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Abstract 
The physical objective of solving for eigen-modes of a 1D quasiperiodic 
structure in photonics has been achieved. This was achieved thru considering 
this structure as a 1D projection or cut of a 2D periodic structure. And the 
problem is solved in a manner similar to 2D periodic photonic structures. A 
mechanical analogy (quasiperiodic orbits) helps to bring conceptual clarity. 
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1. Introduction 

The idea is to use the construction of a 1D quasi-periodic structure. The con-
struction uses the diagonal sectioning of a (parent) 2D periodic tiling, the di-
agonal having an irrational slope (see for example [1]). This construction is used 
to come up with a (Fourier) series expansion. This series expansion may later be 
used to solve the EVP (Eigen-Value Problem) Master Equation of Photonics (see 
[2]). It is found that instead of solving for a single frequency/eigenvalue, we need 
to solve for two—one for each dimension in the associated 2D periodic tiling 
problem. It is found that to find the two frequencies, we need to solve the 2D pe-
riodic problem as well as the 1D quasi-periodic problem. The method of solu-
tion and the solution itself closely resembles that of periodic problems to the ex-
tent that concepts like reciprocal lattice, periodicity and a Bloch’s Theorem still 
apply (in a modified form for the 1D quasi-periodic problem and exactly for the 
2D periodic problem)! A mechanical analogy clarifies matters. 

How to cite this paper: El Houshy, A. (2021) 
The Problem of Quasiperiodic Photonic 
Structures Solved by Considering the Cut 
of 2D Periodic Structure. Journal of Applied 
Mathematics and Physics, 9, 864-888. 
https://doi.org/10.4236/jamp.2021.95059 
 
Received: March 9, 2021 
Accepted: May 14, 2021 
Published: May 17, 2021 
 
Copyright © 2021 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/  

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2021.95059
https://www.scirp.org/
https://doi.org/10.4236/jamp.2021.95059
http://creativecommons.org/licenses/by/4.0/


A. El Houshy 
 

 

DOI: 10.4236/jamp.2021.95059 865 Journal of Applied Mathematics and Physics 
 

1.1. Geometry 

Here is what the 1D quasi-periodic strip looks like (Figure 1(b)): 
The Diagonal line or Strip above is a 1D cut along the 2D periodic lattice. Re-

garding the slope of the strip, there are two possibilities: 
1) It is rational, and so the resulting 1D strip is periodic. 
2) It is irrational and so the resulting 1D strip is not periodic. It is quasiperi-

odic (which in turn is different from a totally random structure.) 
The second point basically means that only the bottom left corner vertex of 

the square is hit by the strip. If the strip hits two vertices, then the unit-cell 
(marked by the two intersections of the ray with the 2D periodic structure) is a 
unit-cell of a 1D structure—as in the rational slope case (Figure 2). 

An analogy from mechanics is quite instructive here. A periodic structure is 
analogous to periodic or cyclic motion, say, closed orbits (librations) or rotations 
(see [3]). A quasiperiodic structure is analogous to quasiperiodic motion (which 
in turn is a characteristic of chaotic motion and again different from totally 
random motion). The following discussion of chaotic motion is based on [3]. 

The usual orbits in phase space encountered in linear problems are usually 
deterministic (and linear or periodic) as well as being bounded (confined to a 
relatively small region of phase space rather than wandering all over the place 
like space-filling curves or fractals). Examples are the ellipses of the Kepler 
problem, the circles of the simple harmonic oscillator, and the limit cycle of the 
van der Pol equation. 

 

 
Figure 1. (a) It shows how 1D quasiperiodic structure can be constructed out of a 2D pe-
riodic structure. This was achieved using a strip with an irrational slope; (b) the strip in 
Figure 1(a) has been taken out and rotated so that it is horizontal for clarity. 
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Figure 2. (a) this figure shows what happen if the cut has this time a rational slope; (b) 
Here is what the 1D unit cell of the periodic strip (as the slope is rational or 1/3) looks 
like. 

 
Under certain conditions, trajectories, called chaotic trajectories, will be en-

countered in which the motion wanders around an extensive (as opposed to be-
ing bounded and confined in a relatively small region)and perhaps irregularly 
shaped region of phase space in a manner that appears to be random, but that in 
fact is tempered by constraints. 

This path or region where the meandering takes place is an example of a 
strange attractor. This attractor is different from the usual attractors or repellors 
encountered for stable and unstable equilibria, respectively. It is called strange 
because of its (fractal) geometry and chaotic because of its dynamics. 

The chaotic trajectory roams here and there, back and forth through this 
strange attractor region seeming to fill the space (space-filling is a geometric 
property of fractals and is responsible for fractals having a fractional dimen-
sion … so a trajectory is not your usual 1D line because it fills a 2D space and so 
has a dimension somewhere between 1 and 2), but without ever actually passing 
through the same point twice (a property reserved for periodic motion). In 
short, chaotic motion has affinities with ergodic motion—more on this later 
with characteristics between regular deterministic trajectories and totally ran-
dom roaming. 

1.2. The Mechanical Analogy 

The motion involved in chaos has the properties of: 
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1) Mixing 
2) Dense Quasiperiodic orbits 
3) Sensitivity to Initial Conditions 
Mixing means that if the motion passes through some region in phase space, 

then it will eventually pass through another region regardless of how far they are 
apart. A quantification of the idea of the orbit roaming throughout the entire 
phase space rather than being bounded or confined. A chaotic orbit that visits 
and revisits that is mixes with all regions of the available phase space is identified 
with what is called a strange attractor. Its association is not with a localized at-
tractor such as a fixed point or a limit cycle, but rather with a very extended re-
gion of phase space, hence the designation strange. 

Quasiperiodicorbit means that the orbiting mass repeatedly and irregularly 
pass through the whole range of the domain without ever closing on themselves, 
and without any particular time period associated with successive transits. They 
are dense because they pass through or arbitrarily close to every point of the 
domain, a property that conforms with the ergodic hypothesis. Like painting or 
covering a 2D square piece of canvas with very thin line-like brush strokes. 

Sensitivity to Initial conditions: a small change in the initial conditions can 
result in a large change in position and velocity many transits or iterations later 
(having discretized the problem and the motion unfolds over discrete time 
steps). Moreover, this small change (perturbation say) could lead to switching 
from the linear bounded regime over to the chaotic non-linear one… as two ini-
tially close points grow exponentially apart. This exponential growth of the gap 
is quantified via the Liaponuv exponent, which is directly related to the fractal 
dimension of the strange attractor. This exponential growth of the gap is just the 
famous Butterfly Effect—a popular defining property of chaos. An example is a 
spaceship in an Earth orbit. A small rocket boost will move it to a nearby orbit 
whereas a strong boost could throw it out of orbit, heading for outer space. An-
other common example of how linear and chaotic motions differ when periodic-
ity is not present is turbulence in water. While there is streamline flow, two 
nearby points in the water stay close together as they move along; after the onset 
of turbulence the same two points, on average, keep moving farther and farther 
apart. It is worth noting though that, they may now be related by Renormaliza-
tion owing to fractal nature of turbulent flow. Moreover, renormalization rather 
than averaging pops up in QFT with its non-linear equations rather than the 
linear Schrodinger Equation of QM. 

