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Abstract 
To extend the kinetic formulation of city size distribution introduced in [1], the 
non-Maxwellian kinetic modeling is introduced in the present study, in 
which a variable collision kernel is used in the underlying kinetic equation of 
Boltzmann type. By resorting to the well-known grazing asymptotic, a kinetic 
Fokker-Planck counterpart is obtained. The equilibrium of the Fokker-Planck 
equation belongs to the class of generalized Gamma distributions. Numerical 
test shows good fit of the generalized Gamma distribution with the city size 
distribution of China. 
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1. Introduction 

The city size distribution has been long recognised to satisfy a very simple dis-
tribution law since Zipf, which is attributed to the generic least effort principle of 
human behavior [2]. Denote the number of cities having a population size be-
tween v and dv v+  by ( )dh v v , and the associated cumulative probability dis-
tribution function by  

( ) ( )d .
v

R v h w w
∞

= ∫  

Zipf found that empirically, ( ) 1R v vγ , with 1≈γ , especially when focus-
ing on large cities, that is, when v is big. As well-known in city size distribution 
literatures, this empirical law is quite close to reality for most societies across 
time [3]. However, existing empirical evidence suggests that Zipf’s law is not al-
ways observable even for the upper-tail cities of a territory [3]-[9]. The contro-
versy with empirical findings arises, may due to sample selection biases, metho-
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dological weaknesses or data limitations. The hypothesis of Zipf’s law is more 
likely to be rejected for the entire city size distribution hence alternative distri-
butions may be suggested in such cases. 

Moreover, although very accurate in recovering the city size distribution, these 
contributions do not, in general, give the mechanism for the formation in time 
of this behavior, thus a theoretical derivation of Zipf’s law for cities has been the 
object of many studies, see for example [10] [11] [12] [13] and references therein, 
and more recently, by using kinetic modeling [1] [14], in which Boltzmann type 
and Fokker-Planck type equations for the size distribution of cities are obtained, 
by introducing interactions based on some migration rule among cities. This 
model demonstrated that the city size distribution is kinetically related to some 
factors such as the rate or the tendency of migration of the inhabitants. As no-
ticed in [1] [14], the reasons behind migration are very complex, and it is quite 
difficult to select one or another reason as dominant. The different choices in the 
parameters of the kinetic interactions may explain the origin of different effects 
or even a mixture of effects, which give in the limit a distribution that can be 
closer to a Pareto or Zipf law, or a lognormal density or others. In any case, the 
kinetic modeling considered in this framework is useful to clarify the formation 
of various distributions in terms of various different microscopic interactions. 

We further mention that kinetic models were originally used to describe the 
dynamics of rarefied gas by constructing a Boltzmann-type equation to analyse 
the effects of the discrete structure of gas molecules [15]. In recent years, various 
kinetic models have been developed to study the social and economic interac-
tions in multi-agent systems, for example, in social sciences, the statistical de-
scription of wealth distribution [16] [17] [18], opinion formation [19] [20] [21], 
knowledge formation [22], belief formation [23], criminality [24] and so on. 
Note that a multi-agent system is often composed of “agents” rather than par-
ticles; a kinetic model is used to describe the collective behaviour of individuals 
in a multi-agent system. 

At the kinetic level in [1] [14], the Boltzmann collision operator has been se-
lected to be of Maxwellian type as in the classical kinetic theory, that is, the colli-
sion kernel is chosen as a constant that does not depend on the “relative velocity 
of the molecules”. In the context of city size distribution, the Maxwellian hypo-
thesis corresponds to the strong assumption that the migration rate between 
agents (cities) does not depend on the amount of inhabitants, thus a constant 
collision kernel is used. This is a simplification of the sophisticated problem, such 
that, it could be more easily handled from the mathematical point of view. To 
extend the kinetic formulation in [1] [14], in the present study, we introduce in 
the underlying kinetic equation of Boltzmann type a variable collision kernel as 
in [25].  

