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Abstract 

This paper investigates the issue of exponential stability for a class of uncer-
tain linear systems with a single time-delay (or multiple time-delays). We 
consider that the uncertainties are the parameter disturbance and the external 
disturbance, both of which are stochastic. The external disturbances involve 
not only the current state ( )x t  but also the delayed state ( )x t τ− . By means 
of the Lyapunov-Krasovskii functional, the sufficient conditions on exponen-
tial stability for the uncertain linear systems with a single time-delay (or mul-
tiple time-delays) are performed in the form of the linear matrix inequality 
(LMI). Selecting the suitable matrices P (or P ) and Q (or Q ) and parame-

ter β  (or β ), we can also get the bounds of the state variables for the sin-
gle time-delay (or multiple time-delays) systems. In order to stabilize the so-
lution of the single time-delay (or multiple time-delays) systems at the equili-
brium point, we designed the state feedback control. Thus, the corresponding 
stabilization criteria are given. Finally, Numerical simulations show that a 
small disturbance can make a great change to the state variables of the sys-
tems. When the feedback gain control is added, the state variables of the sys-
tems can quickly stabilize at the equilibrium point. This also shows the effec-
tiveness of the proposed method. 
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1. Introduction 

It’s deemed important to analysis the stability of time-delay systems which has 
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attracted widespread attention in the past decades. The investigation found that 
a system will deteriorate or even be unstable due to the interference of feedback 
delay, transmission delay and other factors. For example: due to the time lag, it 
may cause network congestion, communication data loss, traffic congestion in 
the transportation system, etc. Therefore, before designing a control system, it is 
necessary to explore the stability of the time-delay system, seeing survey papers 
[1] [2] [3] [4] [5]. From another level, in practical applications, the system will 
be affected by some factors such as environmental noise, or slowly changing pa-
rameters, and it is tough to obtain a stable mathematical model. We call these 
factors as uncertain factors, and their presence will also affect the stability of the 
system. 

In literature [1], the author used the linear matrix inequality (LMI) method to 
give an exponential estimate and a sufficient condition for the generalized stabil-
ity of linear time-delay systems. In 2009, Nam PHAN et al. [6] considered the 
linear polytopic time-delay systems under parameter disturbance, proposing the 
new sufficient conditions for the exponential stability and stabilization. And the 
controller they designed is only about the current state ( )x t . Chen et al. [7] 
considered the nonlinear perturbations for the neutral-type time-delay systems. 
In terms of the linear matrix inequality (LMI), the new sufficient condition of 
stability with delay dependence is revealed. However, the nonlinear perturba-
tions also only about the current state ( )x t . Thus, in 2015, Tian et al. [8] re-
searched the nonlinear perturbations which are about ( )x t  and ( )x t τ−  in 
term of a class of time-varying delay systems. It can be better if the author con-
sidered the multiple time-delays systems. For the uncertain multiple time-delays 
systems, so far, there are few related studies. Literatures [9] [10] [11] [12] [13] 
exhibited the stabilities of multiple time-delays systems without any uncertain-
ties. Chen et al. [14] focused on the sliding mode control for uncertain linear 
neutral systems with multiple delays. They just consider the parameter distur-
bance. Zhang et al. [15] investigated the robust stochastic stability for a class of 
uncertain stochastic systems with multiple delays adopting the method of mul-
tiple delays Lyapunov-Krasovskii function which the uncertainties were consi-
dered as a linear fractional form. Here are some methods for studying the stabil-
ity of time-delay systems, such as the Laplace transform [9] [16], the Lyapunov 
direct method [17] [18], the linear matrix inequality used in this paper and so on. 
The Laplace transform method is too complicated to calculate and you need to 
construct a suitable Lyapunov function when you use the Lyapunov direct 
method which requires skill. In contrast, the linear matrix inequality method is 
simple, clear and is applicable to both integer order and fractional order sys-
tems. 