1.2.1. Sensitivity to Initial Conditions, Statistical  
Mechanics and Quantization 

To drive the point home, observe that this means that Liouville’s Theorem which 
is applied to ensembles in statistical mechanics (the conservation of density of 
states in phase space) does not hold for chaotic motion. For some initial region 
R, R may deform with time, but number of states within R is conserved like the 
constant density of a fluid. That is a system initially inside R never leaves it and a 
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system initially outside R remains outside it. R is an exclusive club and its mem-
bers do not mix with outsiders. This is like continuity equation a flux-density 
relationship. And it follows from the fact that an element of volume in phase 
space is an invariant—a Poincare Invariant. However, sensitivity to initial condi-
tions means that if two neigbouring systems/points are initially contained in the 
same infinitesimal box, later on, they can’t. However, their quantized systems 
would not be sensitive to initial conditions and so Liouville’s Theorem and sta-
tistical mechanics would still work off equilibrium… and the particles would still 
be close enough to exchange energies and reach an equilibrium in the first place. 
This may be thought of as a result of the linearity of Schrodinger’s Equation even 
though the original classical system maybe non-linear (see [4]). (Note that Pois-
son Bracket Mechanics is a linear PDE in time only while Schrodinger’s Equa-
tion is linear in both time and space variables) 

Liouvilles’s Theorem states that the no. of systems within a volume in phase 
space as well as the volume itself remain constant in time (whence so is the den-
sity of systems). The volume may be written as: 

d d d dV Q P q p= =∫∫ ∫∫ 

                    (1.1) 

Or the volume V is an invariant. 
With ,P Q  being extended or canonical transformations, rather than point 

transformations, of , ,p q t : 

( )
( )

, ,

, ,

Q Q p q t

P P p q t

=

=
                       (1.2) 

However note that in canonical variables: 

d dq p p q= ∆ ∆∫∫                       (1.3) 

Now, the quantization condition [ ],p q i=   leads to (its global version) the 

uncertainty principle: 
2

p q∆ ∆ =
 ; which imposes the invariance of the infini-

tesimal volume. Ensuring that Liouville’s Theorem still applies—even if the  
quantized system is not linear as in the case of QFT—an improvement on the 
condition above that required the linearity of the Schrodinger Equation. 

That is, quantization condition itself can be thought of as a bounding condi-
tion. Which physically makes sense. Quantization of the electron (say in Bohr 
Model via de Broglie hypothesis: viewing it as a wave rather than a particle) 
solved the instability problem of the classical atom—seen thru Maxwell’s Equa-
tions—via removing the secular terms that lead to the instability of the orbit. 
And quantization of light (viewing it as particles rather than waves) removes the 
UV divergences—helping the integral have a finite value or making the integral 
bounded... or a cutoff is introduced. And the whole idea of Renormalization— 
central to all quantum field theories—is again about handling this problem of 
unboundedness and infinities. 

Further discussion and generalizations are available in [4]. 
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The property of ergodicity, which involves covering all accessible regions of a 
domain, is shared by incommensurate non-chaotic orbits with respect to an or-
dinary attractor (for example, a torus), and by chaotic orbits with respect to a 
strange attractor. And it is interesting to note that ergodicity is invoked in statis-
tical treatments too. 

1.2.2. Mechanics, Symmetry and Quasiperiodic Functions 
As is well-known, there exists a connection between the existence of additional 
algebraic constants of the motion, or higher-symmetry groups, and degeneracy 
in the motions of the system. 

In the case of the Kepler and isotropic harmonic oscillator problems, the addi-
tional constants of the motion are related to parameters of the orbit. Unless the 
orbit is closed, that is, the motion is confined to a single curve, we can hardly 
talk of such orbital parameters. Only when the various components of the mo-
tion have commensurate periods will the orbit be closed. The classic example is 
the two-dimensional anisotropic oscillator. When the frequencies in the x and y 
directions are rational fractions of each other, the particle traverses a closed Lis-
sajous figure. But if the frequencies are incommensurate, the motion of the par-
ticle is space-filling or ergodic, eventually coming as close as desired to any spe-
cific point in the rectangle defined by the energies of motion in the two direc-
tions (ergodic hypothesis). Attempts at finding complicated (and perhaps com-
plex) symmetry groups for incommensurate systems, applicable to all problems 
of the same number of degrees of freedom, have not yet proved fruitful. 

However, if the quasi-periodic trajectory maybe constructed as the projection 
of a higher-dimensional periodic trajectory … then the periodicity (of the higher 
dimensional space) maybe used to solve the problem (so instead of a single ω , 
breaking it up into two frequencies 1 2,ω ω  together with the associated problem 
maybe the improvement sought). Just as we intend to show for the eigen-value 
problem of the Master Equation here. The higher dimensional periodicity allows 
us to reinvoke again Fourier Series and Bloch’s Theorem … and one feels home 
as he would do with any periodic problem. 

Conceptually, the Mechanical Analogue of quasi-periodic motion and 
quasi-periodic structures helps us understand better what is a quasi-periodic 
structure and how it differs from a completely random structure. Just as a cha-
otic system is still deterministic—there is a well defined equation and at times a 
well defined solution and so is not completely random either. 

Moreover, there is a more concrete mathematical advantage to this mechanical 
analogy. It enables us to see the mathematical form of a quasi-periodic trajectory 
and hence a quasi-periodic structure. For the position q as a function of time 

( ) ( )1 2ei tq t ω ω+=                        (1.4) 

With the two frequency incommensurate …. That is, 

2

1

, set of rational numbers
ω
ω

∉ =                 (1.5) 
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Or the ratio cannot be written as n/m where n and m are integers. 
However, note that it took two frequencies to construct one (single-variable) 

trajectory ( )q t . Moreover, it is well known that the function ei tω  is periodic 
with the period T ω= 2π . That is, it took two periodic functions (though the 
periods are incommensurate) to construct one quasi-periodic function. Whence 
it is natural to expect that a doubly periodic function (periodic in two different 
dimensions or periodic in two variables e.g. ( ) ( ), e x yi k x k yf x y +

=  encountered 
when dealing with two dimensional waves) to construct one quasi-periodic 
function. But a ratio of irrationaly x =  needs to be introduced to ensure the 
incommensurability and this is the role of the cut with the irrational slope. 

Again, irrationaly x =  (and the slope gets arbitrary close to another vertex 
of the squares but never actually hits a second vertex) corresponds to an open 
Lissajou figure. While rationaly x =  (leading to two corners being touched by 
the line giving rise to a periodic system) corresponds to a closed Lissajou figure. 

