
Journal of Applied Mathematics and Physics, 2021, 9, 1230-1244 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2021.96084  Jun. 16, 2021 1230 Journal of Applied Mathematics and Physics 
 

 
 
 

The Quantum Condition That Should Have Been 
Assumed by Bohr When Deriving the Energy 
Levels of a Hydrogen Atom 

Koshun Suto 

Chudaiji Buddhist Temple, Isesaki, Japan 

 
 
 

Abstract 

Bohr assumed a quantum condition when deriving the energy levels of a hy-
drogen atom. This famous quantum condition was not derived logically, but 
it beautifully explained the energy levels of the hydrogen atom. Therefore, 
Bohr’s quantum condition was accepted by physicists. However, the energy 
levels predicted by the eventually completed quantum mechanics do not 
match perfectly with the predictions of Bohr. For this reason, it cannot be 
said that Bohr’s quantum condition is a perfectly correct assumption. Since 
the mass of an electron which moves inside a hydrogen atom varies, Bohr’s 
quantum condition must be revised. However, the newly derived relativistic 
quantum condition is too complex to be assumed at the beginning. The ve-
locity of an electron in a hydrogen atom is known as the Bohr velocity. This 
velocity can be derived from the formula for energy levels derived by Bohr. 
The velocity v of an electron including the principal quantum number n is 
given by αc/n. This paper elucidates the fact that this formula is built into 
Bohr’s quantum condition. It is also concluded in this paper that it is precise-
ly this velocity formula that is the quantum condition that should have been 
assumed in the first place by Bohr. From Bohr’s quantum condition, it is im-
possible to derive the relativistic energy levels of a hydrogen atom, but they 
can be derived from the new quantum condition. This paper proposes raising 
the status of the previously-known Bohr velocity formula. 
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1. Introduction 

N. Bohr was the first to derive the energy levels of an electron forming a hydro-
gen atom (this will be abbreviated below as energy levels of the hydrogen atom). 
This Introduction reviews the history up to derivation of the energy levels of the 
hydrogen atom with the assistance of the writings of Dr. H. Ezawa in Japanese. 

In 1884, J. J. Balmer noticed that the wavelengths λ  of the spectral lines emitted 
from a hydrogen atom could be described with the following formula.  

2
7

2 3.6456 10 m.
4

nB B
n

λ −= ,     = ×
−

               (1) 

After that, W. Ritz transformed this formula as follows. 

2 2

1 4 1 1 3,4, .
2

n
B nλ

 = − ,    = 
 

�                  (2) 

Ritz also generalized Formula (2) as follows. 

2 2

1 1 1 1, 2, ; 1, 2, .R n m m m
m nλ

 = − ,    = +  +    = 
 

� �          (3) 

Bohr tried multiplying both sides of Formula (3) by hc. When this is done,  

2 2 .c hcR hcRh h m n
m n

ν
λ

= = − ,    <                    (4) 

From Formula (4), Bohr predicted the following relationship. 

m nh E Eν = − + .                         (5) 

The energy of the hydrogen atom is discontinuous. Bohr thought that when 
the electron transitions from a state with energy En to a state with energy Em, the 
electron emits a photon with energy hν . He also obtained the following formu-
la for energy levels. 

2n
hcRE
n

= − .                          (6) 

At the time, the value of cR was known through experiment, but details con-
cerning R were not known. Thus Bohr decided to derive the energy levels of the 
hydrogen atom using another method. 

First, Bohr considered the case where the electron moves at constant speed 
around the atomic nucleus (proton). If r is taken to be the radius of a circular 
orbit, and v is taken to be the speed of the electron, then the following Newto-
nian equation of motion holds. 

2 2
e

2
0

1
4

m v e
r rεπ

= .                      (7) 

This equation indicates the equality of the centrifugal force acting on the elec-
tron (left side) and the Coulomb attraction received by the electron from the 
atomic nucleus. Here, the electron mass was set to me, and the charge was set to 
–e. 

Also, since the energy of the electron can be expressed by the sum of the ki-
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netic energy K and potential energy V(r),  
2 2

e

0

1
2 4

m v eE
rεπ

= − .                      (8) 

According to the Virial theorem, ( )2K V r= −  in the case of a circular orbit, 
and thus the energy can be written as follows (the discussion here concerns a 
circular orbit as a special form of an elliptical orbit). 

