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Abstract 

The traditional linear programming model is deterministic. The way that un-
certainty is handled is to compute the range of optimality. After the optimal 
solution is obtained, typically by the simplex method, one considers the effect 
of varying each objective function coefficient, one at a time. This yields the 
range of optimality within which the decision variables remain constant. This 
sensitivity analysis is useful for helping the analyst get a sense for the prob-
lem. However, it is unrealistic because objective function coefficients tend not 
to stand still. They are typically profit contributions from products sold and 
are subject to randomly varying selling prices. In this paper, a realistic linear 
program is created for simultaneously randomizing the coefficients from any 
probability distribution. Furthermore, we present a novel approach for de-
signing a copula of random objective function coefficients according to a spe-
cified rank correlation. The corresponding distribution of objective function 
values is created. This distribution is examined directly for central tendency, 
spread, skewness and extreme values for the purpose of risk analysis. This 
enables risk analysis and business analytics, emerging topics in education and 
preparation for the knowledge economy. 
 
Keywords 

Linear Programming, Random, Objective Function, Profit Distribution, Risk, 
Monte Carlo Simulation 

 

1. Introduction 

The purpose of this paper is to present a Monte Carlo solution for a random ob-
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jective function coefficient linear programming problem that can be executed in 
Excel. A solution was given in Ridley and Khan [1] for random constraint limits. 
Both present an exceptionally easy way for students to learn Monte Carlo simu-
lation. One of the emerging topics in business management is risk analysis. Risk 
analysis and business analytics are emerging topics in education and preparation 
for the knowledge economy. The textbook “Business Analytics (Evans [2])” is 
designed to be Excel based. It covers useful Excel functions and illustrates how 
they are used to execute Monte Carlo simulation for the purpose of risk analysis. 
However, the chapter on linear optimization collapses to traditional determinis-
tic linear programming where the solution tool is the add-in solver. Risk analysis 
in linear programming as described there relies on sensitivity analysis. In sensi-
tivity analysis one objective function coefficient value at a time is varied while all 
others are held constant. In the real world, the coefficients can vary randomly 
and simultaneously. This paper describes a randomized linear program (LP) 
where all objective function coefficients are varied simultaneously. The random 
values are selected in accordance with any specified probability distribution. The 
distribution can be aligned with what occurs in reality. In this paper we present a 
novel approach for designing a copula of random objective function coefficients 
according to a specified rank correlation. 

Amongst the Monte Carlo simulations are some that are feasible and some 
that are not. The feasible solutions are kept, and the infeasible solutions are dis-
carded and disregarded. The set of objective function values of the solutions that 
are kept represent the distribution of possible objective functions values. In the 
typical business problem, they are profits derived from random prices. The 
analysis of these profits represents business risk analysis. It tells management the 
long term expected profit to plan for. It also tells the management the probabili-
ty of low to no profits for which cash flow may be disrupted. If the expected 
profit is positive and acceptable, arrangement can be made to tide the business 
over during lean times. 

The remainder of the paper is organized as follows. Section 2 is a review of re-
lated literature. Section 3 introduces the example problem used for illustration. 
Section 4 gives the traditional graphical solution. Section 5 gives the traditional 
algebraic solution and illustrates the new randomized LP solution. Section 6 
summarizes some conclusions and suggestions for future research. 

2. Literature Review 

Linear programming can be traced back to the 1940s. Dantzig [3] was the creator 
of the simplex method for solving linear programming problems. Since then, li-
near programming has been applied in many fields, in business, transportation, 
military, etc. The Simplex method is deterministic, and only can be used to solve 
problems subject to no uncertainty in variables or coefficients in the objective 
function and constraint equations. Alternative methods have been developed to 
solve large problems, like the interior point algorithm (Roos et al. [4]).  
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Given that linear programming is deterministic, one way developed to deal 
with uncertainty is post optimality analysis, also known as sensitivity analysis. 
Sensitivity analysis is a “what if” analysis where the effect on the optimal solu-
tion is measured when changes in parameters are applied. A full chapter on sen-
sitivity analysis may be found in Eiselt et al. [5]. A more up to date version can 
be found in Panik [6].  