2. Algebraic Formulation of Cut-Projection Method 

Now, the periodicity of the dielectric 2D square periodic structure ( ),x yε  
permits us to expand it in a Fourier Series: 

( ) ( )1 2
1 2

1 2

periodic ,
,

, ei G x G y
G G

G G
x yε ε += ∑                 (2.1) 

With 1 2,G G  taking values from a discrete set: 

1

2

2 2 40, , ,

2 2 40, , ,

mG
a a a

nG
a a a

π π π

π π

= =

=
π

=





                   (2.2) 

with ,n m  being both non-negative integers (but not necessarily equal). While a 
is the lattice spacing of the unit cell (the tile used to generate the tessellation). 

Now how do we algebraically formulate the geometric cut-projection condi-
tion? Thru the simple relation, or substitution: 

y xτ=                           (2.3) 

And so 

( ) ( ) ( )1 2
1 2

1 2

quasiperiodic quasiperiodic ,
,

, ei G G x
G G

G G
x x x τε τ ε ε += = ∑        (2.4) 

Later on, we shall suppress the labels periodic and quasiperiodic when it is 
clear the function in two variables is 2D parent periodic and the function is sin-
gle variable is the 1D quasi-periodic. 

Comparing the harmonics in (2.4) to the one in (1.4), we find that (and mak-
ing the switch ( ) ( ),x t q t xε→ → ): 

1 1

2 2

G
G

ω
ω τ

=
=

                         (2.5) 

Moreover observe that: 
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2

1

2
2

G n a n
G m a m
τ τ τπ

π
⋅

= =
⋅

                    (2.6) 

And as ,n m  are integers and τ  is irrational, then 

integerirrational irrational rational irrational
integer

n
m

τ = × = × =       (2.7) 

Or, 

2

1

2

1

irrational, just as

irrational

G
G
τ

ω
ω

=

=
                    (2.8) 

And so the identification in (2.5), between a quasi-periodic structure in space 
and a quasi-periodic trajectory or motion in time, does indeed make sense; and 
we may express a quasi-periodic structure or function as a Fourier Series as long 
as the wave-numbers (rather than the frequencies as for quasi-periodic motion) 
are incommensurate. It might be of interest to compare the harmonics in (2.4) to 
the form of a quasiperiodic function used to represent the 2D cut in Crystallog-
raphy (see [5]): 

( ) sin sin 2f x x x= +                     (2.9) 

(2.9) Again, ( )sin x  alone would be periodic with a period of 2π . While 

( )sin 2x  alone would have a period of 2 2π . And Cahn says, see [5], that 
(2.9) is a cut along ( ) sin sinf x x y= +  with 2y x= . 

However the two together could only have a common period if there is a 
Lowest Common Multiple of the two periods. But this requires that they be 
commensurate; this is not made possible due to the irrationality of τ . This will 
be made clearer when considering the example of two different planets orbiting 
the same star and trying to find when they will be realigned again with the cen-
tral star. 

Similarity of My Equation to Electron Density for Quasi-Crystals 

Also note that if substitute (2.2) in (2.4) we get: 

( ) ( )2
quasiperiodic ,

,
, ei m n x a

m n
m n

x x τε τ ε +π= ∑               (2.10) 

Now take the real part: 

( ) ( )quasiperiodic ,
,

Re , cos 2m n
m n

x x m n x aε τ ε τ= +π∑          (2.11) 

Then projecting the RHS (multiplication of RHS by mnδ  is equivalent to tak-
ing the dot product); we get a one-dimensional sum which is equivalent to an 
expansion of a function in one variable: 

( ) ( )quasiperiodicRe cos 2 1n
n

x n x aε ε τ= +π∑            (2.12) 

Which is similar to the form of the electron density for a quasi-crystal in the 
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field of Solid State Physics (where quasi-crystals were first experimentally ob-
served; see Chapter 2 in [6]): 

( ) ( )cos 2 1n
n

x C n x aρ τπ= +∑                (2.13) 

But now τ  is any general irrational number not necessarily the Golden Ratio 
as in our case. Thus, the expansion we use is in a single variable but in TWO in-
dices stressing the projection of a TWO-dimensional periodic lattice. Unlike the 
expansion used in Kittle [6], this is just a quasi-periodic expansion in a single 
index AND a single variable. In essence, the advantage of our expansion is that it 
allows us to draw analogies with two dimensional periodic problem. 

To get a understanding of what the condition (2.3) means, consider again our 
2D parent periodic structure. The quasi-periodic structure of direct physical in-
terest lies along the line y xτ= . And so, what we are interested in is the dielec-
tric function ( ),x yε  at the following points (Table 1). 

That is, we are sampling the parent 2D periodic structure along the cut 
(Figure 3). 

 
Table 1. Some values are shown for the dielectric function to get a better sense of what 
the condition of irrational slope. 

x y ( ),x yε  

0 0 ( )0,0ε  

0.1a 0.1aτ  ( )0.1 ,0.1a aε τ  

1 τ  ( )1,ε τ  

a aτ  ( ),a aε τ  

2a 2aτ  ( )2 ,2a aε τ  

for a general point, 0x  0 0y xτ=  ( )0 0,x xε τ  
 

 
Figure 3. Plotting some of the values in the previous table in order to understand better 
the meaning of an irrational slope and setting y xτ= . 
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And removing the subscript off the general point, shows that indeed the geo-
metric operation of projecting along the cut y xτ=  amounts to an algebraic 
substitution affecting the transformation: 

( ) ( ) ( )quasi, ,x y x x xε ε τ ε→ =                 (2.14) 

If ( )xε  is quasi-periodic so is ( ) ( )
1F x
xε

= ; since with Dilation Operator 

D we have: 

( ) ( ) ( ) ( ) ( )quasiperiodic
1 1, ,
, ,

F x y F x x F x
x y x x

τ
ε ε τ

= = = =       (2.15) 

Where (2.3) was used to reach the second equality. 

3. Physics 
3.1. Master Equation in 1D 

( ) ( ) ( )
2d 1 d

d d
H x H x

x x x c
ω

ε
 =  
 

                (3.1) 

NOTE: traditionally in a 1D periodic multi-layer thin film problem, the 
propagation direction is taken along the z-axis, which also the direction along 
which the dielectric varies. That is, we are really solving for ( )z zH H z=  rather 
than ( )H H x= . And the Master Equation should really read: 

( ) ( ) ( )
2d 1 d

d d z zH z H z
z z z c

ω
ε

 =  
 

                (3.2) 

However, we choose to work with the form in (3.1) as it emphasizes the 
cut-projection correspondence between the 1D quasi-periodic problem and the 
2D parent periodic problem which is central to this work. Moreover, that neither 
form affects the final result in reciprocal space, where we have a relation between 
the wavenumbers, eigenvalues/frequencies and Fourier Coefficients. This is be-
cause in Fourier Space, all knowledge of spatial variables of configuration is for-
gotten thanks to linear independence of the Harmonics. 