2
e

2
m v

E = − .                          (9) 

2

0

1 1
2 4

eE K
rεπ

= − = − .                    (10) 

Here, if both sides of Formula (10) are squared,  
2 4

2
2

0

1 1
4 4

eE
rε

 
= . 

 π
                     (11) 

Next, the following equation is obtained by dividing Formula (11) by Formula 
(9).  

( )

2 24 4
e

2 2 2
0 0e e

2 1 1 1
4 4 2 4

me eE
m v r m vrε ε

   
= − ⋅ = − .   

   π π
       (12) 

Incidentally, the angular momentum L when an electron moves in a circle can 
be expressed as mvr. Here, if the number n is affixed to the energy E and angular 
momentum L, then Formula (12) becomes as follows.  

22
e

2
0

1
2 4n

n

m eE
Lε

 
= − . 

 π
                   (13) 

The energy in Formula (6) could be found through calculation. Bohr believed 
Formulas (6) and (13) to be equal. Thus,  

22
e

2 2
0

1
2 4 n

mhcR e
n Lε

 
=  . 

 π
                   (14) 

It was found that L, for which a unique value was not known, could be ex-
pressed with the following equation. 

1/22
e

04 2n
meL n
hcRε

 = ⋅ .π 
 

                   (15) 

Bohr substituted in the not very precise numeric values for physical quantities 
that were known at the time and conjectured Ln to be as follows. 

, 1, 2, .
2n
hL n n n= =      =
π

� �                  (16) 

If Formula (16) is assumed, then Formula (13) becomes as follows [1]. 
2 4

e
BO, 2 2

0

1 1 1
2 4n

m e
E

nε
 

= − ⋅ 
 π  �

                (17a) 
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22 2
e
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m c e
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= −  

 π �
                (17b) 

2 2
e
2 .

2
m c
n

α
= −                          (17c) 

Here, BO,nE  signifies the energy levels derived by Bohr. Also, α is the follow-
ing fine-structure constant. 

2
3

0

7.2973525693 10 .
4

e
c

α
ε

−= ×
π

=
�

              (18) 

Formula (17) is not a logically derived formula. It is a formula derived by as-
suming the quantum condition in Formula (16). 

At the time, L. de Broglie noticed that light, thought to be a wave in the classical 
theory, exhibits particle characteristics. He also predicted that the electron, 
thought to be a particle, would exhibit wave characteristics. He also assumed that 
when the wavelength λ  of the wave accompanying an electron in circular mo-
tion satisfies the following relationship, that electron is state.  

2 , 1, 2, .r n n
λ

=     =
π

�                      (19) 

The following relationship holds between the momentum p and wavelength 
λ  of the electron. 

.h
p

λ =                            (20) 

Substituting the λ  of Formula (20) into Formula (19) and also taking into 
account Formula (16), the following formula can be derived. 

2 2 , 1,2, .n nrp L nh n= =     =π π �                 (21) 

According to de Broglie, Bohr’s quantum condition was able to acquire a 
substantive meaning, and thus it came to be that the energy levels of the hydrogen 
atom in Formula (17), found by assuming Formula (16), were believed to be 
correct. 

Also, if En in Formula (17) is substituted into Formula (10), then the following 
formula can be derived as the orbital radius of the electron. 

2
2 2

BO, 0 B2
e

4 , 1, 2, .nr n a n n
m e

ε= =     =π
�

�             (22) 

Here, BO,nr  is the orbital radius of the electron predicted by Bohr’s theory. 
Also, Ba  is the orbital radius when n = 1, i.e., the Bohr radius. The content of 
this paper thus far simply reiterates the information in another paper by the au-
thor [2]. However, this was deemed necessary for the discussion in subsequent 
sections. The content of this introduction is a shared understanding of physic-
ists. 

2. Discussion of Bohr’s Quantum Condition 

Bohr’s quantum condition was not logically derived. Bohr’s quantum condition 
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was accepted because it enabled the energy levels (17a) of a hydrogen atom to be 
derived correctly. However, the value of Formula (17a) does not match perfectly 
with the value predicted by the completed theory of quantum mechanics. 

