and logically circular arguments and statements [12] 
[13] [14] [15]. If the state of confusion is generated for not only beginners but 
also researchers, it should be improved for applications to accurate and delicate 
modern technologies of diverse fields, such as biological, medical, chemical and 
quantum transport systems [16] [17] [18] [19] [20]. The water drinking bird 
would be helpful as an enlightening and rigorous experimental device for study-
ing a NIS. 

Modern technologies are progressing towards higher speed, power, miniatu-
rization, efficient energy use and minimization of waste of energy, necessary for 
supporting ecological diversity and energy sustainable societies. In addition, space 
technologies will demand high energy use and energy efficiency. The issues in 
diverse fields of different energy conversions, harvesting and storage technolo-
gies are important for modern society to solve existing environmental problems 
[21] [22]. The world’s primary energy consumption is increasing and reported as 
14 TW-years/year, and energy efficiencies of mechanoelectric or thermoelectric 
energy conversions have been actively investigated [23] [24] [25] for solar, bio-
mass, geothermal, hydrodynamic and wind turbines, coal-fired and nuclear 
power plants. These energy generation technologies will require new and im-
proved knowledge. The optimal and sensitive thermoelectric energy conversion 
method based on the DB mechanism [5] could be useful for technological ana-
lyses and applications. 

The analysis of drinking bird made us study the fundamental structure for 
theories of science, which would also help people in science reflect on physical 
principles of sciences; it is summarized that the theory of science should be ex-
amined in terms of reproducibility, self-consistency and testability. These crite-
ria are difficult to achieve in general for scientific theories and models, but it 
would be reasonable to say that the four fundamental mechanics (Analytical 
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mechanics, Thermodynamics, Electromagnetism, Quantum mechanics) and as-
sociated models, such as special relativity, quantum electrodynamics (QED) seem 
to maintain, and they have shown reproducibility, theoretical self-consistency and 
testability, resulting in great contributions to modern technologies. The DB pa-
pers [4] [5] elucidates reproducibility and testability, which includes experimen-
tal and mathematical reproductions of observed data and possible applications 
in the field of thermoelectric energy conversions. The purpose of the paper is to 
study thermodynamic consistency of a drinking bird mechanism and a metho-
dology for nonequilibrium irreversible thermodynamics. 

The time-dependent internal energy ( )t , nonlinear differential equation of 
motion with time-dependent coefficients, coupled and decoupled oscillations are 
discussed with a short review of the thermomechanical DB model in Section 2. 
Then, the time-evolution of internal energy ( )t , work ( )W t , total entropy 
( )t  and temperature ( )T t , thermodynamic consistency of the DB system 

and heat engines are examined in Section 3. The foundation of thermomechani-
cal dynamics (TMD) for nonequilibrium irreversible thermodynamics is dis-
cussed in Section 4. The conclusions and perspectives of scientific ways of think-
ing are discussed in Section 5. 

2. The Time-Dependent Internal Energy ( )t  and the  
Equation of Motion in the Irreversible Thermomechanical  
DB Model 

A drinking bird and its topological deformation and the angle ( )tθ  are shown 
in Figure 1(a) and Figure 1(b) respectively. The DB’s thermodynamic equili-
brium is defined by (1.1): ( )

, ,
, 1

V N
T E V∂ ∂ =

�
  , and subsequently, the me-

chanical equilibrium must be defined before discussing the time-evolution of the 
internal energy, ( )t , entropy ( )t  and work ( )W t . The starting equation 
of motion for a mechanical drinking bird should be constructed by employing 
Lagrangian or Hamiltonian [26] [27], and the total energy with the rotational 
kinetic energy and the potential energy defined from the axis of rotation is: 

2
0 2 1 3

1 cos ,
2 2

lI m ga m g b m gb  = − − − −  
  

�θ θ         (2.1) 

where the DB’s length is l a b= + . The moment of inertia is given by the sum, 

0 1 2 3I I I I= + + , the moment of inertia of head 3I , glass tube 1I , and lower bulb 

2I , respectively [4]. The moment of inertia of head and lower bulb are given by 
2

2 2I m a=  and 2
3 3I m b= , and 1I  is given by,  

2
2

1 1 1 1 .1
3

b bI m l
l l

    = − − + −         
               (2.2) 

The effective mass m∗  is introduced for convenience as,  

2 1 3
1 ,
2

a b bm m m m
l l l

∗  = − − − 
 

                (2.3) 
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(a) 

 
(b) 

Figure 1. A mechanical modeling of a drinking bird. (a) A drinking bird (DB) devided 
into the head m3, glass tube m1, and bottom m2 which includes volatile water; (b) A topo-
logical deformation for the drinking bird of (a) by employing the concept of centers of 
mass. 
 
and the DB energy is written with m∗  as,  

2
0

1 cos ,
2

E I lgm∗= −�θ θ                  (2.4) 

where the potential energy is measured from the axis of rotation in Figure 1(a), 
and so, the total energy can be negative or positive according to θ  and �θ . The 
mechanical equation of DB motion is written as,  

0

sin 0 .glmc
I

∗

+ + =�� �θ θ θ                   (2.5) 

The DB motion derived from (2.4) and (2.5) can express, for example, back- 
and-forth solutions around 0=θ , or up-side-down solutions around π=θ , as 
shown respectively in Figure 2(a). Generally speaking, the nonlinear Equation 
(2.5) has stable independent solutions converging to  

( )0,1,2,3,n n n= ± =π �θ , and the solution suddenly changes from the 0=θ   
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(a) 

 
(b) 