Now, if ( ) ( )
( )1 2

1 2,

1 ei G G x

G G
F x F

x
τ

ε
+= = ∑ G              (3.3) 

Where 

( )
1 2

1 2

e e 1,
,

iG a iG a

G G

⋅ ⋅= =

=G
                       (3.4) 

That is 1 2,G G  are both reciprocal lattices of the square lattice. 
And so the 1D quasi-periodic problem is turned into a 2D Periodic Problem. 
It is natural to expect a quasi-periodic response: 

( ) ( ) ( )1 2

1 2,
ei k k x

k k
H x C k τ+= ∑                    (3.5) 

Now, 
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( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( )

( ) ( )( ) ( )( )

1 2
1 2

1 2

1 1 2 2
1 2 1 2

1 2 1 2

1 1 2 2
1 2 1 2

1 2 1 2

1 2 ,
,

1 2 , ,
, ,

1 2 1 1 2 2 , ,
, ,

d e
d

1 d e
d

d 1 d
d d

e

i k k x
k k

k k

i G k G k x
G G k k

G G k k

i G k G k x
G G k k

G G k k

H x i k k C
x

H x i k k F C
x x

H x
x x x

k k G k G k F C

τ

τ

τ

τ

τ
ε

ε

τ τ

+

+ + +

+ + +

= +

= +

= − + + + +

∑

∑ ∑

∑ ∑

 (3.6) 

And now the Master Equation (3.1) becomes 

( ) ( )( ) ( )( )

( )

1 1 2 2
1 2 1 2

1 2 1 2

1 2
1 2

1 2

1 2 1 1 2 2 , ,
, ,

2

,
,

e

e

i G k G k x
G G k k

G G k k

i k k x
k k

k k

k k G k G k F C

C
c

τ

τ

τ τ

ω

+ + +

+

− + + + +

 =  
 

∑ ∑

∑
  (3.7) 

Now the coefficient of ( )1 2ei k k xτ+  on the LHS is (via the transformation 

1 1 1 2 2 2,k k G k k G→ − → − ): 

( )( )( )
1 2 1 1 2 2

1 2

1 1 2 2 1 2 , ,
,

G G k G k G
G G

k G k G k k F Cτ τ − −− − + − +∑         (3.8) 

While the coefficient of ( )1 2ei k k xτ+  on the RHS is 
1 2

2

,k kC
c
ω 
 
 

 

And now the linear independence of ( )1 2ei k k xτ+  means that its coefficient (due 
to RHS and LHS) is zero: 

( )( )( )
1 2 1 2 1 1 2 2

1 2

2

, 1 1 2 2 1 2 , ,
,

0k k G G k G k G
G G

C k G k G k k F C
c
ω τ τ − −
  + − + − + = 
 

∑   (3.9) 

3.2. Does Bloch Theorem Still Apply? 

The short answer is no. But the periodicity of the parent structure does still have 
some interesting implications for the quasiperiodic structure (And we still have 
periodicity in k-space). 

Following [6], We may first solve (3.9) for the Coefficients of the components 
of the Field. We may then expand kH  in the reciprocal lattice vectors 1 2,G G  
of the parent 2D periodic square lattice ( kH  the photonic analogue of kψ  in 
Solid State Physics): 

( ) ( )( )1 1 2 2

1 2,
ei k G k G x

k
G G

H x C τ− + −
−= ∑ k G                (3.10) 

where C −k G  is a shorthand for 
1 1 2 2,k G k GC − −  and, 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2

1 2,
e e ei k k x i G G x i k k x

k k
G G

H x C u xτ τ τ+ − + +
−= =∑ k G        (3.11) 

where 

( ) ( )1 2

1 2,
e G G x

k
G G

u x C τ− +
−= ∑ k G                  (3.12) 

Now, translating by the lattice constant of the parent periodic lattice: x x a→ + , 
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( ) ( )( )

( ) ( )

1 2

1 2

1 2 1 2

1 2

,

,

e

e e

i G G x a
k

G G

i G G x i G G a

G G

u x a C

C

τ

τ τ

− + +
−

− + − +
−

+ =

=

∑

∑

k G

k G

            (3.13) 

and, 

( ) ( ) ( )1 2 1 2 1 2 1 2e e e e e ei G G a i G a G a iG a iG a iG a iG a ττ τ τ− + − + − − − −= = =        (3.14) 

As 1 2,G G  are reciprocal lattice vectors for a periodic square lattice with pe-
riod a. Thus: 

1 2e 1 and e 1iG a iG a− −= =                    (3.15) 

By definition of a reciprocal lattice vector! That is, had τ  been an integer we 
would have had ( )2e 1iG a τ− =  … to handle the problem systematically let’s con-
sider the general problem for the slope p. The question now is: 

( )2

2

what is the value of e ?

for  e 1

piG a

iG a

−

− =
                (3.16) 

And let’s consider the following 3 cases: 

( )

integer
rational ;  ,  integers

irrational like  
p m n m n

τ


= =



              (3.17) 

For the first case we have: 

( ) ( )2 integere 1 1
piG a− = =                    (3.18) 

For the second case 

( ) ( )2e e
mpiG a i r n2π− =                     (3.19) 

where r the set of non-zero integers, by definition of a reciprocal lattice vector. 
That is , 2, 1,0,1, 2,r = − −  . However n is fixed (as well as m). Whence, there 
exists a subset of r which will coincide with the multiples of n. Namely, the sub-
set: 

, 2 , ,0, , 2 ,R nr n n n n= = − −                  (3.20) 

And then we end up for this specific subset: 

( ) ( ) ( )2e e e e 1,

as now ,  are integers

m mpiG a i R i nr i mrn n

m r

π π π− 2 2 2= = = =            (3.21) 

Meaning we do now have a periodicity na rather than a; as: 

( ) ( ) ( ) ( )2 2 2e e e 1 1,

as  is an integer

mp m miG na iG na iG an

m

− − −= = = =            (3.22) 

In full we have, for a translation of ( ) ( )1 2

1 2,
e G G p x

k
G G

u x C − +
−= ∑ k G  by na: 
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( ) ( )( )

( ) ( )

( )

( )

( )

1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2

1 2

,

,

,

,

e

e e

e e e

e

i G G p x na
k

G G

i G G p x i G G p na

G G

i G G p x iG na iG pna

G G

i G G p x

G G

k

u x na C

C

C

C

u x

− + +
−

− + − +
−

− + − −
−

− +
−

+ =

=

=

=

=

∑

∑

∑

∑

k G

k G

k G

k G

          (3.23) 

Where in the last step we used the definition of ( )ku x  for a slope p; and in 
the step before last we used the first of (3.15) and (3.22). Which makes sense, as 
geometrically: a rational cut with slope p m n=  of a parent periodic structure 
with period a, produces a 1D structure with period na. 

And the physics (eigenfunctions) reflects the geometry. 
For the irrational case… well we can’t write p m n=  … but we can make 

successive approximations. For example for the case of 1 5
2

τ +
= , we can make 

the following decimal approximations with the corresponding fractions (Table 
2). 

An exact decimal representation would require an infinite no. of decimals 
places implying an infinite period (or by definition of an irrational number, an 
exact representation would require the denominator to be an arbitrarily large 
integer) … or no period as is the case for quasiperiodic systems. And so ( )ku x  
has no period what so ever, and Bloch’s Theorem fails. 