Some degree of uncertainty is permitted in the Fuzzy Programming method 
where the desired objective value is assumed to be stated in an ambiguous way 
(Bellman et al. [7]; Inuiguchi et al. [8]; Sakawa [9]). Another approach for deal-
ing with uncertainty is Stochastic Programming (SP), defined by Dantzig and 
Thapa [10] as the “Art and Science of deciding on the best plan of action (in 
some expected-value sense) while hedging against the myriad of possible ways 
the best laid plans can go awry”. These stochastic methods consider the expected 
values of the objective function coefficients when they are unknown at the time 
of decision making. See also Boyd, Boyd and Vandenberghe [11]. 

A randomized linear program (RLP) for computing network bit prices, where 
itinerary demand realization sequences are simulated and solved using determi-
nistic linear programming (DLP) was given by Talluri et al. [12]. They demon-
strate that RLP is only a little more complicated to implement than DLP. Risk 
analysis using DLP and Monte Carlo simulation was applied to manage munici-
pal solid waste (Wajs et al. [13]). Uncertainty was introduced into the decision 
variables. Adler et al. [14] proposed an extension of Clarkson’s [15] randomized 
algorithm for linear programming to a general scheme for solving convex opti-
mization problems. The aim is to speed-up the simplex method (or any vertex 
enumeration method) for linear programming when the number of constraints 
is much larger than the number of variables. Mohammed and Kassem [16] con-
sider a product mix problem in which several scenarios are presented for the 
same problem considering two important aspects, namely, resources’ utilization 
and productivity. But these stochastic methods apply linear programming to the 
expected values of the objective function coefficients. That is, these stochastic 
methods do not consider solutions for all values of the random coefficient. This 
paper does. 

3. The Linear Program 

The general LP may be written as 

Subje
Maxim

ct to
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0

=
≤

≥

Tp
Ax b
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where x = (x1, x2, x3, ∙∙∙, xn) is a vector of decision variables, p = (p1, p2, p3, ∙∙∙, pn) 
is a vector of independent profit contributions, b = (b1, b2, b3, ∙∙∙, bm) is a vector 
of constraint limits, and A is an m x n matrix of constants. 

Consider an example taken from Evans [2, p. 474]. The name of the business 
is Slenka Ski. Slenka Ski produces two type of Skis, Jordanelle and Deercrest. The 
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per unit profit contributions are $50 and $65 respectively. There is a fabrication 
constraint of 84 hours and a finishing constraint of 21 hours. Jordanelle uses 3.5 
hours of fabrication time and 1 hour of finishing time. Deercrest uses 4.0 hours 
of fabrication time and 1.5 hours of finishing time. There is also a market mix 
requirement that Deercrest production must be no less than twice that of Jorda-
nelle. As always, there are the nonnegativity constraints. 

Let Jordanelle be represented by x1 and Deercrest be represented by x2. 

  SLACK  SLOPE 

1 2

1 2

1 2

1 2

1 2
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4. Graphical Solution 

The deterministic graphical solution is given in Figure 1, where x1 = 5.25, x2 = 
10.5, and the Objective function value (profit) = $945. The fractional amounts of 
x1 and x2 are interpreted as work in progress. 
 

 
Figure 1. Graphical solution of deterministic linear programming program. 

5. Algebraic Solutions 

The first algebraic solution will be created in an Excel spreadsheet and executed 
by the add-in SOLVER. A spreadsheet for the production of Slenka Skis is 
shown in Figure 2. 

5.1. Deterministic Solution 

Rewriting the LP in terms of the Excel fields, the problem formulation is 
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Figure 2. Monte Carlo computer simulations of linear programming profit for random objective function coefficients. 