Figure 2. The solutions of nonlinear differential equations with constant and time-de- 
pendent coefficients. (a) The independent solutions of the nonlinear equation with con-
stant coefficients (2.5), starting from 6θ = π , and converging to 0θ =  and θ = π , 
respectively; (b) The solution of the nonlinear equation with time-dependent coefficients 
(2.7), which is the continuous solution starting from 6θ = π  and converging to θ = π . 
The arrow points the drinking angle and time, dt . The initialization (2.8) at dt  produc-
es Figure 3(a). 
 
converging solution to the others when certain parameter values of mass m and 
moment of inertia 0I  are given (other parameters, , ,g l c , are fixed). The prop-
erty of splitting into independent solutions is known as bifurcation phenomena 
for nonlinear differential equations with constant coefficients [28] [29], which 
proves that there are no continuous solutions changing from 0=θ  to π=θ  in 
(2.5). The existence and derivations of exact values of parameters for bifurcation 
phenomena are not known. When the bird moves from 0=θ  to π=θ  solu-
tion, the bird can drink water. Therefore, it is not possible to obtain a water 
drinking solution from the energy and equation of motion, (2.4) and (2.5). 
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The up-going liquid in a glass tube changes the DB moment of inertia and in-
ternal energy, and we assumed a constant velocity, ( ) 0v t v= , for the up-going 
liquid [4]. The constant velocity, 0v , can be considered as an “averaged” veloci-
ty of up-going slightly-oscillating liquid, and time variations of ( )I t  and 

( )m t∗  are determined. The numerical simulation is stable around a constant 
velocity, 0v , which is one of the reasons why the model calculation is successful. 
The time-dependent internal energy ( )t  is given by,  

( ) ( ) ( )21 cos ,
2

t I t lgm t∗= −�θ θ               (2.6) 

and detailed expressions of ( )I t  and ( )m t∗  are discussed in the paper [4]. 
The correct time-evolution equation of DB motion is,  

( )
( )

sin 0 .
glm t

c
I t

∗

+ + =�� �θ θ θ                 (2.7) 

The nonlinear differential Equations (2.6) and (2.7) should be compared with 
the energy and mechanical equation of motion (2.4) and (2.5), and numerical 
solutions are respectively shown in Figure 2(a) and Figure 2(b). The nonlinear 
differential Equation (NDE) with constant coefficients cannot produce the con-
tinuous solution in Figure 2(b). The NDE with time-dependent coefficients in 
(2.7) can reasonably produce the DB oscillations, and it is possible to generate a 
continuous solution converging from 0=θ  to π=θ . Therefore, the nonlinear 
differential equation with constant coefficients and time-dependent coefficients 
must be mathematically categorized in a different class of nonlinear equations. 

One should also note that the equation of motion (2.7) cannot be derived 
from (2.6) by way of a mechanical, Lagrangian or Hamiltonian method, because 
the energy (2.6) is explicitly time-dependent and equivalently non-conservative. 
However, the physical results and mechanism of NDE with time-dependent 
coefficients, the DB’s time-dependent ( )m t∗  and ( )I t , driven by time-dependent 
energy ( )t  and thermodynamic work ( )W t  are consistent with DB’s motion 
as a NIS. The arrow in Figure 2(b) points DB’s water dipping angle, 2πθ  , 
and time, ( )38.8 sdt  . The DB motion returns to a ( 0=θ )-converging oscilla-
tion at ( )38.8 sdt  , which is a mechanical trick with the artificial shape of 
arm and axis of rotation (see, Figure 1(a)). The mechanical trick to return to a 
( 0=θ )-converging oscillation is defined as “Initialization”, and mathematically 
defined with a piecewise continuous step-function [4] as,  

( ) ( ) ( )( ) ( )2 0, , , , ,
dt

x t m t I t a m I∗ ∗→                (2.8) 

at a drinking time dt . This is a mathematical simplification, which must be ex-
tended by including mechanism of heat conduction, diffusion and ignition phe-
nomina [30] [31] [32] [33] [34]. 

The motion from the initial oscillations to the first critical time ( )24.0 sct  , 
then to the dipping at ( )38.8 sdt   and oscillations after dt  is shown in Fig-
ure 3(a). The DB oscillations are in thermal and mechanical equilibriums up to  
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 3. The drinking oscillations and the time-variation of moment of inertia, ( )I t , in 

(2.6) and (2.7) (for detailed calculations, see the paper [4]). (a) The 1st forced-oscillation 
extending to water-drinking arises at ( )1 24.0 sct  , and the bird’s 1st-drinking motion 

and initialization at ( )1 38.8 sdt   and oscillations after drinking are shown; (b) The 1st 

forced-oscillation arises at ( )1 24.0 sct   and the bird’s 1st-drinking motion at  

( )1 38.0 sdt  . The second forced-oscillation at ( )2 60.5 sct  , the 2nd-drinking at  

( )2 68.3 sdt   and oscillations after the drinking; (c) The time-variation of the moment 

of inertia ( )I t  corresponding to (a). Note the corresponding change of ( )I t  at  

( )1 24.0 sct  ; the 1st-drinking and initialization ( ( ) 0I t I→ ) at ( )1 38.8 sdt  ; (d) The 

time-variation of the moment of inertia ( )I t  corresponding to (b). The 1st forced-oscillation 

starting at ( )1 24.0 sct  , drinking and initialization ( ( ) 0I t I→ ) at ( )1 38.0 sdt  . The 

2nd forced-oscillation starting at ( )2 60.5 sct  , drinking and initialization at ( )2 68.3 sdt  . 

 
a critical time ( )1 24.0 sct  , and the change of oscillation-mode induced by 
thermodynamically-driven forced oscillations is observed from 1ct  to  