The lack of a period means that for irrationalp = , 

( )2e 1
piG a ≠                        (3.24) 

And here the periodicity of the parent lattice kicks in! Explaining why we  
 

Table 2. This table shows the period of the quasi-structure for different approximations 
of the (irrational) golden-ratio. But since it takes an infinite number of decimal places to 
accurately describe it; then the resulting period is infinite i.e. there is no periodic repre-
sentation for the irrational number. And for irrational numbers there is no set of integers 
that repeat themselves e.g. 1.57575757. This repetition can be turned into a fractional re-
presentation via Summation formula for Geometric Series. 

No. of decimal places Decimal approximation Fractional Approximation m/n Period na 

1 1.6 16/10 10a 

2 1.62 162/100 100a 

3 1.618 1618/1000 1000a 

4 1.6180 16180/104 104a 

5 1.61803 161803/105 105a 

6 1.618034 1618034/106 106a 

7 1.6180340 16180340/107 107a 

8 1.61803399 161803399/108 108a 
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might have a Bloch Theorem—usually found for periodic systems for a 
quasi-periodic system! We have a periodicity with period a. … An essentially 
TWO-DIMENSIONAL PERIODICITY that is! 

Sub (3.14) in (3.13) to get: 

( ) ( ) ( )1 2

1 2,
e i G G x

k
G G

u x a C u xτ− +
−+ = =∑ k G              (3.25) 

Whence, ( )ku x  is a periodic function with period a. And combining this 
result with the form for the field ( )kH x  (3.11): 

( ) ( )1 2ei k k x
k kH u x τ+=                     (3.26) 

That is, the field may be multiplicatively decomposed into a periodic part and 
a phase factor(responsible for Periodic Boundary Condition … removed after 
translating N steps from first unit cell till the last cell… as length of lattice is 
L Na= ), which is the content of Bloch Theorem for Periodic Systems. 

3.3. Guessing the form of ( )H x  

To make more sense of the Bloch result above, and understand how 2D periodic 
systems relate to 1D quasi-periodic systems… let’s take another look at the par-
ent 2D square lattice: 

( ) ( ), ,x y x a y aε ε= + +                   (3.27) 

And so by Translational Symmetry Considerations (Bloch’s Theorem for truly 
periodic systems), it’s natural to expect a system’s response after many shifts (for 
a large integer N): 

( ) ( ) ( )1 2, e ,i k L k LH x y H x Na y Na+= + +              (3.28) 

That is, every time we translate the field by L Na= , it picks up a phase factor 
( )1 2ei k L k L+  
And now the Periodic Boundary Condition gives ( ) ( ), ,H x y H x Na y Na= + + : 

( ) ( )1 2 1 2 1 21 e e e ei k L k L i k Na k Na ik Na ik Na+ += = =              (3.30) 

By definition of length L of Periodic Lattice as a large number of unit cells 
each of length a: L Na=  

But, 
12

11 e ; 1, 2,3,i n nπ= = 
                   (3.31) 

Generalizable to: 
1 22 2

1 21 1 1 e e ; 1,2,3, ; 1, 2,3,i n i n n nπ π= ⋅ = ⋅ = = 
         (3.32) 

Comparing (3.30) and (3.32) gives: 
1 2 1 22 2

1
1 1 1

2
2 2 2

e e e e
2 2 4 22 , , ,

2 2 4 22 , , ,

i n i n ik Na ik Na

n Nn k Na k
Na Na Na Na

n Nn k Na k
Na Na Na Na

π π

π π π π
π

π

⋅ = ⋅

⇒ = ⇒ = =

⇒ = ⇒ =
π

=
π π

π





        (3.33) 
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Now the periodicity boundary condition on the field gives: 

( ) ( ), ,H x y H x Na y Na= + +                 (3.34) 

Permitting the Fourier Series Expansion: 

( ) ( )1 2
1 2

1 2

,
,

1 2
1 2

, e ;

2 2
;

i k x k y
k k

k k
H x y C

n nk k
Na Na

+=

=
π π

=

∑
                (3.35) 

Now how do we go from parent periodic lattice ( ),x yε  over to the 
quasi-periodic lattice ( )xε ? Thru the following transformation: 

y xτ=                          (3.36) 

Applying the same transformation to (3.35): 

( ) ( ) ( )1 2
1 2

1 2

,
,

, ei k k x
k k

k k
H x x H x C ττ += = ∑              (3.37) 

Which the form we used above in (3.5). And now it is clearer why is it that 
translating the field by a lattice constant a means the field picks up a phase factor 
without changing form (Bloch’s Theorem). This is something inherited from the 
parent periodic-lattice. Memory of periodicity is retained. That the field and the 
lattice have the same functional form simplifies the Algebra as it allows “recom-
bination” of the Fourier terms, allowing us to invoke linear dependence to have 
a system of linear equations in the coefficients, see the steps leading to (3.9). 

3.4. A Clearer Conceptual Explanation  
of the Failure of Bloch Theorem 

Now we know from the periodic case for the 2D parent lattice that Bloch’s 
Theorem Applies: 

( ) ( ) ( ) ( ) ( )1 2, , e  with , ,i k x k y
k k k kH x y u x y u x y u x Na y Na+= = + +    (3.38) 

Applying the same Geometric Transformation y xτ=  (3.36) that took a diago-
nal section along the 2D periodic lattice to go over to the 1D quasi-periodic lattice: 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2, , e  with ,i k k x
k k k k k kH x y H x x H x u x u x y u xττ +→ = = →  (3.39) 

And it was verified above that ( )ku x  is indeed periodic with period a. 
But now it is much clearer how the Bloch Theorem for the quasi-periodic 

problem related to the Bloch Theorem of the periodic problem; through the di-
agonal sectioning transformation (3.36). 

And now it is much clearer where the periodicity pops up in a quasi-periodic 
problem; the physical field ( )H x  of the quasi-periodic problem inherits the 
periodicity from the physical field ( ),H x y  from the parent periodic lattice. 
Just as the quasi-periodic structure ( )xε  inherits its periodicity from the par-
ent 2D lattice ( ),x yε . 

We may see now how the form of the physical field relates to the geometry of 
the photonic structure. And how the relation of the parent periodic lattice to the 
quasi-periodic structure affects the field in the latter. That is, the same relation 
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exists between the field ( ),H x y  in the parent periodic structure and the field 
( )H x  in the quasi-periodic structure: y xτ= . 