This is likely because Bohr did not take account of the theory of relativity. 
When the theory of relativity is taken into account, Bohr’s quantum condition 
(21) and de Broglie’s hypothesis (19) must be revised. 

2.1. Relationship Enfolded in Bohr’s Quantum Condition 

Bohr thought the following quantum condition was necessary to find the energy 
levels of the hydrogen atom. 

e BO,2 2 .n nm v r n⋅ =π π �                     (23) 

In Bohr’s theory, the energy levels of the hydrogen atom are treated non-rela- 
tivistically, and thus here the momentum of the electron is taken to be em v . 
Also, the Planck constant h can be written as follows [3]. 

e C .
2 2

m ch λ
= =

π π
�                       (24) 

Cλ  is the Compton wavelength of the electron. 
When Formula (24) is used, the fine-structure constant α can be expressed as 

follows. 
2 2

2
0 0 e C

.
4 2

e e
c m c

α
ε ε λ

= =
π �

                  (25) 

Also, the classical electron radius er  is defined as follows.  
2

e 2
0 e

.
4

er
m cεπ

=                        (26) 

If er α  is calculated here,  

e C .
2

r λ
α

=
π

                          (27) 

If Formula (22) is written using er  and α, the result is as follows. 
22 2

2 2 20 e
BO, 0 2 2 2 2

e 0 e

4
4 .

4n
c rer n n n

m e m c e
ε

ε
ε α

π
π

π
 = = = 
 

��
      (28) 

Next, if �  in Formula (24) and BO,nr  in Formula (28) are substituted into 
Formula (23),  

2e e C
e 22 2 .

2n
r m c

m v n n
λ

α
⋅ =π π

π
                  (29) 

If Formula (27) is also used, then Formula (29) can be written as follows. 

2e e e
e 22 2 .n

r m cr
m v n n

αα
π⋅ π=                   (30) 

From this, the following relationship can be derived. 

.nv
c n

α
=                           (31) 
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Due to Formula (31), it is possible to identify discontinuous states that are 
permissible in terms of quantum mechanics in the continuous motions of clas-
sical theory.  

2.2. Various Formulas Derivable from Formula (31) 
2.2.1. Bohr’s Quantum Condition 
It was possible to derive Formula (31) from Bohr’s quantum condition (23), and 
thus it should be possible to derive Formula (23) from Formula (31). First, both 
sides of Formula (31) are multiplied by e BO,2 nm rπ⋅ . Next, when the value of 
Formula (22) is substituted for BO,nr  on the right side, 

2 2
2e

e BO, 0 2
0 e

2 . 2 4 2 .
4n n

m c em v r n n
n c m e

ε
ε

 
⋅ = ⋅ = 


π π

π 
π π

�
�

�
         (32) 

With this, it was possible to derive Bohr’s quantum condition (23) from For-
mula (31). 

This shows that the electron mass which appears in Bohr’s quantum condition 
is rest mass. 

2.2.2. Bohr’s Energy Levels (17) 
When both sides of Formula (31) are squared, and then multiplied by e 2m , 

2 2
e e
2 2

1 1 .
2 2

nm v m
c n

α
=                         (33) 

Hence,  
2 2

2 e
BO, e 2

1 .
2 2n n

m c
E m v

n
α

= − = −                     (34) 

If Formula (31) is taken as a departure point, the energy levels of the hydrogen 
atom derived by Bohr can be derived immediately. Formula (31) has tremendous 
power. However, from a relativistic perspective, ( ) 2

e1 2 nm v  is an approximation 
of the kinetic energy of the electron. Therefore, the energy in Formula (34) is al-
so an approximation of the true value. 

3. The Relation between Kinetic Energy and Momentum  
Derived from the STR Relationship 

The energy-momentum relationship in the special theory of relativity (STR) 
holds in an isolated system in free space. Here, if 2

0m c  is the rest mass energy 
and 2mc  is the relativistic energy, the relationship can be written as follows. 

( ) ( )2 22 2 2 2
0 .m c p c mc+ =                      (35) 

First, it is clear that the following formula holds. 

( ) ( )2 22 2 2 2
0 0 .m c mc m c mc + − =                   (36) 

Expanding the left side of this equation yields the following.  