Thus, we want to research the exponential stability for a class of linear single 
time-delay (or multiple time-delays) systems under parameter disturbance and 
external disturbance using the linear matrix inequality method. And the external 
disturbances are related not only with current state ( )x t  but also with the de-
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layed state ( )x t τ− . Based on the definition of exponential stability, with the 
help of the Lyapunov-Krasovskii functional, we finally obtain the sufficient con-
ditions of exponential stability for the uncertain linear systems with a single 
time-delay (or multiple time-delays) in the form of the linear matrix inequality 
(LMI). The state feedback control is designed to stabilize the uncertain linear 
time-delay systems. Numerical simulations show the effectiveness of our re-
search method. The composition of this article is shown below. In chapter 2, we 
present the definitions, lemmas and the stabilization for the single time-delay 
system. In chapter 3, the stability for the multiple time-delays system is intro-
duced. In chapter 4, we have a sum up for this paper. 

Notation: nI  represents the n n×  identity matrix, n0  represents the n n×  
zero matrix. 

2. Preliminaries and the Stabilization of the Single 
Time-Delay System 

2.1. Preliminaries 

Considering the uncertain time-delay system with controlled as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ]

.

, ,0 ,

t t t x tτ

θ ϕ θ θ τ

= + ∆ + + ∆ − + +

= ∈ −

x A A x B B x d Du

x
        (1) 

where n∈x   is the state vector; , n n×∈A B   are the parameter matrices; 
, n n×∆ ∆ ∈A B   are the parameter interference matrices which satisfy 1m∆ ≤A  

and 2m∆ ≤B ; ( ) ( ) ( )1 2, t t t τ= + −d x G x G x  is external disturbances which 

1 2, n n×∈G G  ; τ +∈  is the time delay; 1n×∈D  . We design the state feed-
back control as ( ) ( )t t=u Ex  which 1 n×∈E  . For convenience, let =V DE . 
The initial function defines as [ ]( ),0 , nϕ τ∈ −   with the uniform norm 

[ ] ( ),0maxϕ ττ
ϕ ϕ θ∈ −= . It is stated that for any initial condition  

[ ]( ),0 , , 0n tϕ τ∈ − ≥  there exists the unique solution ( ),t ϕx  for the sys-
tem (1). We express ( )t ϕx  by the segment of trajectory  

( ) ( ) [ ]{ }, : ,0 n
t tϕ θ ϕ θ τ= + ∈ − ∈x x  . 
Definition 1 [19] Given 0ξ > , the system (1) is considered to be exponen-

tially stable if for every solution ( ),t ϕx  of the system, there exists a positive 
number 1σ ≥  such that meets 

( ), e , 0.tt tξ
τ

ϕ σ ϕ≤ ≥x                     (2) 

Lemma 1 Let 1 2 1 2, , , , n n×∈F F W W H   be matrices such that 1 1δ≤F  and 

2 2δ≤F , 1, n×∈u v   be the vector. Then, the following majorization holds: 

[ ]
T

1
1 2

2

T
2 2 T T

1 2 1 1 2 2
n n

n n

ρ δ δ

    
    

    

    
≤ + +     

    

Fu u
H W W

Fv v

Iu u
W W W W

Iv v
0

0

          (3) 

for satisfying 
( )max .n nλ ρ< =H H I I  
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Proof. You can refer to [[1], Appendix, Lemma 2] for the process of proof.  
Lemma 2 Let [ ]T1 2, , , nm n

m
×= ∈F F F F  , [ ]1 2, , , n nm

m
×= ∈W W W W   

with , , n n
i i

×∈F W H   be matrices such that ( ), 1, 2, ,
ii i mδ≤ =FF  , 1n×∈u  , 

and ( )1 1n m− ×∈v   be the vector. Then, the following majorization holds: 

[ ] [ ]
T T

2 T

0 0
i

m m

i i
i i

ρ δ
= =

       
≤       

       
∑ ∑F

u u u u
F H W W W E

v v v v
        (4) 

for satisfying 

( )max ,n nλ ρ< =H H I I  

where , , ,n n n
m

diag
 

=  
  

E I I I


 . 