3.5. Quasiperiodic and Parent-Periodic Structures – A Comparison 

In 2D we have a natural decoupling into TM { }, ,x y zE E H  and TE { }, ,x y zH H E  
modes with the governing Equations (based on [7]) (Table 3): 

( ) ( )

( )

2

2 2 2

2 2

1 1,
, ,

1,
,

z z

z z

H H
c x x y x y x y y

E E
c x y x y

ω
ε ε

ω
ε

 ∂ ∂ ∂ ∂ Θ = Θ = − +   ∂ ∂ ∂ ∂    

 ∂ ∂ ′ ′Θ = Θ = − +   ∂ ∂   

      (3.40) 

where, 

( ) ( )

( )

( )

0 0 0 0

0 0 0 0

, , , ,

, ,

, ,

z z z z

z z
x x

z z
y y

H H x y E E x y
H Ei x y E i H
y y
H Ei x y E i H
x x

ω ε ε ω µ

ω ε ε ω µ

= =

∂ ∂
= =

∂ ∂
∂ ∂

− = − =
∂ ∂

          (3.41) 

 
Table 3. This table compares 2D periodic structure and 1D quasi periodic structure. 

 Periodic  Quasiperiodic 

Dielectric ( ) ( )1 2

1 2
1 2

,
,

, ei G x G y
G G

G G

x yε ε += ∑
 

y xτ=  

 
( ) ( )1 2

1 2
1 2

,
,

, ei G G x
G G

G G

x x τε τ ε += ∑   

(Projection of Periodic Case) 

Eigenfunction Hz ( )1 2ei k x k y+

  ( )1 2ei k k xτ+  (Again, Projection of Periodic Case) 

Periodicity in 
Configuration/Physical Space 

Yes  No 

Periodicity in Reciprocal Space Yes  Yes 

Bloch Theorem Applies 
 
 
Geometric Periodicity 
=>Eigenfunction Periodicity 

 Does Not Apply, (due to 3rd point above) Chaos and 
renormalization on the circle  

( )2 2e eiG slope x a iG slope x⋅ + ⋅ ⋅= , Requires: 

( ) ( ) ( )2 2e e 1 1
slope slopeiG slope a iG a⋅ ⋅ = = =  

And the last step requires that 
slope = integer or rational (with adjusted periodicity) 
otherwise multivaluedness of roots of unity kicks in 
and in our case slope = τ = irrational 
 
But we still have a relation between Geometry and 
Physics(and in fact quasiperiodic periodic problem needs to 
be solved in conjunction with periodic problem two 
unknown frequencies require two equations see below): 
 
Projective Periodicity of Geometry 
=> Projective Periodicity of Eigenfunction 

Temporal Dependence ( ) ( ) ( ) ( )1 2, ; , e , e i ti tH x y t H x y H x y ω ωω − +−= =   ( ) ( ) ( )1 2; e i tH x t H x ω ω τ− +=  

Mechanical Analogy Isotropic Oscillator 
Or Anisotropic Oscillator (commensurate 
case) 

 Anisotropic Oscillator(incommensurate case) 
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That is, once we solve for ,z zH E  we automatically know the remaining 
components of the TM, TE mode respectively. 

We note that thankfully, the two equations in (3.40) are scalar … and for the 
case of the TM mode, we have the same scalar unknown as the 1D case which 
was also really solving for zH , see note at the beginning of the Physics section. 
And so it is this TM mode that is fit for comparison. 

We now use (3.40) to solve the 2D parent periodic problem. We make the fol-
lowing Fourier Expansions: 

( ) ( )
( )

( ) ( ) ( )

1 2

1 2

1 2

1 2

,

,

1, e
,

, e

i G x G y

G G

i k x k y
z

k k

F x y F
x y

H x y C k

ε
+

+

= =

=

∑

∑

G

             (3.42) 

Which is similar to the expansions in (3.3) and (3.5) and in fact we are sum-
ming over the same wave numbers: 1 2 1 2, ; ,G G k k . 

We now substitute (3.42) in the first of (3.40). First note: 

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2 2

1 2 1 2

1 1 2 2

1 2 1 2

, ,

1
, ,

1
, , ,

1 1 1
, , ,

1
,

e e

e e

e

e

z

i G x G y i k x k y

G G k k

i G x G y i k x k y

G G k k

i k G x k G y

G G k k

i k G x k G y

G G k k

H
x x y x

F C k
x x

F C k ik
x

F C ik
x

k k G F C

ε

+ +

+ +

+ + +

+ + +

∂ ∂
∂ ∂

∂ ∂
=
∂ ∂

∂
=
∂

∂
=
∂

= − +

∑ ∑

∑ ∑

∑

∑

G

G

G

G

k

k

         (3.43) 

Similarly, 

( ) ( ) ( ) ( ) ( )( )1 1 2 2

1 2 1 2

2 2 2
, , ,

1 e
,

i k G x k G y
z

G G k k
H k k G F C

y x y yε
+ + +∂ ∂

= − +
∂ ∂ ∑ G k   (3.44) 

Whence, (3.40) becomes: 

( ) ( )( ) ( ) ( ) ( )( )

( ) ( )

1 1 2 2

1 2 1 2

1 2

1 2

1 1 1 2 2 2
, , ,

,

e

e

i k G x k G y

G G k k

i k x k y

k k

k k G k k G F C

C

+ + +

+

+ + +

=

∑

∑

G k

k
    (3.45) 

Now the coefficient of ( )1 2ei k x k y+  on the LHS is (via the transformation 

1 1 1 2 2 2,k k G k k G→ − → − ): 

( ) ( )
1 2 1 1 2 2

1 2

1 1 1 2 2 2 , ,
,

G G k G k G
G G

k k G k k G F C − −− + −∑           (3.46) 

Now the coefficient of ( )1 2ei k x k y+  on the RHS is 
1 2

2

,k kC
c
ω 
 
 

 

And now the linear independence of ( )1 2ei k x k y+  means that its coefficient (due 
to RHS and LHS) is zero: 
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( ) ( )( )1 2 1 2 1 1 2 2
1 2

2
periodic

, 1 1 1 2 2 2 , ,
,

0k k G G k G k G
G G

C k k G k k G F C
c

ω
− −

 
− − + − = 

 
∑   (3.47) 

Comparing this to the analogous result (3.9) of 1D quasiperiodic structure: 

( )( )( )
1 2 1 2 1 1 2 2

1 2

2
quasi

, 1 1 2 2 1 2 , ,
,

0k k G G k G k G
G G

C k G k G k k F C
c

ω
τ τ − −

 
+ − + − + = 

 
∑  (3.48) 

And so we may use the solution of periodic problem (where we already calcu-
late the Fourier Coefficients F and solve for the coefficients C rather than just 
stop at finding the eigenvalues, that is we solve for the eigenvalues and the ei-
genvectors) to find the solution of the quasi-periodic problem (same k1, k2 and 
G1, G2 and identical F’s and C’s) 

3.6. Meaning of having a Parent Periodic Structure 

Symmetries (Translational and otherwise) in Reciprocal Space and implied 
symmetries in the Brillouin Zone (Figure 4). 

Condition for Reciprocal lattice vectors: 

2i j ijδ⋅ = πG a                        (3.49) 

We can’t immediately apply the standard equation for 3D lattices as that involves 
a cross-product that may lead to having a reciprocal lattice vector along z-axis. 