( ) ( ) ( )( )22 4 2 4 2 4 2 2 2 2
0 0 0 0 0 .m c m c m c m c m m mc m c c+ − = + + −       (37) 
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Using this, Formula (36) becomes as follows. 

( ) ( )( ) ( )2 22 2 2 2 2
0 0 0 .m c m m mc m c c mc+ + − =             (38) 

Incidentally, Sommerfeld and Einstein defined relativistic kinetic energy as 
follows [4]. 

2 2
re 0 .K mc m c= −                       (39) 

Since this equation and Formula (35) are equal, the following relationship 
must hold when Formula (39) is taken into account. 

( )( ) ( )2 2 2
0 0 0 re .p m m mc m c m m K= + − = +             (40) 

The following formula is obtained from this. 
2

re
0

,pK
m m

=
+

                       (41) 

Formula (41) is the formula for relativistic kinetic energy [2]. Classical (non- 
relativistic) kinetic energy, in contrast, is defined as follows. 

2
2

cl 0
0

1 .
2 2

pK m v
m

= =                      (42) 

Formula (41) describes the relativistic kinetic energy of an electron in a hy-
drogen atom, and Formula (42) describes the classical kinetic energy of an elec-
tron. 

Next, the relativistic kinetic energy of an electron in a hydrogen atom is de-
fined as follows by referring to Formula (41). 

2
re,

re, re,
e

, .n
n n n n

n

p
K p m v

m m
= =

+
                 (43) 

Here, nm  is the relativistic mass of the electron. Also, re,np  indicates the re-
lativistic momentum of the electron.  

Incidentally, the energy of an electron at rest in an isolated system in free 
space is 2

em c . Here, we consider the case where this electron is drawn in by 
the electrical attraction of the proton, and forms a hydrogen atom. At this time, 
the electron emits a photon to the outside. Therefore, the relativistic energy of 
an electron in a hydrogen atom 2

nm c  becomes smaller than the rest mass energy 
2

em c . That is, 
2 2

e .nm c m c<                         (44) 

The behavior of an electron inside an atom, where there is potential energy, 
cannot be described with the relationship of Einstein (35). Caution is necessary 
because it is completely overlooked in Formula (44). 

Now, referring to Formula (39), it is natural to define the relativistic kinetic 
energy of an electron in a hydrogen atom as follows.  

2 2
re, re, e .n n nK E m c m c= − = −                    (45) 

This paper defines re,nE  as the relativistic energy levels of the hydrogen atom 
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derived at the level of classical quantum theory. (The quantum number used 
here is just the principal quantum number. Therefore, re,nE  is not a formula 
that predicts all the relativistic energy levels of the hydrogen atom.) 

However, the term “relativistic” used here does not mean based on the STR. It 
means that the expression takes into account the fact that the mass of the elec-
tron varies due to velocity. According to the STR, the electron’s mass increases 
when its velocity increases. However, inside the hydrogen atom, the mass of the 
electron decreases when the velocity of the electron increases. Attention must be 
paid to the fact that, inside the hydrogen atom, the relativistic mass of the elec-
tron nm  is smaller than the rest mass em . 

In this way, two formulas have been obtained for the relativistic kinetic energy 
of the electron in a hydrogen atom (Formulas (43), and (45)). 

The following Figure 1 illustrates the energy levels BO,nE  derived by Bohr 
and the energy levels re,nE  derived in this paper. 

Incidentally, the following equation can be derived from Formulas (43) and 
(45).  

2
re, 2 2

e
e

.n
n

n

p
m c m c

m m
= −

+
                     (46) 

Rearranging this, the following relationship can be derived.  

( ) ( )2 22 2 2 2
re, e .n nm c p c m c+ =                    (47) 

Formula (47) is the energy-momentum relationship applicable to the electron 
in a hydrogen atom (the author calls this “Suto’s energy-momentum relation-
ship”). 

The author already derived this relationship (47) using another method [5] 
[6]. The difference between Einstein’s relationships (35) and (47) arises due to 
the presence/absence of potential energy. 
 

  
(a)                                       (b) 

Figure 1. (a) Bohr’s theory asserts that the energy of an electron at rest at the position 
r = ∞  is zero; (b) In this paper, 2

em c  is taken to be the energy of an electron at rest at 
the position r = ∞ . The energy levels in this paper were derived from an absolute scale 
which takes into account the special theory of relativity. 
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Now, if the definition of momentum for Formula (43) is taken into account, 
Formula (47) can be written as follows. 