 
Initially, all parameters of the LP, including the objective function coefficients, 

are assumed to be known at the time that a decision is to be made regarding the 
optimal values of the decision variables. The original objective coefficients (not 
shown to save space) are 50 for Jordanelle and 65 for Deercrest. This LP was 
solved by the Excel add-in SOLVER. The solution is x1 = (B14 = 5.25), x2 = (C14 
= 10.5). The profit for this configuration is $945 (not shown). 

5.2. Monte Carlo Simulation 

The Monte Carlo computer simulation is based on 1000 sets of two objective 
function coefficients. The profit contribution from Jordanelle is assumed to be 
lognormally distributed with mean $4.5 and standard deviation $0.5. The profit 
contribution from Deercrest is assumed to be normally distributed with a mean 
of $65 and a standard deviation of $1. The random coefficient numbers are gen-
erated from the lognorm.inv(rand(),4.5,0.5) and norm.inv(rand(),65,1) Excel 
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functions respectively. All negative prices are discarded and ignored. So long as 
the slope of the objective function lies on or between the slopes of the binding 
constraints, the decision variables will remain constant, but the profit will vary. 
Higher prices will yield higher profits and lower prices will yield lower profits. 
For each of the 1000 simulations, each time the slope objective function (H9 = 
−(B9 = 176.67/C9 = 65.52) = −2.697) lies on or between the slopes of the binding 
constraints (H7 = −(B7 = 1.0/C7 = 1.5) = −0.66667) and (H8 = −(B8 = −2/C8 = 
1) = 2, the profit is calculated and saved in D22. Otherwise, a profit of null (“”) is 
entered in D22. The profit in D22 is then copied into the Data Table (columns 
M&N). A new column of profits is then copied into column Q where the nulls 
are filtered out with the Excel function: (=FILTER(N4:N1003,N4:N1003<>""). 
Hence forth the nulls are discarded and disregarded. To save space only the first 
46 profits are shown. The Excel logic and calculations are as follows: 

The row (7) containing the first binding constraint for which the slack = 0 is 
obtained from H27 = MATCH(0,$F$1:$F$8,0).  

The row (8) containing the second binding constraint for which the slack =0 
is obtained from H28 = VLOOKUP(0,$F$7:$H$9,3). 

The profit is obtained from  
=IF(OR(AND($H$9<0,$H$9<$H$7),AND($H$9>0,$H$9>$H$8)),SUMPRODU
CT($B$9:$C$9,$B$14:$C$14),""). 

The objective function coefficients are restricted to positive values only so the 
slope is always negative and therefore less than 2. 

The first entry in the Data Table is N2 = D22. 

5.3. Profit Distribution 

As the number of simulations increases, the distributions of profit functions are 
expected to converge and become similar. In the interim, two sample simula-
tions are shown here in Figure 2. If the distribution converges to the one on the 
left, the expected profit will be lower and there will be times when the profit is 
low enough to possibly require reserve rainy day funds. If the low expected prof-
it is acceptable then all that is required is the capacity to borrow money during 
the lean times. That is, to hedge against this contingency. If the low expected 
profit is unacceptable, then this business venture should not be undertaken. If 
the distribution converges to the one on the right, the expected profit will be 
higher. In that case, it is less likely that rainy day funds will be required. 

5.4. Correlated Profit Contributions 

For real-world problems, the assumption of independence among inputs may 
not be appropriate. Many studies have been dedicated to properly incorporating 
dependence among input variables (see, e.g. Iman and Conover [17]; Chang, 
Tung and Yang [18]; Heal and Kunreuther [19]). Studies in retirement planning 
(Benninga [20]), value-at-risk (Bohdalová [21]), default loss modeling (Duffie, 
Eckner, Horel and Saita [22]), and bankruptcy prediction Altman [23] stress the 
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importance of appropriately modeling correlation among model parameters, 
control variables, design variables, etc. During the 2008 financial crisis, for ex-
ample, failure to properly model correlation among housing defaults (Herbert 
[24]) resulted in widespread credit ratings errors on tranched mortgage-backed 
securities and CDOs (Duffie, Eckner, Horel and Saita [22]; Securities and Ex-
change Commission [25]). 