Instead we find by inspection that: 

1 12
1

2 22
1

2 2 ˆ

2 2 ˆ

a

a

π π

π

=

=
π

=

=

G a x
a

G a y
a

                    (3.50) 

3.7. Propagation 

First, it is instructive to observe how a wave in 2D would propagate in Cartesian  
 

 
Figure 4. This figure shows the reciprocal lattice vector for a specific 2D unit cell. 
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co-ordinates ( ),x y=x , without change in form i.e. via a pure translation. 
At 0t =  

( ) ( )1 2ei k x k yf +=x                       (3.51) 

Changing without form means: 

( )1 2

,
,

t
v v

→ −

=

x x v
v                        (3.52) 

And so, 

( ) ( ) ( )1 2 1 2, , ,t x y v v t x v t y v t− = − = − −x v            (3.53) 

Whence, 

( ) ( ) ( )( )

( ) ( )

( ) ( )

( )

1 1 2 2

1 2 1 1 2 2

1 2 1 2

1 2

e

e

e

e

i k x v t k y v t

i k x k y i k v k v t

i k x k y i t

i k x k y i t

f t

ω ω

ω

− + −

+ − +

+ − +

+ −

− =

=

=

=

x v

                (3.54) 

Where we have used the relations 

1 2 1 1 2 2

;  for 1, 2
,

with the group velocity 

i i ik v i
k v k v

ω
ω ω ω

ω

= =

= + = + = ⋅
∂

=
∂

k v

v
k

               (3.55) 

Going thru a similar process for the quasiperiodic case we have: 
At 0t =  

( ) ( )1 2ei k k xf x τ+=                       (3.56) 

moving without change in form means: 

,x x ct→ −                         (3.57) 

Whence, 

( ) ( )( )

( ) ( )

( ) ( )

1 2

1 2 1 2

1 2 1 2

e

e

e

i k k x ct

i k k x i k c k c t

i k k x i t

f x ct τ

τ τ

τ ω ω τ

+ −

+ − +

+ − +

− =

=

=

                (3.58) 

Where we have used the relations 

( ) ( )
(

1 2 1 2

;  for 1, 2

This  used in separation of time dependence: , e

And  then we may be having a propagation at a speed faster than ...

this is a question to be answered in futu

i i

i t

k c i
k c k c

H x t H x

c

ω

ω
ω ω ω τ τ

ω −

= =

= + = +

=

)re research

  (3.59) 

It’s noteworthy that the temporal part of the last of (3.58) has the same form 
as quasiperiodic oscillations in mechanics see (1.4) together with the condition 
(1.5). 

However, note that then we run into a contradiction due to the second of 
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(3.59). The time dependence for the quasiperiodic case was separated under the 
assumption: 

( ) ( ), e i tH x t H x ω−=                     (3.60) 

Meaning that the time dependence was seen as Harmonic: periodic as is the 
case for an SHO (Simple Harmonic Oscillator). However, we found that the  

spatial dependence of ( ) ( )1 2
1 2

1 2

,
,

ei k k x
k k

k k
H x C τ+= ∑  

Implies a time dependence of anisotropic harmonic ( )1 2e i tω ω τ− +  as it has the 
same temporal dependence as that for a mechanical Anisotropic Harmonic Oscil-
lator (AHO), see (1.4) and (1.5) which cannot be rewritten as a Harmonic tempo-
ral dependence as the two periods are incommensurate as previously discussed. 

A possible way out is to resolve Maxwell’s Equations in the quasiperiodic case 
using the temporal dependence: 

( ) ( ) ( )1 2, e i tH x t H x ω ω τ− +=                   (3.61) 

3.8. Physical Interpretation of Two Different Frequencies 

The question now that arises is: What is the physical meaning of the AHO tem-
poral dependence of (3.61)? Here again the 2D periodic parent structure analogy 
comes to the rescue. Let us first consider propagation in free space 

We may first interpret the 1D wave propagation case in 1D free space (in-
variant under translation in x direction): 

( ) ( )

( )( )
( )

0

0

, e
a temporal dependence like a 1D Harmonic Oscillator

    having Amplitude  Due to invariance under

     translation with some translation vector

i tH x t H x

H x

ω−=

⇒
     (3.62) 

And now the 2D wave propagation in free space (that is invariant under 
translation in x and y directions): 

( ) ( ) ( ) ( )

( )( )

1 2
0 0

0

, ; , e , e
a temporal dependence like a 2D Anisotropic Harmonic Oscillator

    having Amplitude  Due to invariance under translation 

    with 2 different translation vectors - 

i t i tH x y t H x y H x y

H x

ω ω ω− + −= =

⇒

( )

1 2

different for different directions
     which maybe thought of as a single Harmonic Oscillator with 
     frequency ,  as the two frequencies are commensurate
     the two translation vectors are c

ω ω ω= +
ommensurate.

 (3.63) 

Where we have used the 2ndof (3.55). The idea is that, owing to the way x and t 
are related for a Harmonic wave, we cannot really separate x from t (much like 
SR): moving for a time t at velocity v  is the same as translating by tv , 

t→ −x x v , see (3.51) to (3.54). Space ( )1 2,x x  and time are related through the 
velocities ( )1 2,v v  (in Special Relativity there is a single velocity, c, that of light). 
And so two different velocities and two different space co-ordinates together 
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with two different wavenumbers naturally implies two different frequencies 
with: 1 1 1 2 2 2,k v k vω ω= = , see (3.59) 

That is, combining the two frequencies into one 

1 2commensurate case :   ω ω ω+ =               (3.64) 

Is natural if the translation in both directions is commensurate, but if they are 
not? Then combining them does not make sense and it is best to revert to the 
original natural decomposition. 

1 2incommensurate case :  ω ω ω+ ≠               (3.65) 

That is the physical property of incommensurability in frequencies is due to 
incommensurability in wavenumbers (which in turn is due to the geometric 
property of quasiperiodicity)… with an effect much like that of having anisot-
ropic harmonic oscillators. With the help of quantum mechanics, we may fur-
ther elaborate on the harmonic oscillators: 

( )
( )

( )

0, e

a stream of photons with Amplitude ,

    with energy like a quantized  Harmonic Oscillator, 

i tH x t H

H x

E

ω

ω

−=

⇒

= 

   (3.66) 

( ) ( )1 2
0 0

0

1 2

, ; e e
a stream of photons with Amplitude , with energy like a 2D

     Anisotropic Harmonic Oscillator with frequencies ,
     which maybe thought of as a single Simple Harmonic

i t i tH x y t H H
H

ω ω ω

ω ω

− + −= =

⇒

1 2

 Oscillator
     with frequency  and energy Eω ω ω ω= + = 

 (3.67) 

While for incommensurable frequencies we have: 

( ) ( ) ( )

( )

( )

1 2
0 2 1

0

1 2 1 2

, ; , e ,

a stream of photons with Amplitude , , with energy like
     a 2D Anisotropic Harmonic Oscillator with incommensurable
     frequencies ,  and energy 

i tH x y t H x y

H x y

E

ω ω ω ω

ω ω ω ω

− += ∉

⇒

= +





  (3.68) 

With the help of quantum field theory (more precisely QED); the Harmonic 
Oscillators Analogy is more than a guiding analogy or a pedagogical device … 
and instead becomes a physical explanation. And now the incommensurable 
frequencies are due to a 2D lattice of harmonic oscillators with a spring constant 
in the x-direction different from the y-direction. Whence the incommensurabil-
ity of frequencies is due to Anisotropic Oscillators inseparable from anisotropy 
of physical properties (spring constants) in space. And it would be interesting to 
carry out the solution of the quasiperiodic photonics problem in the framework 
of QED. For now, we will work out the solution in the classical realm of Max-
well’s Equations. 