( )1 38.8 sdt  . The critical time ct  signifies the onset and transition from equi-
librium to a NIS and the reversed transition occurs at the dipping time dt . Simi-
larly, the DB’s 1st and 2nd oscillations are shown in Figure 3(b). The simple os-
cillations after 1dt  reaches the 2nd critical time ( )2 60.5 sct  , and the 2nd 
slow and elongated oscillations develop up to the second dipping, ( )2 68.3 sdt  . 
After dipping at 2dt , the DB system returns to mechanical and thermodynamic 
equilibriums. In short, the mechanical and thermodynamic states couple at the 
critical time, ct  and emerge as a NIS, and then decouple to respective equili-
brium states at dt . The time periods of oscillations, 1 1c dt t t< <  and 2 2c dt t t< < , 
exhibit NISs. 

The mechanical energy conservation law loses its meaning, but instead, the 
total conservation of heat and energy is restored in the NIS. The physical coeffi-
cients of the internal energy and equation of motion become time-dependent 
and progress to the NIS, which is fundamentally different from mechanical and 
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thermal equilibriums. These phenomena are not supposed to be obtained from 
the continuous unitary-transformation in time in classical and quantum me-
chanical systems because time-symmetry is broken in a NIS. The time-dependence 
of thermodynamic work ( )W t  is considered to be spontaneously produced and 
never infinitesimally slowly constructed in a NIS, and thermodynamic work also 
depends on levels of technology to convert the thermal energy. The physical 
mechanism to induce time-dependent coefficients of energy and the nonlinear 
equation of motion are essential points to be scrutinized by the concept of ther-
modynamic work, internal energy and entropy in a NIS. 

The time variations of the moment of inertia, ( )I t , corresponding to Figure 
3(a) and Figure 3(b) are shown in Figure 3(c) and Figure 3(d), respectively. 
The corresponding changes of motion are caused by the thermodynamic work 
driven by up-going volatile water, resulting in time variations of ( )I t  and ( )m t∗ . 
Since we employed piecewise continuous functions (step functions) as a mathe-
matical model, the discontinuous changes of physical quantities at ct  and dt  
are observed in numerical simulations. When humidity of environmental heat 
reservoir is saturated, DB’s back-and-forth motion soon stops because of dissi-
pation of energy, friction and viscosity, and if the simple motion around 0=θ  
is sufficiently weak, it converges to thermodynamic equilibrium at t →∞  in a 
mathematical sense. In other words, if the DB’s mechanical motion and the 
thermodynamic system cease to contribute to each other by way of heat or energy 
transfer, both systems will be decoupled and independently advance to mechan-
ical and thermodynamic equilibrium states, respectively. 

The concept of coupled or decoupled mechanical and thermodynamic systems 
is important to study mechanism of time evolutions from a NIS to thermal and 
mechanical equilibriums and vice versa. In case that heat or entropy flows could 
not produce sufficient work to affect each other, the NIS proceeds to respective 
equilibriums, which can be experimentally checked and may correspond to linear 
thermodynamics or not far from thermodynamic equilibrium. Therefore, the DB 
system can be in a state of thermodynamic equilibrium with the oscillation 
around 0=θ  and small differences of heat and energy as near thermodynamic 
equilibrium, expressed as ( )

, ,
, 1

V N
T V∂ ∂ ≈

�
   . With the condition, the li-

near thermodynamics and flux equations can be discussed in the DB analysis. 
An example of numerical simulations of fundamental relations, (1.1)-(1.3), is 
specifically examined in the next section. 

The fundamental macroscopic relations among the internal energy, work, heat 
and entropy, particle and other physical flows, are intertwined and become self- 
consistent interacting quantities, and so, one should be careful to study and con-
struct overall structural views in NISs. It becomes difficult to select macroscopic 
and microscopic variables, because constituent physical quantities do not main-
tain, for instance, ii= ∑δ δ  . The current irreversible thermomechanical DB 
model exhibits “global” motion caused by changes of internal energy, entropy 
flow and “local” change of thermodynamic work by liquid movement in the 
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glass tube and can produce the DB dynamics reasonably well. One could include 
the gas-phase, liquid phase and gas-liquid interface many-body interactions, lo-
cal internal energies and entropies of respective phases; however, the inclusion 
of a local constituent variable will produce extremely complicated interactions 
among constituents, which makes difficult to reproduce even a DB’s simple back- 
and-forth motion. 

3. The Time-Evolution to Nonequilibrium Irreversible  
Thermodynamics with ( ) ( ) ( ) ( )( )t T t t W t, ,   

The simple and approximate explanations to DB’s motion employ pressure, tem-
perature and volume in gas phase (Boyle-Charles’ law, or the ideal gas law) to 
explain up-going water in a glass tube, though a DB system is not at thermody-
namic equilibrium. Moreover, the concept of local equilibrium is not assumed in 
the thermomechanical DB model; however, the local equilibrium or linearity can 
be reproduced with the conditions of small entropy flow and  

( )
, ,

, 1
V N

T V∂ ∂ ≈
�

   . One should realize that the current approach is not re-
stricted to near equilibrium. Thus, the thermomechanical model of a NIS with 
time-dependent thermodynamic functions, ( ) ( ) ( ) ( )( ), ,t T t t W t  , will help 
extend theoretical understandings and technical applications for nonequilibrium 
irreversible phenomena. 