So far, this paper modifies the Evans [2] Selena Ski problem to assume that 
per unit profit across goods is random and independent. However, profit mar-
gins may be correlated with the business cycle and exhibit seasonality (Chevalier, 
Kashyap and Rossi [26]; Hoskin, Matsa and Reiffen [27]), resulting in positive 
correlation between profit margins of similar items. Also, profit margins may be 
correlated with advertising expenditures (Farris and Reibstein [28]), possibly 
resulting in negative correlation between profit margins of Jordanelle brand and 
Deercrest brand if advertising strategies vary inversely.  

The procedure we use to model dependence between profit variables is de-
rived from theory related to bivariate Gaussian copulas. A copula “couples” or 
joins marginal distributions of single random variables into a joint distribution 
with a specified dependence structure. In general, a copula is a d-dimensional 
distribution function on [0, 1]d with uniform marginal distributions.  

Our goal is to generate instances of (P1, P2) in Excel of a bivariate distribution 
with specified marginal distributions, and rank correlation between variables 
equal to a desired value τ. 

The procedure is outlined below: 
Step 1: Generate standard normal random variables Z1, Z2 with rank correla-

tion τ.  
Step 2: Apply the standard normal CDF to Z1, Z2, which produces uniform 

random variables U1, U2.  
Step 3: Apply inverse CDF’s 1

1F − , 1
2F −  of the desired marginal distributions 

to U1, U2, producing P1, P2. (see Figure 3). 
In Section 5.2, we assumed per unit Jordanelle profit ( )1 ln 4.5,0.5P N

 and 
per unit Deercrest profit ( )2 65,1P N . In this section, we will generate 10,000 
instances of a bivariate distribution such that the marginal distributions are 
lnN(3.78, 0.5)1 (Jordanelle) and N(65, 5)2 (Deercrest). Importantly, we target a 
dependence structure between Jordanelle and Deercrest profits. By way of ex-
ample, we target a rank correlation of τ = −0.7. A convenience of using Gaussian 
copulas is that there is a one-to-one relationship between linear correlation 
measured by Pearson’s rho (ρ) and rank correlation measured by Kendall’s tau 
(τ)3 for the bivariate normal: 

 

 

1We change μ = 3.78 from μ = 4.5, so that [ ] ( )2
1 exp 3.78 0.5 2 50E X = + ≈ . 

2We increase the standard deviation of Deercrest profit to $5 in this section so the impact of correla-
tion on total profit distribution is more apparent. 
3Such a one-to-one relationship also exists between linear correlation Pearson’s rho (ρ) and rank 
correlation Spearman’s rho (ρs). 
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( )2 arcsin sin
2
πτ ρ ρ τ

π
 = =  
 

 

The inverse transformations 1
1F −  (lognormal inverse) and 1

2F −  (normal 
inverse) are monotonic, so rank correlation is preserved. We can therefore target 
rank correlation of P1 and P2 equal to −0.7 by generating 

[ ] [ ]1 2

1
, ~ 0,0 ,

1
Z Z N

ρ
ρ

′  
  ′  

 where sin 0.7
2
πρ  ′ = − ∗ 

 
. 

Figure 4 demonstrates the procedure in Excel. 
Step 1: Values of the standard normal random variable Z1 in column B are 

generated by norm.s.inv(rand()). Each instance of Z2 in column C is produced 
by  

2
2 1 1 . . ( ())z z norm s inv randρ ρ′ ′+ − ∗= . 

A simple mathematical proof can show Z2 is distributed standard normal, 
with linear correlation to Z1 equal to ρ'. The targeted rank correlation τ = −0.7 is 
hardcoded into cell (C13). The necessary linear correlation between Z1 and Z2 
(ρ') to produce rank correlation τ is shown in cell (C14 = (sin(C13*pi()/2) = 
−0.8910).  

 

 
Figure 3. Flow chart for steps 1, 2 and 3. 