Proof. In [[1], Appendix, Lemma 2], the author considered the two matrices 
while we consider the number of matrices is m.  

2.2. The Stabilization of the Single Time-Delay System 

Theorem 1 The controlled system (1) is exponential stability if there exist two 
real positive matrices , n n×∈P Q   and the constant 0β >  and 0ρ >  such 
that the conditions 

( ) ( ) ( )1 2, , 2 0m mρ β
ρ

+ + <

<

P Q K P
P I
 

               (5) 

hold. Then 

( ) 2

1

, e tt β
τ

α
ϕ ϕ

α
−≤x                      (6) 

where 

( ) ( ) ( )

( )

max 1 min 2 max

2 2
1 2 1 2

, , ,

, 2 ,n n

n n

m m m m

ρ λ α λ α ρ τλ= = = +

 
= +  

 

P P Q

I
K

I
0

0
 

( )

( ) [ ]

2
T T 2

2

, ,
e

.n n
n n

n n n

βτ−

∗ + 
=  + − 
   

= =   
   

PB PG
P Q

B P G P Q

I P
P P I




0

0
0 0 0

 

with T T T
1 1∗ = + + + + + +PA A P Q G G V V . 

Proof. We present the Lyapunov-Krasovskii functional 

( ) ( ) ( ) ( ) ( )0T T 2e d .tV t t t tβθ
τ

θ θ θ
−

= + + +∫x x Px x Qx          (7) 

Because ( ) ( )0 02 2T 2 2e d e dt tt tβθ βθ
τ ττ τ

θ θ θ θ τ
− −

+ + = ≤∫ ∫x Qx x Q x Q . From 

(7), the following inequalities can be obtained. 

( ) ( )2 2
1 2 ,t tt V

τ
α α≤ ≤x x x                   (8) 

where 1 2,α α  are defined in Theorem 1. 
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Observe that ( )tV x  can be rewritten as 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
T

0 T 2e d ,t

t t
V t t

t t
βθ

τ
θ θ θ

τ τ −

   
= + + +   − −   

∫
x x

x P x Qx
x x

    (9) 

where ( )P  is defined in Theorem 1. 
The derivative of the functional ( )tV x  along the trajectories of the uncertain 

system (1) is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )

( ) ( )

T

T T 2

0 T 2

d 2
d

e

2 e d .

tV t t t x t
t

t t t t

t t

βτ

βθ
τ

τ

τ τ

β θ θ θ

−

−

= + ∆ + + ∆ − + +

+ − − −

− + +∫

x x P A A x B B x d Du

x Qx x Qx

x Qx

  (10) 

It can be rewritten as 

( ) ( )
( ) ( ) ( )

( )
[ ] ( )

( )

( ) ( )

T T

T

0 T 2

d , 2
d

2 e d ,

t n n

t t
V

t tt

t tβθ
τ

τ τ

β θ θ θ
−

  ∆     = +    − − ∆      

− + +∫

Ax x
x P Q P I

x xB

x Qx

 0
   (11) 

where ( ),P Q  is defined in Theorem 1. 
It follows from Lemma1 that the following result is hold. 

( ) ( )
( ) ( ) ( ){ } ( )

( )

( ) ( )

T

1 2

0 T 2

d , ,
d

2 e d ,

t

t t
V m m

t tt

t tβθ
τ

ρ
τ τ

β θ θ θ
−

   
≤ +   − −   

− + +∫

x x
x P Q K

x x

x Qx


      (12) 

where 

( ) 2 2
1 2 1 2, 2 .n n

n n

m m m m
 

= +  
 

I
K

I
0

0
                (13) 

Finally, we get 

( ) ( )

( )
( ) ( ) ( ) ( ){ } ( )

( )

T

1 2

d 2
d

, , 2 .

t tV V
t

t t
m m

t t

β

ρ β
τ τ

+

   
≤ + +   − −   

x x

x x
P Q K P

x x
 

     (14) 

When the matrix ( ) ( ) ( )1 2, , 2m mρ β+ +P Q K P   is a negative matrix, we 
can obtain 