( ) ( ) ( )2 222 2 2
e .n n nm c m v c m c+ =                  (48) 

Using Formula (31) here, Formulas (48) can be written as follows. 

( ) ( )
2

2 22 2 2 2
e .n n

cm c m c m c
n

α + = 
 

                (49) 

The relation between nm  and em  is as follows due to Formula (49). 
1/22

e
21 .

n

m
m n

α 
= + 

 
                      (50) 

According to the predictions of the STR, the mass of a moving object is great-
er than when it is at rest. However, in the case of an electron in a hydrogen 
atom, that principle is reversed, and the mass of the moving electron is smaller 
than the rest mass of the electron. 

Now, if Formula (47) is solved for re,np , 

( )1/22 2
re, e .n np c m m= −                      (51) 

If Formula (50) is also taken into consideration,  
1/22

re, e 2 2 .np m c
n

α
α

 
=  + 

                   (52) 

Incidentally, the following equation holds due to Formulas (10) and (45). 
2

2 2
e

0 re,

1 1 .
2 4 n

n

e m c m c
rε

 
π

 = −                   (53) 

Finding re,nr  from Formula (53), 

e e
re,

e

.
2n

n

r m
r

m m
=   

−
                      (54) 

Next, if we calculate the denominator of Formula (54), 

( )

( )
( )

1/22 2
e

1/22 2e
1/22 2

1 .
11

1
n

nm
m m n n

n

α

α
α

+
= =

− + −−
−

           (55) 

From this, re,nr  becomes as follows 

( )
( )

1/22 2
e

re, 1/22 2
.

2n

nr
r

n n

α

α

+
= ⋅

+ −
                   (56) 

Also, rewriting Formula (56), it becomes as follows.  

( )
e

re, 1/22 2
1 .

2n
r nr

n nα

 
 = +
 + −  

                 (57) 
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4. Bohr’s Quantum Condition and De Broglie’s Hypothesis  
Derived from a Relativistic Standpoint 

In the discussion in the previous section, it was possible to find re,np  and re,nr  
for relativistically deriving Bohr’s quantum condition (23) and de Broglie’s hy-
pothesis (19). 

4.1. Bohr’s Quantum Condition 

If the values of Formulas (52) and (56) are substituted for re,np  and re,nr  in 
Bohr’s quantum condition (23), then the left side of Formula (23) becomes as 
follows. 

( )
( )

( )

1/21/2 2 22
e

re, re, e 2 2 1/22 2

e
e 1/22 2

1/22
e

e 2 2

2 2
2

12
2

2 1 1
2

n n

nr
p r m c

n n n

r
m c

n n

r
m c n

n

αα
α α

α
α

αα
α

+ 
⋅ = ⋅ 

+  + −

= ⋅   
+ −

  
 = ⋅ ⋅ + + 


π

 

π

π


π



        (58) 

Here, we use the fact that Formula (27) can be written as follows. 

e C

e2
r

m c
λ

α π
= = ⋅

�                          (59) 

When this is done, Formula (58) becomes as follows. 
1/2 1/22 2

e
re, re, e 2 22 2 1 1 2 1 1 .

2 2n n
r np r m c n

n n
α α

α

      
   ⋅ = ⋅ ⋅ + + =  + +   
        

π


π π
�    (60) 

In this paper, the following equation is called the relativistic quantum condi-
tion. 

1/22

re, re, 22 2 1 1 .
2n n

np r
n
α  

 ⋅ =  + + 
  

π


π


�                (61) 

Next, if the part in parentheses on the right side of Formula (60) is developed 
as a Taylor expansion, the result is as follows. 