3.9. Solution of Maxwell’s Equations with  
Temporal Dependence ( )i t1 2e− +ω ω τ  

The basic idea is that we shall derive the governing Master Equation for incom-
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mensurate frequencies via the assumption 

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

, e

, e

i t

i t

t

t

ω ω τ

ω ω τ

− +

− +

=

=

H x H x

E x E x
                 (3.69) 

Rather than the usual assumption (as say is found in [2]) 

( ) ( )
( ) ( )

, e

, e

i t

i t

t

t

ω

ω

−

−

=

=

H x H x

E x E x
                    (3.70) 

Starting from Maxwell’s Equations: 
0,

,

0,

,

t

t

ρ
∇ ⋅ =
∇ ⋅ =

∂
∇× + =

∂
∂

∇× − =
∂

B
D

BE

DH J

                     (3.71) 

Now if we restrict ourselves to a medium with the following properties: 
• sourceless medium(no charges and no currents: 0, 0ρ = =J ) 
• Nonmagnetic ( ) ( )0 0µ µ µ= ⇒ =B r H r  
• Field Strengths are small so that we are in the linear Regime (material is iso-

tropic so dielectric is a vector rather than a tensor) i.e.  
( ) ( ) ( )0, , ,ω ε ε ω ω=D r r E r  

• Furthermore, we ignore any frequency dependence and simply choose ap-
propriate dielectric value for the frequency range of interest. 

• And we restrict attention to transparent materials: the dielectric is Real and 
Positive. 

These assumptions reduce Maxwell’s Equations to the following: 

( )
( ) ( )( )

( ) ( )

( ) ( ) ( )
0

0

, 0,

, 0,

,
, 0,

,
, 0,

t

t

t
t

t
t

t
t

ε

µ

ε ε

∇ ⋅ =

∇ ⋅ =

∂
∇× + =

∂
∂

∇× − =
∂

H r

r E r

H r
E r

E r
H r r

               (3.72) 

Now here comes the crucial step, regarding the temporal dependence, we will 
assume the form (3.69) in rather than the usual form (3.70): 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2

1 2

, e , e

, e , e

i t i t

i t i t

t t i
t

t t i
t

ω ω τ ω ω τ

ω ω τ ω ω τ

ω ω τ

ω ω τ

− + − +

− + − +

∂
= ⇒ = − +

∂
∂

= ⇒ = − +
∂

H r H r H r H r

E r E r E r E r
  (3.73) 

And so the two divergence equations again give: 

( )
( ) ( )( )

0,

0,ε

∇ ⋅ =

∇ ⋅ =

H r

r E r
                    (3.74) 

And now the two curl equations become: 
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( ) ( ) ( )
( ) ( )( ) ( )

0 1 2

0 1 2

, , 0,

, , 0,

t i t

t i t

µ ω ω τ

ε ε ω ω τ

∇× − + =

∇× + + =

E r H r

H r r E r
           (3.75) 

The 2nd of (3.75) gives: 

( ) ( ) ( ) ( )0 1 2
1 , , ,t i tε ω ω τ

ε
∇× = − +H r E r

r
           (3.76) 

Taking the curl of (3.76) and using the 1st of (3.75) gives: 

( ) ( ) ( ) ( )2
0 0 1 2

1 , ,t tε µ ω ω τ
ε

∇× ∇× = +H r H r
r

         (3.77) 

And using 2
0 01 c ε µ=  

( ) ( ) ( ) ( )2
1 22

1 1, ,t t
c

ω ω τ
ε

∇× ∇× = +H r H r
r

          (3.78) 

The same as the original problem with 

1 2ω ω ω τ→ +                       (3.79) 

Periodic problem will give eigenvalues: 

( )2
1 22

1
c

ω ω+                        (3.80) 

Two equations with two variables and we may solve for 1 2,ω ω  
And the 2D parent problem and the 1D quasi-periodic problem are insepara-

ble! 
Solving the 2D parent periodic problem, we replace the time dependence in 

(3.73) by the equation before last in (3.54): 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2

1 2

, e , e

, e , e

i t i t

i t i t

t t i
t

t t i
t

ω ω ω ω

ω ω ω ω

ω ω τ

ω ω τ

− + − +

− + − +

∂
= ⇒ = − +

∂
∂

= ⇒ = − +
∂

H r H r H r H r

E r E r E r E r
   (3.81) 

And so the two divergence equations again give: 

( )
( ) ( )( )

0,

0,ε

∇ ⋅ =

∇ ⋅ =

H r

r E r
                    (3.82) 

3.10. Does Transversality Survive for ( ) ( )i k k rE r A += 1 2e ? 

And now the two curl equations become: 

( ) ( ) ( )
( ) ( )( ) ( )

0 1 2

0 1 2

, , 0,

, , 0,

t i t

t i t

µ ω ω

ε ε ω ω

∇× − + =

∇× + + =

E r H r

H r r E r
           (3.83) 

The 2nd of (3.75) gives: 

( ) ( ) ( ) ( )0 1 2
1 , , ,t i tε ω ω

ε
∇× = − +H r E r

r
           (3.84) 

Taking the curl of (3.76) and using the 1st of (3.75) gives: 
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( ) ( ) ( ) ( )2
1 22

1 1, ,t t
c

ω ω
ε

∇× ∇× = +H r H r
r

          (3.85) 

The same as the original problem with 

1 2ω ω ω→ +  

4. Conclusions 

The cut procedure of 2D structure has allowed us to solve for the Eigen-Value 
Problem of Photonics. Moreover, the mechanical analogy (of commensurate and 
incommensurate orbits) served as a guide. But now it is much clearer how the 
Bloch Theorem for the quasi-periodic problem related to the Bloch Theorem of 
the periodic problem, through the diagonal sectioning transformation (3.36). 

The periodicity pops up in a quasi-periodic problem thru inheritance: the 
physical field ( )H x  of the quasi-periodic problem inherits the periodicity 
from the physical field ( ),H x y  from the parent periodic lattice. Just as the 
quasi-periodic structure ( )xε  inherits its periodicity from the parent 2D lattice 
( ),x yε . Similarly, the same relation exists between the field ( ),H x y  in the 

parent periodic structure and the field ( )H x  in the quasi-periodic structure: 
y xτ= . 

The question of physical propagation is trickier and deserves further research. 
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