( )( ) ( )( )d 2 0.
d t tV V
t

ϕ β ϕ+ ≤x x                  (15) 

This inequality bring about the following one 

( )( ) ( )2e , for 0.t
tV V tβϕ ϕ−≤ ≥x                 (16) 

Thus, it follows from the Equation (8) that 

( ) ( )( ) ( )2 22 2
1 2, e e for 0.t t

tt V V tβ β
τ

α ϕ ϕ ϕ α ϕ− −≤ ≤ ≤ ≥x x       (17) 
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Then, ( ) 2

1

, e , 0tt tβ
τ

α
ϕ ϕ

α
−≤ ≥x .  

Example 1 These matrixes in Theorem 1 are chose as follows 

8 2 9.8 8 2.5 0.3 0.2 0.6
, , , ,

2 5 8 9 0 1 0 0.4
−       

= = = =       −       
P Q A B  

[ ]1 2

0.2 0.3 0.2 0.4 4
, , 0.02 2.7 ,

0.1 0.2 0.1 0.3 10
     

= = = = ∗ −     
     

G G V DE  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

0.1sin 0.1sin 0.1cos 0.1cos
, ,

0.1sin 2 0.1sin 3 0.1cos 2 0.1cos 3
t t t t
t t t t

   
∆ = ∆ =   

   
A B  

We choose 0.2∆ ≤A , 0.2∆ ≤B , 0.5τ = , 0.5β = . By calculating, we obtained 

( ) ( ) ( )1 2, , 2

16.5488 0.2912 3.4000 9.4000
0.2912 43.3088 1.3000 5.5000

,
3.4000 1.3000 11.0663 8.0986
9.4000 5.5000 8.0986 9.7473

m mρ β+ +

− 
 − =
 − −
 

− − 

P Q K P 

 

which the eigenvalues are 

1 0.1236λ = − , 2 9.9004λ = − , 3 26.1449λ = − , 4 44.5025λ = − . 

Thus, the matrix ( ) ( ) ( )1 2, , 2m mρ β+ +P Q K P   ia a negative matrix 
and ρ<P I . The two conditions in Theorem 2 are satisfied. At this time, the 
solution of the system meets 

( ) 0.5, 2.1039e .tt
τ

ϕ ϕ−≤x                   (18) 

When we select the initial values as ( ) ( )T2,2ϕ θ = − , [ ]3,0t∈ − . The trajec-
tories of the state variables ( )1x t  and ( )2x t  for the uncertain time-delay sys-
tem without the controller are depicted in Figure 1 while the Figure 2 expresses 
the trajectories of the state variables ( )1x t  and ( )2x t  for the controlled un-
certain time-delay system (1). Numerical simulation results reveal the effective-
ness of our proposed method. 

3. The Stabilization of the Multiple Time-Delays Syetem 

3.1. The Stability of the Multiple Time-Delays System 

We are concentrating on the case of the uncertain system with multiple 
time-delays in the following form 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]
1

, ,0 ,

m

i i i
i

t t t tτ

θ ϕ θ θ τ
=

= + ∆ + + ∆ − +

= ∈ −

∑x A A x B B x d

x
         (19) 

where ( ), 1, ,n n
i i m×∈ =B   and 10 , , mτ τ τ< <  are delays. The parameter 

interference matrices ∆A , i∆B  satisfy ω∆ ≤A  and ( ), 1, ,i i i mυ∆ ≤ =B  ; 
( ) ( ) ( )0 1, m

i iit t t τ
=

= + −∑d x G x G x   is external disturbances. 
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Figure 1. The trajectories of the state variables ( )1x t  and ( )2x t  for 

the uncertain single time-delay system without the controller. 

 

 
Figure 2. The trajectories of the state variables ( )1x t  and ( )2x t  for 

the uncertain single time-delay system with controlled (1). 