The time-dependent internal energy ( )t  is assumed to be given by the liq-
uid in a glass tube and the mechanical system coupled self-consistently to the 
time-dependent Equations (2.6) and (2.7), and thermodynamic work ( )W t . The 
thermodynamic work should be a spontaneously extracted or externally meas-
ured quantity driven by heat, energy and entropy flows, restricted by environ-
mental and mechanical states (temperature, friction, lubrication and wear, …) 
and viable energy conversion technologies. The internal energy, thermodynamic 
work and entropy are not given by pressure, temperature and volume in gas phase, 
which may be interconnected with gas-liquid and liquid-phase many-body inte-
ractions. Hence, the current nonequilibrium irreversible method is not a simple 
alternative expression to a gas-phase method. 

The entropy is discussed as the deficit function to make calculations consistent 
with laws of equilibrium thermodynamics [13] [14]. In the TMD, the entropy 
function is interpreted as the expenditure function to make calculations consis-
tent with the total heat and energy conservation law, and we assume that the 
time-dependent entropy should be consistent with the first and the second laws 
of thermodynamics and the differential form of the time-dependent Gibbs rela-
tion in general:  

( ) ( ) ( ) ( )d d d .t T t t W t= +                  (3.1) 

The time-dependent relation between the internal energy, the thermodynamic 
work and the equation of motion should be consistently determined. One should 
note that the time-symmetry in mechanics is broken; the thermodynamic work 
is an externally measurable quantity, not derivable in the concept of potential 
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energy. The time-evolution of total entropy, ( ) ( )dT t t , is the source of time- 
dependent change, but the functional form is not necessarily to be known, which 
is determined to satisfy (3.1) at the end; this is the physical meaning of entropy 
as the expenditure function. 

Reversibility at thermodynamic equilibrium means the work done by an en-
gine must operate infinitely slowly, which is neither testable nor practical. The 
motion of up-going liquid is interpreted as the time-dependent thermodynamic 
work, considered to be driven by ( ) ( )dT t t , but because of indeterminable 
dissipation mechanisms, ( ) ( )dT t t  is assumed to be derived from thermo-
dynamic work and internal energy (3.1). The time-dependent thermodynamic 
work, ( )dW t , is given by up-going liquid as,  

( ) ( ) ( ) ( )d cos d ,W t gz t t z t= ρσ θ                (3.2) 

where ρ  is the density of liquid (g/cm3), σ  is the area of a glass tube cross- 
section (cm2), 2980 cm sg = , and ( )z t  is the liquid-length in a glass tube 
measured from the axis of rotation; ( )dz t  is the infinitesimal change, and so, 
the velocity of up-going liquid is given by ( ) ( )d dzv t z t t= . 

The constitutive equations of DB’s irreversible motion are the coupled nonli-
near equations of (2.6), (2.7), and (3.1), (3.2) to determine, ( )tθ  and ( )zv t . 
However, since the entropy flow, d dT S t , is given by the internal energy and 
work, the equation is not complete to theoretically determine the velocity of 
up-going liquid, ( ) ( )d dzv t z t t= . From DB’s experimental observation, one 
can assume the constant velocity ( ) 0zv t v=  as an admissible solution, and the 
constant-velocity solution, 0v , reproduced the DB motion very well [4]. It is 
because one would suppose that the velocity ( )zv t  should be composed of a 
slightly up-and-down oscillating motion with an average constant velocity, 0v , 
in the form of ( ) 0 small oscillationszv t v= + . We tested several oscillating func-
tions with amplitudes smaller than ±0.1 (cm) which should be ignored in aver-
age and satisfy the initial condition, ( ) 00zv v= . The test functions generated sim-
ilar numerical results, indicating that the solution should be strongly stable around 
the solution ( ) 0zv t v=  and supports the analysis in the paper [4]. The small os-
cillating velocity is compatible with changes in lines, 1 2,L L  and 3L  induced in 
the internal energy, ( )( )tθ , shown in Figure 4, and so, ( ) 0zv t v=  and the 
solution ( )tθ  are used for numerical simulations. 

The numerical value of the internal energy corresponding to oscillations in 
Figure 3(a) is shown in Figure 4(a) for the 1st-drinking motion within the 
time-range, ( )10 60 st≤  . The internal energy seems a time-dependent con-
tinuous curve with discontinuous vertical lines at ct  and dt . However, the 
curves denoted as 1 2 3, ,L L L  are not smooth curves; on the contrary, they are 
rapidly oscillating ones; for instance, 3L  in the time-range ( )40 60 st≤  , is 
shown in Figure 4(b). The rapid oscillations of the internal energy are intert-
wined with DB’s back-and-forth oscillations and can be clearly shown when the 
energy flow, ( )d dt t , is calculated. With a given 0v  and a solution ( )tθ , one 
can obtain the internal energy, thermodynamic work and resultant entropy flows: 

( )d dt t , ( )d dW t t  and ( ) ( )d dT t t t , shown in Figure 5, respectively.  
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(a) 

 
(b) 

Figure 4. The time-change of internal energy for the 1st-drinking motion, Figure 3(a). 
Note that the lines of internal energy, 1 2 3, ,L L L , are not smooth, but minute, rapidly os-
cillating curves. (a) The change of internal energy for the 1st-drinking motion corres-
ponding to Figure 3(a), ( )1 24.0 sct   and ( )1 38.0 sdt  ; (b) The curves, 1 2 3, ,L L L , are 

not smooth, but rapidly oscillating curves. A detailed, expanded observation of the line, 

3L , in the time-range, 40 60t≤ ≤  of (a) is shown. 
 

The thermodynamic work flow is produced in the NIS ( c dt t t≤ ≤ ). The energy 
and entropy flows, ( )d dt t  and ( ) ( )d dT t t t , are almost similar to each 
other, because the amount of power flow, ( )d dW t t , is small compared to the 
one of internal energy flow. 

