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Abstract 
To understand the characteristics of ocean internal waves better, we study the 
dispersion relation of extended-Korteweg-de Vries (EKdV) equation with 
quadratic and cubic nonlinear terms in a two-layer fluid by using the Poin-
caré-Lighthill-Kuo (PLK) method which is one of the perturbation methods. 
Starting from the partial differential equation, the PLK method can be used to 
solve the dispersion relation of the equation. In this paper, we use PLK me-
thod to solve the equation and derive the dispersion relation of EKdV equa-
tion which is related to wave number and amplitude. Based on the dispersion 
relation obtained in this paper, the expressions of group velocity and phase 
velocity of the equation are obtained. Under the actual hydrological data, the 
influence of hydrological parameters on the dispersion relation for descend-
ing internal wave is discussed. It is hope that the obtained results will be 
helpful to the study of energy transfer and other internal wave parameters in 
the future. 
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1. Introduction 

Ocean internal solitary wave is a kind of internal waves, which is the result of 
dispersion effect and nonlinear effect [1]. Under the balance of nonlinear effect 
and dispersion effect, the waveform can keep constant for hundreds of kilome-
ters in the process of propagation [2] [3]. The dispersion relation is the basis of 
studying ocean internal solitary waves [4]. The dispersion relation describes the 
relationship between wave frequency and wave number. The expressions of the 
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phase velocity and the group velocity obtained from dispersion relation which 
can reflect the propagation of internal wave signal and energy can be calculated 
respectively [5]. The energy exchange in the ocean caused by the occurrence and 
evolution of internal solitary waves provides abundant nutrients and living space 
for marine organisms, especially ephemeroptera plants [6] and the shear flow 
caused by energy exchange seriously threatens the marine operations and mili-
tary activities. Therefore, the investigation of dispersion relation of internal 
waves is of great significance to scientific research, marine engineering security, 
national defense security and marine biological transportation [7]. Hence, this is 
the main reason why the theoretical dispersion relation of the internal solitary 
waves equation is widely studied [8]-[13]. 

Starting from modal equation, Fliegel and Haskell used Thomson-Haskell 
method to calculate the dispersion relation of internal waves [8]; Munk derived 
the wave function in the form of Airy function and the corresponding dispersion 
relation in integral form when the frequency of internal wave was close to 
Brunt-Väisälä frequency N [14]; Wang and Shang used WKB method to study the 
dispersion relation of internal wave when the floating frequency was a slow varying 
function of water depth and internal wave frequency was close to Brunt-Väisälä 
frequency N [15]; Zhang and Gao solved the vertical structure and dispersion rela-
tion of internal waves by using the transformation method of Russian scholars 
[16]. In reference [17], the dispersion relation of internal solitary waves of the 
KdV equation was obtained from nonlinear partial differential equations. 

PLK method was first proposed by Poincaré in finding the periodic solutions 
of the first-order ordinary differential equations. Later, Lighthill made an im-
portant promotion in finding the uniformly effective approximate solution of 
physical problems. Finally, Kuo further extended Lighthill’s original idea in 
seeking the elegant solution of the incompressible laminar boundary layer of a 
flat plate and subsequent work [18]. For the conventional perturbation method, 
only the dependent variable in the original function is expanded by perturbation, 
while the PLK method also expands the circular frequency by perturbation. Even 
if the equation is not integrable, the PLK method can be used to calculate the 
dispersion relation of the equation. 

In this paper, we study the extended-Korteweg-de Vries (EKdV) equation 
with quadratic and cubic nonlinear terms proposed by T. Sakai and L. G. Rede-
kopp which can better describe large amplitude waves propagation problem 
[19]. The dispersion relation with the perturbation solution of EKdV equation is 
obtained by using PLK method. Based on the dispersion relation, the expressions 
of group velocity and phase velocity are obtained. The effect of wave depth and 
density difference ratio on the dispersion relation of the EKdV equation is dis-
cussed for descending ocean internal waves. 

2. The Dispersion Relation of the EKdV Equation 

Grimshaw first describes the weakly nonlinear evolution of interfacial gravity 
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waves on two shallow boundaries with KdV equation [20] [21]. When an ex-
tended KdV equation is used, the agreement between the theoretical and expe-
rimental data is greatly improved [20] [21] [22]. In view of this, T. Sakai and L. 
G. redekopp proposed the EKdV equation which can describe the internal wave 
packet with large amplitude. The two-layer EKdV equation form is as follows 

( )2
0 1 2 0 01 0.t x xxxc cζ α ζ α ζ ζ β ζ+ − − + =               (1) 

The coefficients of Equation (1) are as follows: 
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where 0c  is the linear velocity, 1α  is the quadratic nonlinear term, 2α  is the 
cubic nonlinear term, 0β  is the dispersion coefficient and gravity  

2 1

1 1

g g gρ ρ ρ
ρ ρ
− ∆

= = , 1ρ  and 2ρ  are the densities of the upper and lower 

layers of sea water. 
When 2 0α ≠ , Equation (1) is called KdV2 equation. When 2 0α = , Equa-

tion (1) is called KdV1 equation. KdV1 equation and KdV2 equation are both 
KdV families, but they are different [18]. The nonlinearity of KdV1 equation is 
completely derived from the leading nonlinear correction of the linear long wave 
phase velocity 0c , the long wave phase velocity of KdV2 equation is dependent 
on the first and second order terms of wave amplitude [19]. 