The arrangement of the rest of the paper is as follows. We will show the de-
tailed kinetic modeling of the problem in Section 2, and derive the quasi-invariant 
limit in Section 3. Finally, we will carry out some numerical tests to validate the 
model in Section 4. Note that for the quasi-invariant limit, we will show the 
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asymptotic procedure leading from the kinetic description of Boltzmann type to 
the Fokker-Planck equation. The equilibrium of the Fokker-Planck equation be-
longs to the class of generalized Gamma distributions. The model test is based 
on a collection of 332 cities (prefecture-level administrative regions) in China in 
the 2019 statistical Yearbook, which fits well with the generalized Gamma dis-
tribution. 

2. Kinetic Modeling of City Size Distribution 

To study the evolution of the city size distribution by kinetic models [1], one 
first needs to specify the microscopic “collision” rules to describe the change of 
the population of a city. Consider a multi-agent system in which all agents (cities) 
are assumed to be indistinguishable [26]. A city’s state at any instant of time 

0t ≥  is completely characterized by its number of inhabitants v. To avoid ines-
sential difficulties, we can simply assume that v +∈  although it is clear that v 
is a natural number. Consequently, the distribution of the multi-agent system, 
the city size distribution, can be fully characterized by an unknown probability 
density function ( ),f f v t= . 

Follow [1], we assume that the number of residents of a city will essentially in-
crease with the inflow of immigrants and decrease with the outflow of emigrants. 
At the same time, due to some uncontrollable factors, the population will change 
for some other uncertain reasons and show random fluctuations. Hence, the mi-
croscopic variation of the city size v is the result of three different contributes  

( ) ( )* ,Ev v E v v I v z v= − + +η                   (2.1) 

where 
 *,v v : the number of inhabitants of a city before and after a microscopic inte-

raction process, respectively;  
 z +∈ : the amount of population which can migrate towards a city from the 

environment (the multi-agent system). This value is usually sampled by a cer-
tain given distribution function ( )z , which characterizes the environment 
itself;  

 η : a random variable with zero mean and bounded variance, that is, 0=η , 
2 =η σ  with 0>σ  suitably small (such that *v  to be positive);  

 ( ) ( ), EE v I v : the rate of variation of the city size v consequent to internal 
and external mechanism, respectively. More precise description of them will 
be prescribed in below.  

Internal mechanism. For ( )E v  related to the internal mechanism, we use the 
concept of “value function” originally used in the study of the distribution of 
wealth by Kahneman and Twersky [27]: losses weigh heavier than gains in the 
change of the value function, that is, the value function is concave in the domain 
of gains and convex in the domain of losses, thus considerably steeper for losses 
than for gains. In the collision (2.1), the function ( )E ⋅  plays the role of the 
value function, which can be taken with the form [28]  
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( )
( )

( )

1

1

e 1 , ,
e 1

s

s

vE v s
v

−

−

−
= =

+

δ

δ

ε δ

ε ε δ
λ                  (2.2) 

in which the value v  defines an ideal city size, ε  is a small positive parameter 
introduced to represent the strength of the interaction, 0 1< <λ  and 0 1< ≤δ  
are used to quantify the intensity of migration rates near the ideal city size v . 
For more explanation on the choice of the value function, we refer [28]. Here, in 
order to simplify the model, we first consider the ideal size of all cities in the whole 
system as a given value. However, for different countries, this value may depend 
on the history, political system or cultural background of different countries, or 
other factors. It is obvious that E is bounded, ( )E v− ≤ ≤λ λ , and E is negative 
when the city size v is below the ideal size v , and positive in the opposite situa-
tion. Hence, this quantity describes the tendency of the population to reach the 
ideal size v  if v v≠ , with the reason that people prefer to live in a city of pop-
ulation v . 

External mechanism. A non-negative function ( )EI v  can be used to describe 
a measure of the immigration rate. For simplicity, following [1], a non-negative 
constant, i.e., ( ) 0E EI v I= > , is chosen in the present study. More general choice 
of ( )EI v  can be [1]  

( )
1E

vI v
v

=
+

α

αµ  

for some positive parameters µ  and 0 1< ≤α  characterizing the intensity of 
immigration rate.  