The “thermodynamic consistency” is now ready to be shown and a NIS is 
measured numerically. We can calculate the time-dependent thermodynamic 
quantity:  

( )
( ) ( ) ( )( )

( )( )
d , , d

,
d , d

T t t t W t t
t

t W t t
≡τ

 


                (3.3) 

changing from a thermodynamic equilibrium to a NIS and vice versa; Equation 
(3.3) is also written as ( ) ( ) ( )( ) ( )( )d d d dt T t t t t t=τ   , for simplicity. 
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(a) 

 
(b) 

 
(c) 

Figure 5. The internal energy, thermodynamic work and entropy flows of the 
1st-drinking motion of Figure 3(a). Note that the internal energy lines in Figure 4(a) are 
not smooth, resulting in minute, rapidly oscillating curves. (a) The internal energy flow, 

( ) dt tδ , of the 1st-drinking motion related to Figure 3(a). ( )1 24.0 sct =  and  

( )1 38.8 sdt = ; (b) The thermodynamic work flow, ( )d dW t t . The 1st-drinking motion 

of Figure 3(a), ( ( )1 124.0 38.8 sc dt t t= < < = ); (c) The entropy flow, ( ) ( )d dT t t t , of the 

1st-drinking motion derived from the total energy conservation law (3.1). 
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The fundamental thermodynamic relation (1.1) is expressed by ( )1 1=τ , and 
the value “1” is the condition of an exact thermodynamic equilibrium state, 
which suggests that the entropy flow is completely converted to the internal 
energy flow: ( ) ( ) ( )d d d dT t t t t t=  , and so, no time-dependent thermody-
namic work exists, ( )d d 0W t t =  from (3.1), which defines a thermodynamic 
equilibrium. If the value of ( )tτ  is “0”, it represents ( ) ( )d d 0T t t t = , so that 
a thermodynamic equilibrium produces work with no transfer or dissipation of 
heat, resulting in the contradiction of heat and work. The consequence is com-
patible with the principles of R. Clausius, W. Thomson, and the other statements 
on thermodynamic heat and work. 

Let us denote ( ) ( ) ( ), ,T t t t� ��    for a NIS and , ,T    for a thermodynamic 
equilibrium and consider the ratio of entropy flow against energy flow: 

( )( ) ( )( ) ( )d d d dt t t t t≡� � �α   and ( ) ( )d d d dt t ≡α  . Then, from (3.3), we 
have:  

( ) ( )
( )

( ) ( )
( )

1 .
t T t T t

t
TT t TT t

−
− = − =

�
� � �

τ τ
α α                (3.4) 

It shows that ( ) 0t − >�α α , or equivalently, ( ) 1t >�α α  results in  
( ) ( )T t T t<� τ . We interpret it as the amount of heat-entropy “flow-out”, com-

pared to the thermodynamic equilibrium quantity α . Since the heat-entropy 
flows out of the system faster than the internal energy flow ( )d dt t� , the tem-
perature ( )T t�  in the NIS becomes lower than ( )T tτ . Similarly, ( ) 0t − <�α α  
or equivalently, ( ) 1t <�α α  (the amount of heat-entropy “flow-in”) results in 
( ) ( )T t T t>� τ . In this case, because the heat-entropy flows in the system, the 

temperature ( )T t�  in the NIS becomes higher than ( )T tτ . 
When ( )T t�  is lower than T, the nonequilibrium temperature ( )T t�  will gradu-

ally increase and progress to T, ( ( )T t T�
 ), with ( ) ( ) 1T t T t< →� τ , and simi-

larly, when ( )T t�  is higher than T, the temperature will gradually decrease and 
progress to T ( ( )T t T�

 ) with ( ) ( ) 1T t T t> →� τ . The measure ( )tτ  for a 
NIS is consistent with observed experimental changes of ( )T t�  and T. The 
time-dependent temperature, ( )tτ , is constructed by the ratio of entropy trans-
fer against the energy transfer, and it explains one of the reasons why the con-
cept of temperature is fundamental in physics, as well as engineering and sciences 
in general. We will define ( )tτ  as the nonequilibrium temperature, or a meas-
ure of a NIS, which is one of the fundamental results of the thermomechanical 
dynamics (TMD). 

Now, the second law of thermodynamics, the concept of entropy, can be ex-
plained by the statement: the nonequilibrium temperature ( )tτ  is a positive de-
finite quantity: ( ) 0t >τ . This is explained such that if a system is not in an 
equilibrium state, the entropy-flow and the energy-flow will emerge and progress 
to an equilibrium state. The nonequilibrium temperature converges to an equi-
librium temperature ( ( ) 1t →τ ): ( )T t T→� , which will distinguish two cases: 
( ) 1t <τ  means that ( )T t�  is lower than T, and ( ) 1t >τ  means that ( )T t�  is 

higher than T. The result is physically transparent meaning that if the tempera-
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ture ( )T t�  in a local nonequilibrium system is initially lower than the equili-
brium temperature T, the entropy will increase to the maximum entropy at equi-
librium, but if the temperature ( )T t�  in a local nonequilibrium system is in-
itially higher than the equilibrium temperature T, the entropy will decrease to 
the minimum entropy at equilibrium. One should note that the revolution to ex-
trema of entropy depends on the difference between ( )T t�  of a NIS and the 
corresponding equilibrium temperature T. 