The dispersion relation of Equation (1) will be derived. Introducing dimen-

sionless variation 2 1

1 2

h h A
h h

ζ
−

= , Equation (1) can be transformed into 
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Introducing phase function 

,kx tξ ω= −  
where k  and ω  are wave number and circular frequency respectively, Equa-
tion (6) becomes the following nonlinear ordinary differential equation 

3
2 32
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Using the PLK method for Equation (7), the dispersion relation of Equation 
(1) is obtained. Let 0η  be the amplitude of ζ , and select ε  as a small para-
meter 
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Both A and ω  are expanded to power series of ε . Because the dimension-
less numbers A and ε  are small quantities of the same order, A is expanded 
from the first order of ε , and ω  is expanded from the zero order. The per-
turbation expansion of A with respect to ε  is written as 

( ) ( ) ( )2 3
1 2 3 ,A A A Aε ζ ε ζ ε ζ= + + +                (9) 

and the perturbation expansion of the circular frequency ω  is written as 

( ) ( ) ( )2
0 1 2 .k k kω ω εω ε ω= + + +                (10) 

Substituting Equation (9) and Equation (10) into Equation (7), we can get 
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The first-order to the third-order approximation is respectively 
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The first-order approximation Equation (12) is the second-order oscillation 

equation for 1d
d
A
ξ

. ε  is dimensionless, hence 
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The zero order approximation of circular frequency ω  is 
3

0 0 0 0 .c k c kω β= −                       (15) 

At the same time, the solution of the first-order approximation Equation (12) 
is obtained 

1 sin .A ξ=                          (16) 

Taking Equation (15) and Equation (16) into the second-order approximation 
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Equation (13), we can get 
3
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It can be seen from the above formula that the non-duration condition here is 
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Then Equation (17) is reduced to 
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Its special solution is 
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Taking Equations (15), (16), (18) and (20) into third-order approximation 
Equation (14), we can obtain 
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It can be seen from the above formula that the non-duration condition here is 
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And Equation (21) can be simplified as 
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Its special solution is 
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The perturbation solution of Equation (1) is obtained by using the PLK me-
thod 
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The circular frequency is 
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And the circular frequency is 
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Formula (27) is the dispersion relation of nonlinear internal solitary wave 
EKdV equation. By truncating formula (27), we can get the truncated expression 
of dispersion relation 
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3. Dispersion Relation Diagram Based on Actual Data 

Any wave equation has its specific dispersion relation, so we can determine the 
wave parameters of wave according to the dispersion relation. We select a set of 
data of Andaman Sea area to discuss the influence of hydrological parameters on 
dispersion relation. The water depth of upper layer 1 230 mh = , the water depth  

of lower layer 2 863 mh = , density difference ratio 0.003ρ
ρ
∆

= , amplitude  

0 60 mη =  [2]. For this set of data, the values of ε  is 0.191, so that 1ε < . 
The expressions of phase velocity and group velocity can be calculated respec-

tively based on the dispersion relation (28) 
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Combining the expression of phase velocity [23] 
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                   (31) 

the value of wave number k can be deduced by formula (29) and (31) using the 
measured data. 

As seen from Figure 1, for the descending internal solitary wave, within a 
certain range of the water depth, when the lower layer water depth 2h  is fixed, 
the value of ω  decreases with the increase of the upper layer water depth 1h  
in Figure 1(a). When the upper layer water depth 1h  is fixed, the value of ω  
decreases with the increase of the lower layer water depth 2h  in Figure 1(b). 

As seen from Figure 2, for the descending internal solitary wave, within a 
certain range of density difference ratio, the value of ω  increases with the in-
crease of density difference ratio. 

4. Conclusion 

In this paper, the dispersion relation with the perturbation solution of EKdV 
equation is obtained by using PLK method. The dispersion relation derived in 
this paper is related to water number and amplitude. The expressions of phase  
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Figure 1. (a) The influence of the water depth of upper layer 1h  on ω , (b) The influence of the wa-
ter depth of lower layer 2h  on ω . 

 

 

Figure 2. The influence of density difference ratio 
1

ρ
ρ
∆  on ω . 

 
velocity and group velocity are obtained by using the dispersion relation, which 
can be used to study the propagation characteristics and energy transmission of 
ocean internal waves. Under the actual hydrological data, the influence of water 
depth and density difference ratio on the descending internal solitary waves is 
discussed. The value of ω  decreases with the increase of the upper and lower 
water depth, but it increases with the increase of density difference ratio. We 
hope to provide a better theoretical basis for solving internal wave parameters by 
using dispersion relation. 
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