 
Theorem 2 The uncertain multiple time-delays system (19) is exponential 

stability if there exist real positive matrices ( ), , 1, 2, , n n
i i m ×= ∈P Q    and the 

constant 0β >  and 0ρ >  such that the conditions 

( ) ( ) ( )1 2, , , , , 2 0m ρ ω β

ρ

+ + <

<

P Q Q Q K u P

P I

      








 
          (20) 

hold. Then 

( ) 2

1

, e tt β
τ

α
ϕ ϕ

α
−≤x 





                    (21) 
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where 

( ) ( ) ( )

( )

max 1 min 2 max
=1

2 2

1

, , ,

, 2 ,

m

i i
i

m

i
i

ρ λ α λ α ρ τ λ

ω ω υ
=

= = = +

= +

∑

∑

P P Q

K u E

 

   

 

( )

( ) ( )

1

1 2

22T T
0 0 1

1

T T
* *

, , , ,

, e , , e

,

m

m

m

i m
i

T

diag βτβτ −−

=

 = + + + + − − 
 

+ + + +

∑

P Q Q Q

PA A P Q G G Q Q

B G PE E P B G



   



     



 



     (22) 

with 

[ ]1 2, , , m=B B B B ,  1 2, , , m =  G G G G  

 , *
1

, , ,n n n
m−

 
=  
  

E I


0 0 , 

, , ,n n n
m

diag
 

=  
  

E I I I


 , ( ) , , ,n n
m

diag
  =  
  

P P


  

 0 0 . 

Proof. We introduce the Lyapunov-Krasovskii functional 

( ) ( ) ( ) ( ) ( )0T T 2

1
e d .

i

m

t i
i

V t t t tβθ
τ

θ θ θ
−

=

= + + +∑∫x x Px x Q x

         (23) 

Notice that ( )tV x  can be expressed as 

( )

( )
( )
( )

( )

( )

( )
( )
( )

( )

( ) ( )

T

1 1

2 2

0 T 2

1
e d ,

i

t

m m

m

i
i

t t

t t

t tV

t t

t tβθ
τ

τ τ

τ τ

τ τ

θ θ θ
−

=

   
   

− −   
   

− −=    
   
   
   − −   

+ + +∑∫

x x

x x

x xx P

x x

x Q x

  

 




           (24) 

where ( ) , , ,n n
m

diag
  =  
  

P P


  

 0 0 . 

The derivative of the functional ( )tV x  along the trajectories of the uncertain 
system (19) is 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

T

1

T 2T

1 1

0 T 2

1

d 2
d

e

2 e d .

i

i

m

t i i i
i

m m

i i
i i

m

i
i

V t t t t
t

t t t t

t t

βτ

βθ
τ

τ

τ τ

β θ θ θ

=

−

= =

−
=

 = + ∆ + + ∆ − + 
 

+ − − −

− + +

∑

∑ ∑

∑∫

x x P A A x B B x d

x Qx x Qx

x Q x





 



 

   (25) 

It can be rewritten as 
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( )

( )
( )
( )

( )

( )

( )
( )

( )

( )
( )
( )

( )

( ) ( )

T

T

1 T
1

2 1 2

T

1
0 T 2

2
1

d , , , , 2
d

2 e d ,
i

t m

m
m

m

i
i

m

t
A

t
B

tV
t

B
t

t

t

t t t

t

βθ
τ

τ

τ

τ

τ

τ β θ θ θ

τ

−
=

 
    ∆
  − 
  ∆   −= +    

   
   
∆      − 

 
 

− 
 

−× − + + 
 
 
 − 

∑∫

x

x

xx P Q Q Q PE

x

x

x

x x Q x

x



    







 





    (26) 

where ( )1 2, , , , mP Q Q Q   

  and E  are defined in Theorem 2. 
It follows from Lemma 2 that the following result is hold. 