The internal energy, ( )t , and the energy-flow, ( )d dt t , of the 1st and the 
2nd dipping motions are shown in Figure 6(a) and Figure 6(b), and the entro-
py-flow, ( ) ( )d dT t t t , is similar to the internal energy given by Figure 6(b). 
The current thermomechanical calculation of ( )tτ  in the DB system results in 
( ) 1t <τ , shown in Figure 7, which concludes that the temperature inside the 

DB is lower than that of external equilibrium environment as one can readily 
check from the DB experiment independently. The numerical results of ( )tτ  
for the 1st and the 2nd dipping motions are shown in Figure 7(a) and Figure 
7(b), respectively. 
 

 
(a) 

 
(b) 

Figure 6. The time-dependent internal energy, ( )t , of the 1st and the 2nd drinking 

motions and the internal energy flow, ( ) dt tδ . (a) The time-dependent internal ener-

gy, ( )t , for the 1st and 2nd drinking motions of Figure 3(b). ( )1 24.0 sct   and  

( )1 38.0 sdt  ; ( )2 60.5 sct   and ( )2 68.3 sdt  ; (b) The internal energy flow, ( ) dt tδ , 

for the 1st and the 2nd drinking motions of Figure 3(b). 
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(a) 

 
(b) 

Figure 7. The time-evolution of ( ) ( )( ) ( )( )d d d dT t t t t t  , and thermodynamic con-

sistency. (a) The time-evolution of the entropy and internal energy flows,  

( ) ( )( ) ( )( )d d d dT t t t t t  , for the drinking motion of Figure 3(b). ( )1 24.0 sct   and 

( )1 38.8 sdt  ; (b) The time-evolution of the entropy and internal energy flows,  

( ) ( )( ) ( )( )d d d dT t t t t t  , for the drinking motion of Figure 3(b). ( )1 24.0 sct   and  

( )1 38.0 sdt  ; ( )2 60.5 sct   and ( )2 68.3 sdt  . 

 
The DB’s state is in mechanical and thermodynamic equilibriums at the outset 

and then, the transition to a NIS arises at ( )24.0 sct  . The straight horizontal 
line represents a thermodynamic equilibrium, and the behaviors at ct  and dt  
are only discontinuous in our model simulations because of the use of piecewise 
continuous step functions for the simplification of the physical mechanism at ct  
and dt ; for instance, one can integrate the heat-conduction mechanism at ct  
and dt , in order to elaborate the conduction of time-dependent temperature. The 
nonequilibrium temperature, ( )tτ , changes rather like a heat-wave pulse function, 
and one should note that ( )tτ  is not necessary a monotonically changing function, 
except at a near-equilibrium. After the DB’s 1st-drinking at ( )1 38.8 sdt  , the 
state decouples to equilibrium states and returns back to oscillations around 

0=θ  and ( )
, ,

, 1
V N

T V∂ ∂ =
�

   , ( 1dt t< ). The second NIS arises in the time 
period, ( )60.5 68.3 st< < , and the nonequilibrium temperature, ( )tτ , shows 
oscillating evolutions to an equilibrium temperature, as shown in Figure 7(b). 
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The thermal conduction mechanism could be integrated in the current ther-
momechanical method. There would be so many applications, for example, the 
irreversible processes such as friction, ignition, combustion and detonation me-
chanisms [30] [31] [32] [33] [34], mechanical heat engines, quantum heat en-
gines [35] [36] [37] [38], solar-powered, high and low temperature differential 
Stirling engines [39] [40] [41], quantum thermodynamic systems [42] [43] [44]. 
The mechanism of drinking bird is more sophisticated and fundamental than 
that of Stirling engines, because it spontaneously converts thermal energy into 
mechanical energy and thermodynamic work by way of the concept of entro-
py-flow. Technological applications and theoretical consistency should be inves-
tigated further when one constructs thermo-quantum mechanics (TQM), ther-
mo-electrodynamics (TED) and so forth. The results of TMD will be helpful to 
construct consistent thermal dynamics. 

4. The Thermomechanical Dynamics (TMD) for the  
Nonequilibrium Irreversible Thermodynamics 

The method of thermomechanical dynamics by employing a drinking bird me-
chanism has shown useful concepts and specific results for nonequilibrium irre-
versible states, which is different from probability theory and distribution func-
tion method in kinetic theories. The results and the foundations of TMD are 
summarized in this section. 

The self-consistent analysis of the DB system would simultaneously direct one 
to confront emergent phenomena: the coupling or decoupling between mechan-
ics and thermodynamics. It is never a simple, complementary mechanism ex-
plained by mechanics and thermodynamics. It demands the transition from a 
time-symmetric state to a time-symmetry-broken state and vice versa. Both me-
chanics and thermodynamics will break down, and a new state emerges as a NIS. 
The time-symmetry of Hamiltonian is broken, resulting in non-conservation of 
energy, but instead, the total heat and energy is conserved in the time range, 

c dt t t< < . Mathematically speaking, the equation of motion for DB’s mechani-
cal equilibrium is given by a nonlinear differential equation with constant coeffi-
cients, but the equation of motion in the corresponding NIS is given by the same 
nonlinear differential equation with time-dependent coefficients. The time-de- 
pendent nonlinear equation has independent solutions not derivable from the 
one with constant coefficients. The transformation to a nonlinear differential 
equation with time-dependent coefficients might correspond to a mathematical 
way of expressing a transition from a physical phase to a new emergent pheno-
menon. The nonlinear differential equations with constant and time-dependent 
coefficients must be mathematically categorized in a different class of nonlinear 
equations. This is an important mathematical property discovered in the analysis 
of the DB system. 