1/22 2 4 6

2 2 4 61 1 .
2 8 16n n n n

α α α α 
+ ≈ + − + 

 
                (62) 

Thus, 
1/22 2

2 21 1 2 .
2n n

α α 
+ + ≈ + 

 
                   (63) 

Here, 2 45.325 10α −= × , and thus the left side of Formula (62) is approximate, 
1/22

21 1 2.
n
α 

+ + ≈ 
 

                      (64) 

Therefore, the right side of Formula (60) is as follows. 
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1/22

22 1 1 2 .
2

n n
n
α  

  + + ≈ 
   

π π
�

�                  (65) 

If the STR is taken into account, then it is evident that strictly speaking, Bohr’s 
quantum condition does not hold, and it only holds approximately. That is, 

re, re,2 2 .n np r n⋅ ≈π π �                      (66) 

4.2. De Broglie’s Hypothesis 

First, de Broglie’s hypothesis (19) can be rewritten as follows. 

re,2 .n nr nλ=π                         (67) 

Here nλ  is the wavelength of an electron with momentum re,np . 
Using Formula (56), the left side of Formula (67) is, 

( )
( )

( )1/2 1/22 2 2 2 2 2
e e

re, 1/2 22 2

1/22 2 2
e
2 2 2

2 2 2
2 2

2 1 1 .
2

n

n n n nr r
r

n n

n r
n n

α α α

αα

α α
α

+ + + +
= =

+ −

 

π π π


 = + + + 
   

π

    (68) 

Here,  
22 2

e 0
0 B2 2 2 2

0 e e

4
4 .

4
r ce a

m c e m e
ε

ε
α ε

 = = = 
 

π
π

π
� �

          (69) 

If the relationship in Formula (69) is incorporated into Formula (67),  
1/22 2 2

B
re, 2 22 2 1 1 .

2n
n ar

n n
α α  

 = + + + 
  

π


π               (70) 

Next, let’s consider the right side of Formula (67). Using the relationship of de 
Broglie, the right side of Formula (67) can be written as follows. 

re,

.n
n

hn n
p

λ =                          (71) 

If Formulas (24) and (52) are used here, Formula (71) becomes, 
1/2 1/22 2 2

2e C C
2 2

e

1 .n
m c nn n n

m c n
λ λα αλ

αα
   +

= = +   
   

           (72) 

Here, we take into account the fact that the following relationship holds. 

e
C

2
.

r
λ

α
=

π
                          (73) 

Next, if both sides of Formula (73) are divided by α, 

e C
B2

2
2 .

r
a

λ
αα

= π=
π

                      (74) 

If Formula (74) is used, then Formula (72) becomes as follows. 
1/22

2
B 22 1 .nn n a

n
αλ

 
= + 

 
π                    (75) 
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Next is a comparison of the right side of Formula (70) and the right side of 
Formula (75). 

First, the part in parentheses on the right side of Formula (70) is regarded as 
approximately 2. That is,  

1/22 2

2 21 1 2.
n n
α α 

+ + + ≈ 
 

                    (76) 

Finally, re,nr  in Formula (70) is, 
2

re, B.nr n a≈                          (77) 

5. Discussion 

1) First, if both sides of Formula (31) are squared, and multiplied by
( )2

en nm m m+ , 
2 2 22

2 2
e e

.n n n

n n

m v m
m m m mc n

α
⋅ = ⋅

+ +
                  (78) 

From this, the relativistic kinetic energy of the electron re,nK  is, 
2 2 22 2

re, 2
e e

.n n n
n

n n

m v mcK
m m m mn

α
= = ⋅

+ +
                (79) 

If the relationship in Formula (50) is used here, 
2 2 2

2
re, e2 2 2 1/22

e 2 2

1 .

1
n

c nK m
n n nm

n

α
α

α

 
= ⋅ +     

 +  +   

          (80) 

Next, the following formula is multiplied with the numerator and denomina-
tor, 

1/22

2 21 .n
n α

 
−  + 

 

When this is done, 
1/2 12 2 2 2 2

e
re, 2 2 2 2 2 2 21 1n

m c n n nK
n n n n

α
α α α

−      
 = − −     + + +       

      (81a) 

1/22 2 2 2 2 2
e

2 2 2 2 2 21
m c n n n
n n n

α α
α α α

      + = −     + +       
         (81b) 

1/22
2

e 2 21 nm c
n α

  
 = −  +   

                             (81c) 

2 2
e .nm c m c= −                                      (81d) 

This enables derivation of Equation (45) from Equation (31). 
Thus, the relativistic energy levels of the hydrogen atom are, 

1/22
2 2 2

re, e e 2 2 1 .n n
nE m c m c m c

n α

  
 = − = − 

+   
           (82) 

https://doi.org/10.4236/jamp.2021.96084


K. Suto 
 

 