 

 
Figure 4. The bivariate gaussian copula procedure to generate jointly distributed random variables. 
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Step 2: Values of U1 and U2 in columns E and F are produced by applying the 
cumulative standard normal distribution function to Z1 in column B and to Z2 in 
column C respectively. For instance, cell (E18 = (NORM.S.DIST(B18, true)) = 
0.9942).  

Step 3: Values P1 and P2 that represent instances of Jordanelle and Deercrest 
correlated profits are shown in columns J and K. Each instance of P1 is produced 
by applying the lognormal distribution inverse to U1. For example, cell (J18 = 
(LOGNORM.INV(E18, $L$10, $M$10)) = 154.7867). Each instance of P2 is pro-
duced by applying the normal distribution inverse to U2. For example, cell (K18 
= (NORM.INV(F18, $L$11, $M$11)) = 52.8526). Due to monotonicity, the rank 
correlation is preserved, and is hardcoded into cell M13. The linear correlation 
of P1 and P2 is computed using the Excel function CORREL() (M14 = 
(CORREL(J18:J5017, K18:K5017) = -0.8390. Observe that this value differs from 
the linear correlation of Z1 and Z2 (C14 = (SIN(tau*PI()/2)) = −0.8910). (see flow 
chart in Figure 3). 

Figure 5 describes the distribution of total profit if per unit profit margin for 
Jordanelle and Deercrest skis are random, distributed lognormally and normally 
respectfully, and per unit profit margins are correlated. As in the previous sec-
tion, we include only instances for which the optimal solution is 5.25 units of 
Jordanelle skis and 10.50 units of Deercrest skis by bounding the slope of the 
objective function. 

The charts within Figure 5 demonstrate the importance of accounting for 
possible correlation between variables when designing a model. As the rank cor-
relation between Jordanelle and Deercrest per unit profit margins increases from 
−0.7 to 0.7, the shape of the total profit distribution has changed. The distribu-
tion in the τ = 0.7 case is wider with a longer right tail. The range of possible  
 

 
Figure 5. Impact of parameter correlation on profit distribution. 
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total profit outcomes increases to $1752.74 from $1315.53 (33%). The standard 
deviation of the distribution increases to $158.4 from $105.1 (51%). Without 
accounting for correlation among the random per-item profits in the model, the 
increase in standard deviation (a widely accepted measure of risk in financial 
management) of the total profit distribution would have been overlooked. The 
illustrations in this paper are pedagogical in that they build on the example 
problem in Evans [2]. In a real-life problem, all numbers in the problem includ-
ing the rank correlation would be replaced with values estimated from actual 
historical data. The solution is scalable to more than two variables. 

6. Conclusions 

Businesses that are dealing with optimal production decisions of complementary 
cohorts of goods need to be particularly cautious about what Rust et al. [29] refer 
to as “profitable product death spiral” that may ensue when businesses rush to 
discontinue production of a product with low profit margin without fully as-
sessing potential spiraling effect of such an action on the sales of the other com-
plementary products of the same cohort. Others (e.g., Cannon, et al. [30]) echo 
this view and predict suboptimal long-term profit for the incumbent company in 
a similar situation if consumers who buy one product from the company expect 
the company to supply other complementary products as well. The approach to 
randomized objective function linear programming presented here is well suited 
to address the issue of uncertainty in risk management. Instead of focusing on 
short term profits associated with one product at a time, the long run expected 
profit can be determined from the distribution of profits from multiple products 
with multiple cross correlations. The variance in profit can also be calculated. 
That way, businesses can determine the recommended amount of overdraft 
funds to cover periods of low profit. 

The profit distribution from the model in this research was generated from a 
single combination of fixed product quantities obtained from a single execution 
of the deterministic LP solver. Thereafter only the objective function coefficient 
values changed randomly. A suggestion for further research is to extend rando-
mization to include both objective function and constraints. In that case, the LP 
solver will need to be executed for each new combination of objective function 
and constraints to update the production quantities as well as the profits. 
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