With the interaction rule (2.1), the variation in time of ( ),f v t  satisfies a li-
near Boltzmann-like equation [26], which can be written in weak form, for all 
smooth functions ( )vϕ  (the observable quantities),  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )2
*d , d , d d ,

d
v f v t v v v v f v t z v z

t + +
= −∫ ∫ϕ χ ϕ ϕ

 
    (2.3) 

In (2.3), the notation ⋅  denotes mathematical expectation taking into ac-
count the presence of the random variable η  in (2.1). And the function ( )vχ  
denotes the collision kernel, which assigns to the interaction a certain probability 
to occur. Note that in [1], the simplification of the Maxwell molecules, leading to 
a constant interaction kernel χ , has been assumed. To extend, we notice that 
the distribution of city size in a country has a close relationship with the national 
conditions of the country. It is also closely related to many factors such as the 
speed of urban economic development, urban construction and development 
conditions. 

According to the National Bureau of Statistics (NBS) of China, the size of 
population of China’s cities has been constantly expanding over the past 70 years, 
with large, small and medium-sized cities distributed across the country. Among 
them, small cities attract people because of the low threshold of Hukou. Due to 
people’s pursuit for better quality of life, many people are willing to live in big 
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cities such as Beijing or Shanghai which can provide people with more employ-
ment opportunities, better economic income and higher education, etc. However, 
big cities are already too crowded, in recent years, with China’s urbanisation, 
medium-sized cities are also attractive for their new opportunities and living con-
ditions. The migration between different cities is much often than ever. There is 
strong evidence that the population mobility is greater in cities with a large pop-
ulation, such as Beijing, Shanghai, compared with smaller cities such as Yibin, 
Xining etc. On the other side, due to geographic and historic reasons, the num-
ber of cities (prefecture-level administrative regions) is relatively fixed, so the 
interactions for v small or near zero should be excluded. Thus, the collision fre-
quency may proportional to the city size v. Hence, to elaborate this behavior, it 
seems natural to consider a variable collision kernel that  

( ) ,v v= ⋅ αχ κ                         (2.4) 

where the constants 0>κ  and 0 1< <α . This kernel assigns a high probabili-
ty of interactions for cities with large population, and low probability of interac-
tions for cities with population v close to zero. By taking into account this new 
assumption, we consider in the following that ( ),f v t  satisfies the linear kinetic 
model  

( ) ( ) ( ) ( )( ) ( ) ( )2
*d , d , d d .

d
v f v t v v v v f v t z v z

t + +
= −∫ ∫ αϕ κ ϕ ϕ

 
    (2.5) 

3. Quasi-Invariant Limit: The Fokker-Planck Equation 

In order to describe the development of city size distribution more accurately 
and intuitively, we carry out the quasi-invariant limit. In this Section, we illu-
strate the main steps leading from Equation (2.5) to its Fokker-Planck limit. To 
avoid inessential difficulties, we will assume that the environmental distribution 
  has a certain number of bounded moments, more precisely. 

( ): d , 0 4,M z z z
+

= ≤ ∞ ≤ ≤∫ β
β β


                (3.1) 

meanwhile, we introduce the notation 

( ) ( ): , d , 0.a
am t v f v t v a

+
= >∫                  (3.2) 

It’s obvious that the kinetic equation is mass preserving by taking ( ) 1v =ϕ  
in (2.5). 