DOI: 10.4236/jamp.2021.96084 1242 Journal of Applied Mathematics and Physics 
 

Incidentally, the only quantum number included in Formula (82) is the prin-
cipal quantum number n. Therefore, it is not the case that all the energy levels of 
the hydrogen atom can be derived from Formula (82). Also, with Bohr’s quan-
tum condition and de Broglie’s hypothesis, it was possible to sketch a picture of 
the hydrogen atom, but with Formula (31), there is no picture of the electron. 
However, that is not a problem in quantum mechanics. 

The relativistic energy levels of the hydrogen atom can be derived from For-
mula (31), and thus Formula (31) is a more substantial relationship than Bohr’s 
quantum condition. 

2) If the energy levels derived by Bohr (17c) are multiplied by the classical or-
bital radius (28), 

2 2 2
2e e e

BO, BO, e2 2 .
22n n

m c r m c
E r n r

n
α

α
= − ⋅ = −              (83) 

Next, if we find the product of the relativistic energy levels derived in this pa-
per (82) and the relativistic orbital radius (54),  

( ) 2 2e e e
re, re, e e

e

.
2 2n n n

n

r m r
E r m m c m c

m m
= − ⋅  = −

−
            (84) 

The following relationship holds based on Formulas (83) and (84). 

BO, BO,

re, re,

1.n n

n n

E r
E r

=                           (85) 

Also, the following equation holds due to Formula (10). 
2

2 e
re, e

0 re, re,

1 1 1
2 4 2n

n n

reE m c
r rε

= −  −  
π

= .                 (86) 

This is because the following relationship holds due to Formula (86). 
2

2
e e

0

1 1 .
2 4 2n n

eE r m c r
ε

= −
π

= −                    (87) 

However, n nE r  does not signify a physical quantity. Therefore, Formula (87) 
does not have any special meaning. However, if n nE r  is always constant, then it 
can be used to verify this relationship. The product of Formulas (54) and (81c) 
derived in this paper is correct. 

3) According to the discussion in this paper, the strict form of Bohr’s quan-
tum condition (23) is as follows. 

1/22

re, re, 22 2 1 1 .
2n n

np r
n
α  

 ⋅ =  + + 
  

π


π


�                 (88) 

Also, strictly speaking, de Broglie’s hypothesis becomes as follows. 
1/22

re, 22 1 1 .
2

n
n

n
r

n
λ α  

 = + + 
   

π                    (89) 

Thus, re,nr  is, 
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1/22

re, 2

1 1 1 .
2 2

n
n

n
r

n
λ α

π

  
 = + + 
   

                  (90) 

If this re,nr  is substituted for re,nr  in Formula (88), the following de Broglie 
relationship is obtained. 

re,

2 .n
np

λ =
π�                           (91) 

From this, it is evident that Formulas (88) and (89) are the same formula. 

6. Conclusions 

Quantum condition (23) was assumed first in Bohr’s theory. Also, the energy le-
vels of the hydrogen atom (17) and the orbital radius of the electron (22) were 
derived using that quantum condition. It was also possible to find the velocity of 
the electron from Formula (34). 

However, this paper concludes that Bohr should have assumed the following 
formula to begin with 

.nv
c n

α
=                          (92) 

From Formula (92) it is easy to find Formula (17). Formula (92) is built into 
the Bohr quantum condition. From this relationship, this paper can also determine, 
albeit partially, the relativistic energy levels of the hydrogen atom (82). However, 
Formula (82) cannot be found from Bohr’s quantum condition. 

On the other hand, the relativistic quantum condition (88) was inferred by 
substituting re,np  or re,nr , derived by another method, into Bohr’s quantum 
condition (21). Originally, re,np  and re,nr  had to be derived in the reverse way 
from Formula (88). 

Formula (88) is complicated, so it is difficult to assume in the beginning. 
Therefore, it is impossible to conclude that Formula (88) is the true quantum 
condition. 

This paper concludes that Formula (92) is suitable as a new quantum condi-
tion to take the place of Bohr’s quantum condition. 

When deriving the energy levels of the hydrogen atom, Bohr should have as-
sumed Formula (92). 
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