The concept of the local equilibrium and the near-equilibrium state, the local 
microscopic reversibility, the linearity of fluxes and forces in transport processes 
[45] [46] [47] [48] are not necessarily claimed at the outset. The conditions of 
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linearity and near equilibrium can be extracted from ( )d dt t , ( )d dW t t , 
and ( ) ( )d dT t t t , with the condition ( )

,
, 1

V
T V∂ ∂

�
    in the DB sys-

tem. The ratio of the internal energy and the heat-entropy flows, (14), will define 
a nonequilibrium temperature and a measure of how far the system has deviated 
from a corresponding thermodynamic equilibrium. 

Based on discussions and results so far, the methodology and the fundamental 
postulates of TMD for heat engines and transport mechanism will be summa-
rized as follows:  

1) If thermal and mechanical equilibriums coexist like a system of heat engine, 
time-dependent Hamiltonian (or Lagrangian) and equations of dissipative mo-
tion (with friction and friction-induced time-dependent phenomena) must be 
constructed, which should be identified as the time-dependent internal energy 
and the corresponding nonlinear equation of dissipating motion. 

2) The work, ( )dW t , must be an externally measurable quantity and defined 
against the dissipative mechanical motion proceeding to mechanical equilibrium, 
given by the inner product: ( ) ( )dF t l t⋅  ( ( )dl t ; the work-direction increment), 
or, by available energy transformation technologies such as heat-electricity, 
charge-energy transfer and so forth. 

a) The time-dependent force ( )F t  is local, not given by a mechanical poten-
tial defined in a given Hamiltonian. The time-symmetry of mechanical Hamilto-
nian is broken by the generation of time-dependent work, ( )dW t . 

b) The time-dependent Hamiltonian ( )H t  identified as the internal energy 
( )t , and the time-dependent thermodynamic work ( )dW t , must maintain 

the total heat-energy conservation law: ( ) ( ) ( ) ( )d d dt T t t W t= +  , and the 
differential form of the time-dependent Gibbs relation in general. The total en-
tropy ( ) ( )dT t t  is interpreted as the expenditure function to make TMD 
consistent with the total heat-energy conservation law. 

3) The measure of a NIS, or the nonequilibrium temperature is defined by:  

( ) ( ) ( )
( )

d d
.

d d
T t t t

t
t t

=τ



                   (4.1) 

a) Thermodynamic equilibrium, the relation between internal energy and 
work when ( )d d 0t t = , and the principle of entropy correspond to ( ) 1t =τ , 
( ) 0t =τ , and ( ) 0t >τ , respectively. 
b) The thermal and mechanical equilibriums can exist when the entropy flow 

could not affect the internal energy to produce observable work. Near equili-
briums and not-far-from equilibriums are studied by  
( ) ( )( ) ( )d d d d 1t T t t t=τ   . 
The postulate discussed above is applicable to examine heat engines and NISs, 

and it should be extended by including heat-conduction, ignition and detonation, 
friction and diffusion mechanism for elaboration and applied to self-lubricating, 
self-organizing smart materials and so forth [30] [31] [32] [33]. The application 
of “thermodynamic consistency” to mechanism of the heat-conduction would be 
very helpful, and the fields of research with TMD would improve the analysis of 
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physics of heat-conduction mechanism, heat-source and temperature, which may 
enhance profound revolutions in vast fields of science. The analysis of thermo-
dynamic consistency should be applied to systems of electrodynamics, quantum 
mechanics, quantum electrodynamics (QED), nuclear quantum-hadrodynamics 
(QHD) [49]-[55]. The concept of heat engine should be expanded and applied in 
general from macroscopic to microscopic quantum energy scales, such as solar, 
wind, hydroelectric, thermal, nuclear energy, and so forth. 

5. Conclusions and Perspectives of Scientific Ways of  
Thinking 

We have shown the theory of nonequilibrium irreversible thermodynamics and 
the mechanism of a drinking bird as a rigorous and fascinating device and ob-
tained new mathematical and physical results: the coupling and decoupling of 
thermal and mechanical states, symmetry-breaking and restoration, bifurcation 
solutions and independent solutions of nonlinear equations with time-dependent 
coefficients, the measure of nonequilibrium states and the postulate of thermo-
mechanical dynamics of nonequilibrium irreversible phenomena. 

A DB toy is composed of a many-body system of interactions among liquid, 
gas and interface of gas-liquid. The TMD demands that thermomechanical va-
riables should be carefully and optimally chosen to be minimal because consti-
tuent variables will be self-consistently intertwined with others. Hence, one should 
be careful that the partition to many constituents and the direct sum of consti-
tuents usually discussed at thermodynamic equilibrium are not allowed in NISs. 
The measure of irreversibility demands that the time-dependent fluctuation of 
entropy should be evaluated relatively to the time-dependent internal energy. It 
could be physically reasonable that the measurement-induced fluctuations, igni-
tion and detonation, friction and diffusion mechanism, extremely high-tempera- 
ture gradients at small scales and short periods of time should be measured and 
studied by the ratio of entropy and internal energy flows. Heat conduction and 
thermal management in modern nanostructure technologies at molecular and 
atomic levels may require new kinds of experiments and thermomechanical me-
thods for measurement and analysis [56]. 