For the quasi-invariant limit, one assumes that a single interaction determines 
only an extremely small change of the value v. Therefore, a small parameter ε  
is introduced and we consider the scaling  

, .E EI I→ →ε η εη                      (3.3) 

At this point, under the effect of ε , the interaction will only produce a very 
small change to the population size of a city. Obviously, the conservation of 
“mass” of the system still holds under the scaling. To observe the evolution of 
the mean value, in (2.5), take ( )v v=ϕ , there is 
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( ) ( ) ( ) ( )1 1
1

d
, d .

d E

m t
v E v f v t v I M m t

t +

+ = − +  ∫ α
ε ακ ε


       (3.4) 

Next, denote ( ) ( )1:A v E v=ε εε
, then 

( )
( )( )
( )( )

1

1

e 1 1   as  0.
2e 1

v v

v v

vA v
v

−

−

 −  = → − →     +

δ

δ

ε δ δ

ε ε δ

λ λ ε
ε δ

       (3.5) 

Now, we can resort to a scaling of time to observe an evolution of the average 
value independent of ε . Setting t=τ ε , ( ) ( ), ,f v f v t=ε τ , then the evolution 
of the average value for ( ),f vε τ  satisfies 

( ) ( )

( ) ( )

1

1

d , d 1 , d
d 2

11 , d .
2

E
v vvf v v I M v f v v

v

v E v v f v v
v

+ +

+

+

    = − −       
    + − −       

∫ ∫

∫

δ
α

ε ε

δ
α

ε ε

λτ κ τ
τ δ

λκ τ
δ ε

 



 (3.6) 

Since (3.5) means that the second term vanishes as 0→ε , one obtains in the 
limit a closed form for the evolution of the mean value.  

( ) ( )1
d , d 1 , d .

d 2E
v vvf v v I M v f v v

v+ +

    = − −       
∫ ∫

δ
α

ε ε
λτ κ τ

τ δ 
   (3.7) 

It can be observed that the evolution of the mean ( ), dvf v v
+

∫ ε τ


 does not 
depend on ε . Since for 1�ε  the microscopic interactions produce a very small 
change of the value v, a finite variation of the mean density can be observed only 
if agents in the system undergo a huge number of interactions in a fixed period 
of time to restore the original evolution. Similarly, with this scaling, one obtains 
in the limit a closed form for the evolution of the second moment  

( ) ( )
2

2 2
1

d , d 2 1 , d
d E

v vv f v v v I M v v f v v
v+ +

    = + − −       
∫ ∫

δ
α

ε ε
λτ κ σ τ

τ δ 
 (3.8) 

The above analysis can be used to justify the passage from the kinetic model 
(2.5) to its continuous counterpart given by a Fokker-Planck type equation. Given 
a smooth function ( )vϕ , let us expand in Taylor series ( )*vϕ  around ( )vϕ . 
First, by the scaling (3.3), it holds  

( )* ,Ev v A v v I z− = − +εε ε                   (3.9) 

( ) ( ) ( )( )2* 2 2 2 2 2 2 2 .E Ev v v A v v I z I A v vz− = + + −ε εεσ ε        (3.10) 

Therefore, in terms of powers of ε , we easily obtain the expression  

( ) ( ) ( ) ( )( ) ( ) ( )* 21 , ,
2Ev v v I z A v v v v R v z ′ ′′− = − + +  

ε εϕ ϕ ε ϕ σ ϕ   (3.11) 

where the remainder term ( ),R v zε  vanishes at the order 
3
2ε  as 0→ε . There-

fore, as 0→ε , we can obtain that in consequence of the scaling (3.3) the weak 
form of the kinetic model (2.5) is well approximated by the weak form of a linear 
Fokker-Planck equation 
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( ) ( )

( ) ( ) ( )2
1

d , d
d

11 , d .
2 2E

v f v v

v vv I M v v v f v v
v

+

+

    ′ ′′  = − − +         

∫

∫

ε

δ
α

ε

ϕ τ
τ

λκ ϕ σ ϕ τ
δ





  (3.12) 

Providing the boundary terms produced by the integration by parts vanish, 
Equation (3.12) coincides with the weak form of the Fokker-Planck equation  

( ) ( )( ) ( )
2

2
12

,
, 1 , .