( )

( )
( )
( )

( )

( ) ( ){ }

( )
( )
( )

( )

( ) ( )

T

1 1

2 21 2

0 T 2

1

d , , , , ,
d

2 e d ,
i

t m

m m

m

i
i

t t

t t

t tV
t

t t

t tβθ
τ

τ τ

τ τρ ω

τ τ

β θ θ θ
−

=

   
   

− −   
   

− −≤ +   
   
   
   − −   

− + +∑∫

x x

x x

x xx P Q Q Q K u

x x

x Q x

    




 

 


 (27) 

where 

( ) 2 2

0
, 2 .

m

i
i

ω ω υ
=

= +∑K u E  

Finally, we get 

( ) ( )

( )
( )
( )

( )

( ) ( ) ( ){ }

( )
( )
( )

( )

T

1 1

2 21 2

d 2
d

, , , , , 2 .

t t

m

m m

V V
t

t t

t t

t t

t t

β

τ τ

τ τρ ω β

τ τ

+

   
   

− −   
   

− −≤ + +   
   
   
   − −   

x x

x x

x x

x xP Q Q Q K u P

x x

 

      




 

 

 (28) 

When the matrix ( ) ( ) ( )1 2, , , , , 2m ρ ω β+ +P Q Q Q K u P      


   is a negative 

matrix, we can obtain 

( )( ) ( )( )d 2 0.
d t tV V
t

ϕ β ϕ+ ≤x x                   (29) 

This inequality brings about the following one 
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( )( ) ( )2e , for 0.t
tV V tβϕ ϕ−≤ ≥x 

                  (30) 

Thus, 

( ) ( )( ) ( )2 22 2
1 2, e e for 0.t t

tt V V tβ β
τ

α ϕ ϕ ϕ α ϕ− −≤ ≤ ≤ ≥x x  

 

       (31) 

Then, ( ) 22

1

, e , 0tt tβ
τ

α
ϕ ϕ

α
−≤ ≥x 





.  

3.2. The Stabilization of the Multiple Time-Delays System 

Considering the controlled uncertain system with multiple time-delays in the 
following form 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) [ ]
1

,

, ,0 ,

m

i i i
i

t t t t tτ

θ ϕ θ θ τ
=

= + ∆ + + ∆ − + +

= ∈ −

∑x A A x B B x d Du

x
     (32) 

where 1n×∈D  . We design the state feedback control as ( ) ( )t t=u Ex  which 
1 n×∈E  . For convenience, let =V DE . 

Theorem 3 The controlled multiple time-delays system (32) is exponential 
stability if there exist real positive matrices ( ), , 1, 2, , n n

i i m ×= ∈P Q    and the 
constant 0β >  and 0ρ >  such that the conditions 

( ) ( ) ( )1 2, , , , , 2 0m ρ ω β

ρ

+ + <

<

P Q Q Q K u P

P I

      








 
          (33) 

hold. Then 

( ) 2

1

, e tt β
τ

α
ϕ ϕ

α
−≤x 





                    (34) 

where 

( )

( ) ( )

1

1 2

22T T T
0 0 1

1

T T T
* *

, , , ,

, e , , e

,

m

m

m

i m
i

diag βτβτ −−

=

 = + + + + + + − − 
 

+ + + +

∑

P Q Q Q

PA A P Q G G V V Q Q

B G PE E P B G



   



       



 



 (35) 

with 

[ ]1 2, , , m=B B B B , 1 2, , , m =  G G G G  

 , *
1

, , ,n n n
m−

 
=  
  

E I


0 0 , 

, , ,n n n
m

diag
 

=  
  

E I I I


 , ( ) , , ,n n
m

diag
  =  
  

P P


  

 0 0 . 

And ρ , β , 1α , 2α , ( ),ωK u , ( )P   are defined in Theorem 2. 
Proof. The controlled uncertain system with multiple time-delays (32) can be 

rewritten as 
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( ) ( ) ( ) ( ) ( ) ( )
1

m

i i i
i

t t t tτ
=

= + ∆ + + + ∆ − +∑x A A V x B B x d

          (36) 

Then, the proof is similar to that of Theorem 2.  
Example 2 These matrixes in Theorem 3 are chose when 2m =  as follows 