In the paper [4], we discussed the fundamental property and logical structure 
that scientific theories and models must maintain and summarized as the triad 
condition for models and theories: reproducibility, testability and self-consistency. 
The relative word like “beauty and simplicity” is neither sufficient nor useful, 
because it depends on one’s taste and often leads to a partial idolization, which is 
against the scientific truth. The scientific spirits and minds we can trust are in 
endeavors to maintain and achieve the triad condition in scientific activities. The 
current paper is on the self-consistency of the DB system as a transport engine, 
whose motion is essentially in a NIS. Hence, the analysis of self-consistency of 
the DB system directly interconnects the current theoretical method to funda-
mental laws of thermodynamics. With the current paper and the papers [4] [5], 
we have specifically shown an example that the DB mechanism maintains the 
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triad condition. This is the beginning of extensions to more general transport 
phenomena, and as long as physics and sciences, in general, can maintain the 
concept of the triad condition, they could be open authorities, useful for human 
society and nature. 

The mechanism and fundamental characteristics of a drinking bird are the 
scientific motivation for our writing a series of papers, but in addition, it di-
rected us to scientific ways of thinking, supported and encouraged us while study-
ing a physical model of heat engines. The scientific views that should be funda-
mental to discuss here are: reductionism, structuralism and emergentism (or 
emergent dynamics). The intuitive understandings of the three views are essen-
tial for scientists as a whole. The successful reductionist views but associated con-
tradictions and conceptual problems induced in diverse fields of science, nature 
and human society, are well summarized in the papers [57] [58] [59]. The reduc-
tion hypothesis is in the existence of basic ultimate building blocks, and the whole 
structure reduces to a complete summation of constituent building blocks or 
particles, but the hypothesis is not even true in the nonequilibrium irreversible 
mechanism of a drinking bird. The central claim of structuralism is that the 
wholeness is neither reducible, explainable, nor predictable as the sum of low-
er-level constituents. The structuralist views appeared against reductionist ones, 
especially in the fields of physics, micro- and macro-biology, sociology, anthro-
pology and linguistics [59] [60] [61] [62]. 

The wholeness is an abstract concept difficult to define and often seriously 
misunderstood in sociology and politics. For simplicity, let us consider the equa-
tion of motion and Hamiltonian of a simple pendulum shown in (2.4) and as-
sume that the basic building blocks for the pendulum Hamiltonian are length 
and mass (or moment of inertia), gravity and angle, ( , , ,l m g θ ). The wholeness 
appears as symmetries and the energy conservation law for basic building blocks. 
Then, one would introduce the coupling of many pendulums with possible po-
tential interactions to explain dynamics of the system. However, it is generally 
known that many-body interaction phenomena such as superconductivity, col-
lective phenomena, thermodynamic consistency [63] [64] [65] [66], and frictions, 
shear and wear, fluctuations of heat and entropy, phase transitions and so forth, 
are not simply explainable from constants and constituents of corresponding 
Hamiltonians. If constants of a pendulum, ( , ,l m g ), are assumed to change with 
time, they would have unexpected effects on solutions as a whole, but it is not 
known and difficult to know that what values and combinations of constants, 
when and how critical many-body phase-transition phenomena will emerge. This 
kind of fundamental problem is similarly discovered in DB’s mechanism as the 
emergence of bifurcation solutions and independent continuous solutions in non-
linear differential equations with time-dependent coefficients, related to the tran-
sition between thermodynamic equilibrium and a nonequilibrium irreversible 
state. 

As the reductionist and structuralist views are considered to be synthesized in 
physics as the rigorous methodology of Lagrangian and Hamiltonian mechanics, 
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the view against reductionism in physics has gradually surfaced from micro-
scopic many-body interactions [67] [68] to intermolecular, macroscopic interac-
tions in order to explain emergent phenomena [57] [58] [59]. The emergentism 
is also well documented so that it suffices to quote some of them. “An emergent 
property or phenomenon is usually defined as one that arises out of lower-level 
constituents but is neither reducible, explainable, nor predictable from them” 
[69] [70], and “The ability to reduce everything to simple fundamental laws does 
not imply the ability to start from those laws and reconstruct the universe... The 
constructionist hypothesis breaks down when confronted with the twin difficul-
ties of scale and complexity... we can see the whole becomes not only more than 
but very different from the sum of its parts” [59]. 

The examples against reductionist views are abundant in condensed matter 
physics, such as superconductivity, phase-transition phenomena, symmetry- 
breaking, effective field theories in hadron dynamics and so forth. The assertion 
coincides with one of the DB’s claims for nonequilibrium irreversible states: 

iid d≠ ∑  , with the indication that the relation, iid d= ∑  , is only true at 
thermodynamic equilibrium and a quantum statistical ensemble when interactions 
are negligible among constituents. The logical character supports the current me-
thod of TMD for the nonequilibrium irreversible dynamics. The reductionist 
way of thinking may conclude that even emergent phenomena and structuralism 
will be resolved from a theory of everything, which comes from typical misun-
derstandings of emergent phenomena and structuralism. Although the reduc-
tionist method has contributed to science and technologies, “The existence of 
emergent phenomena undermines the kind of reductionism that is presupposed 
in the search for a theory of everything” [69] [70]. 

The technologies and scientific ways of thinking have contributed to human 
societies and understandings of nature from microscopic to macroscopic phe-
nomena, liberating our mind and spirit from oppressions and limitations. The 
achievement of sciences and technologies is powerful and gigantic, but a big 
science with sociology, politics and group-oriented authoritative ways of think-
ing may suppress our scientific mind and spirit [71]. The big science and main-
stream ideas could be good or bad like a double-edged sword. Hence, scientists must 
be extremely careful about the logic and truth of science in the future, against 
politics and group-oriented authorities. The scientific spirit and ideas should be 
rigid and strict, but simultaneously, open and flexible. In addition to the triad 
condition for models and theories, the triad condition for scientific approaches: 
reductionism, structuralism and emergentism, will be useful to check scientific 
ways of thinking, which is essential knowledge for science and logical mind of all 
people. 
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