2 2 E

g v v vv g v I M v g v
v vv

+
   ∂ ∂ ∂    = + − −    ∂ ∂∂      

δ
α ατ κσ λτ κ τ

τ δ
(3.13) 

Without loss of generality, we will simplify Equation (3.13) by assuming  

1: , : , : , : .
2 22 EI M

v
= = = =δ

κσ κλ κλθ µ ξ ς κ
δδ

            (3.14) 

Thus, the resulting Fokker-Planck equation takes the form  

( ) ( )( ) ( ) ( )( )
2

2 1
2

,
, , .

g v
v g v v v v g v

vv
+ +∂ ∂ ∂

= + − −
∂ ∂∂

α δ ατ
θ τ µ ξ ς τ

τ
  (3.15) 

As exhaustively discussed in Ref. [29] [30], the right boundary conditions that 
guarantee mass conservation are the so-called no-flux boundary conditions giv-
en by  

( )( ) ( ) ( )( )2 1

0,

d , , 0, 0.
d v

v g v v v v g v t
v

+ +

= +∞
+ − − = >α δ αθ τ µ ξ ς τ    (3.16) 

With these no-flux boundary conditions, we can obtain the explicit stationary 
solution of the Fokker-Planck Equation (3.13) by solving the ordinary differen-
tial equation of first order  

( )( ) ( ) ( )2 1d 0.
d

v g v v v v g v
v

+ ++ − − =α δ αθ µ ξ ς           (3.17) 

Using ( ) ( )2h v v g v+= α  in (3.17) as unknown function, separation of va-
riables gives as unique solution to (3.17) the function  

( )
2

2 1
2

exp

2
exp ,E

g v C v v
v

I M vC v
v v

− −

∞

− −

 = ⋅ ⋅ − − 
 
  = ⋅ ⋅ − −     

ξ α δθ

δλ α
δσ

ς µ
θ θδ

λ
σ σδ

        (3.18) 

where the positive constant C has been chosen to normalize the equilibrium dis-
tribution. It is not difficult to discover that ( )g v∞  tends to 0 as 0v →  and 
v →∞ . In other words, the city population size distribution obtained under the 
Non-Maxwellian collision does not exist with too little or too much population, 
which is more consistent with the real situation, and ( )g v∞  is close to the ge-
neralized Gamma density as v →∞ . 

4. Numerical Tests 

In this section, we will use statistical data to verify the validity of the model. 
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Here, we chose data from the Statistical Yearbook 2019 (27 provinces and 4 mu-
nicipalities directly under the Central Government) released by the National 
Bureau of Statistics of China with the population of 332 cities (prefecture-level 
cities) in 2018. The histogram of the city size distribution is shown in Figure 1. 

From this probability distribution, we noticed that cities with a population of 
1 million to 2 million are the majority. The number of cities with a population of 
more than 3 million decreases with the increase of the number of people con-
tained, and the rate of decrease also changes from a sharp decline to a slow con-
vergence to zero with the increase of the number of people. To fit the data with 
our model, we take a set of parameters  

10.5, 0.8, 0.6, 20, 0.5, 400, 0.2.EI M v= = = = = = =δ λ σ α  

The equilibrium distribution of both Maxwellian model [1] and our non- 
Maxwellian model are shown in Figure 2. This result shows that the non-Max- 
wellian model fits the city size distribution of China better than the Maxwellian 
model. 
 

 
Figure 1. Probability distribution histogram of China’s cities size. 

 

 

Figure 2. Theoretical steady-state distribution and the real data. 
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5. Conclusion and Perspectives 

In this paper, we introduced non-Maxwellian kinetic modeling, in which a vari-
able collision kernel is used in the underlying kinetic equation of Boltzmann 
type, to explain the evolution of city size in China. By resorting to the well-known 
quasi-invariant asymptotic, we obtain a kinetic Fokker-Planck counterpart and 
the steady-state of city size which is defined as the generalized Gamma distribu-
tion. Numerical test shows good fit of the generalized Gamma distribution with 
the city size distribution of China. However, further understanding of the role of 
each parameter, for example, the ideal city size v , is still open. It would also be 
interesting to investigate the trend of the city size distribution under the effect of 
fast urbanisation of China in recent and next several years. 
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