0.2 0.09
0.09 0.1
 

=  
 

P , 1

0.4 0.9
0.9 81
 

=  
 

Q , 2

0.9 0.4
0.4 4
 

=  
 

Q , 

5 0.8
0.6 1
− 

=  − 
A , 1

0.2 0.1
0 0.1

 
=  
 

B , 2

0.1 0.8
0 0.1

 
=  
 

B , 

( ) ( )
( ) ( )

0.1sin 0.1sin
0.1sin 2 0.1sin 3

t t
t t

 
∆ =  

 
A , 

( ) ( )
( ) ( )1

0.1cos 0.1cos
0.1cos 2 0.1cos 3

t t
t t

 
∆ =  

 
B , 

( ) ( )
( ) ( )2

0.1cos 0.1cos
0.1cos 2 0.1cos 3

t t
t t

 
∆ =  

 
B , 1 2 3

0.01 0.01
0.01 0.01
 

= =  
 

G G G   , 

[ ]0
0.02 2.7

19
 

= = ∗ − 
 

V DE . 

We choose 

0.2∆ ≤A , 1 0.2∆ ≤B , 2 0.2∆ ≤B ,  

1 0.2τ = , 2 0.5τ = , 0.2β = . 

By calculating, we obtained 

( ) ( ) ( )1 2, , , 2

0.3167 1.5913 0.0429 0.0319 0.0265 0.1764
1.5913 17.4207 0.0199 0.0209 0.0149 0.0889
0.0429 0.0199 0.2581 0.7997 0 0
0.0319 0.0209 0.7997 87.5710 0 0
0.0265 0.0149 0 0 0.9240 0.3133
0.1764 0.0889

ρ ω β+ +

−
−

− −
=

− −
− −

P Q Q K u P     

 

,

0 0 0.3133 4.7104

 
 
 
 
 
 
 
 

− −  

 

which the eigenvalues are 

1 87.5783λ = − , 2 17.5680λ = − , 3 4.7432λ = − , 

4 0.8985λ = − , 5 0.2690λ = − , 6 0.1439λ = − . 

Thus, the matrix ( ) ( ) ( )1 2, , , 2ρ ω β+ +P Q Q K u P     

   ia a negative matrix 
and ρ<P I

 . The two conditions in Theorem 3 are satisfied. At this time, the 
solution of the system meets 

( ) 0.2, 19.8293e .tt
τ

ϕ ϕ−≤x                    (37) 

When we select the initial value as ( ) ( )T2,2ϕ θ = − , [ ]3,0t∈ − , the trajecto-
ries of the state variables ( )1x t  and ( )2x t  for the uncertain system with mul-
tiple delays (without the controller) are shown in Figure 3 while the Figure 4 il-
lustrates the trajectories of the state variables ( )1x t  and ( )2x t  for the con-
trolled uncertain system with multiple delays (32). Numerical simulation results 
reveal the effectiveness of our proposed method. 
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Figure 3. The trajectories of the state variables ( )1x t  and ( )2x t  for 

the uncertain multiple time-delays system without the controller (19). 

 

 
Figure 4. The trajectories of the state variables ( )1x t  and ( )2x t  for 

the controlled uncertain system with multiple time-delays (32). 

4. Conclusion 

In this article, the issue of exponential stability for a class of uncertain linear 
systems with a single time-delay (or multiple time-delays) is researched. The 
exponential stability for multiple time-delays linear system under double uncer-
tainties is an innovative point. Firstly, we analyze the stability of the uncertain 
linear single time-delay systems according to the the Lyapunov-Krasovskii func-
tional. The stability conditions are revealed in the form of the linear matrix in-
equality (LMI). In order to stabilize the solution of the single time-delay (or 
multiple time-delays) systems at the equilibrium point, we designed the state 
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feedback control. Thus, we give the corresponding stabilization criteria which 
you can refer to the Theorem 1, 3. Finally, Numerical simulations show that the 
state variables of the system quickly stabilize to the equilibrium point under the 
effect of state feedback control ( )tu . This also shows the effectiveness of the 
proposed method. In the future, we will consider the stability and stabilization of 
uncertain nonlinear systems with multiple time-delays. 
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