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Abstract 
Type-I censoring mechanism arises when the number of units experiencing 
the event is random but the total duration of the study is fixed. There are a 
number of mathematical approaches developed to handle this type of data. 
The purpose of the research was to estimate the three parameters of the Fre-
chet distribution via the frequentist Maximum Likelihood and the Bayesian 
Estimators. In this paper, the maximum likelihood method (MLE) is not 
available of the three parameters in the closed forms; therefore, it was 
solved by the numerical methods. Similarly, the Bayesian estimators are 
implemented using Jeffreys and gamma priors with two loss functions, 
which are: squared error loss function and Linear Exponential Loss Func-
tion (LINEX). The parameters of the Frechet distribution via Bayesian can-
not be obtained analytically and therefore Markov Chain Monte Carlo is 
used, where the full conditional distribution for the three parameters is ob-
tained via Metropolis-Hastings algorithm. Comparisons of the estimators are 
obtained using Mean Square Errors (MSE) to determine the best estimator of 
the three parameters of the Frechet distribution. The results show that the 
Bayesian estimation under Linear Exponential Loss Function based on Type-I 
censored data is a better estimator for all the parameter estimates when the 
value of the loss parameter is positive. 
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1. Introduction 

Frechet distribution was introduced by [1] for the largest extremes and it had 
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been derived with nonnegative initial variates. Many studies have been carried 
out on the Frechet distribution by a lot of researchers with the aim of estimating 
its parameters using different statistical approaches, some of which include [2] 
[3] and [4]. Furthermore, [5] estimated the scale and shape parameters of Fre-
chet distribution using principal components and least median of squares. [6] 
derived the reference and matching priors for the Frechet stress-strength model 
and developed Bayesian approach for Frechet distribution under reference prior, 
respectively. [7] attained Bayesian estimators of Frechet distribution and their 
risks by using loss functions under Gumbel Type-II prior and Levy prior. Like-
wise, [8] estimated the Frechet distribution parameters with an application to 
the medical field. As demonstrated above, no previous study dealt with Bayesian 
estimations of the three-parameter Frechet distribution under Type-I censored 
data in survival/reliability analysis.  

One of the special features of survival/reliability analysis data is the censoring 
mechanism. There are several types of censoring mechanisms but the focus of 
this manuscript is in Type-I censoring. Type-I censoring is where a study is de-
signed to end at some pre-specified given time and an event is said to have taken 
place if and only if the event occurs before or at the specified time period.  

In this paper we want to solve the following steps: 
1) To estimate the three parameters of Frechet distribution using Type I cen-

sored data by the maximum likelihood model. 
2) To estimate the three parameters of Frechet distribution using Type I 

censored data with Jeffreys and gamma priors via Markov Chain Monte Carlo 
(MCMC). 

3) To extend the Bayesian estimators with two loss functions, which are squared 
error loss function and Linear Exponential Loss Function (LINEX).  

4) To assess the performance of maximum likelihood and Bayesian models 
through simulation study.  

2. Methodology 
2.1. Maximum Likelihood Estimation of Frechet Censored Data 

We introduce the concept of maximum likelihood estimation on distribution 
with censored data. Let ( )1, , nx x  be the set of n random lifetime from the 
Frechet distribution with parameters ,λ α  and β . The probability density 
function of the Frechet distribution according to [1] is: 

( )
( )1

; , , expx xf x
α αα β βλ α β

λ λ λ

− + − − −   = −         
,           (1) 

where the cumulative distribution function (cdf) of the Frechet distribution is 
given as 

( ); , exp xF x
αβλ α

λ

− − = −     
,                  (2) 
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with λ  as the scale parameter, α  the shape parameter and β  the location 
parameter of the distribution  

The likelihood function for a Type-I censored data as in [9] is 

( ) ( ) ( ) 1

1
, | ; , ; ,i i

n

i i
i

L x f x S x
δ δ

λ α λ α λ α
−

=

   =    ∏ ,            (3) 

where 1iδ =  for failure and 0iδ =  for censored observation, and ( ).S  is the 
survival function.  

The logarithm of the likelihood function given in Equation (3) can be ex-
pressed as follows:

  
( ) ( ) ( )( )

( )

1

1

ln , , | ln ln 1 ln

1 ln 1 exp

n
i

i i
i

n
i

i
i

x
L x x

x

α

α

β
λ α β δ α α λ α β

λ

β
δ

λ

−

=

−

=

 − = + − + − −  
   

   −   + − − −         

∑

∑
 (4)

 

To obtain the equations for the unknown parameters, we differentiate Equa-
tion (4) partially with respect to the parameters ,λ α  and β  and equal it to 
zero. The resulting equations are given below respectively see [10], 

( )

1 1

1

exp

1

1 exp

n n

i i
i i i

i

i i

n

i
i

i

xL

x x

x

α

α α

α

α δ α δ
β

λ λ λ λ

β β
α

λ λ
δ

β
λ

λ

−
= =

− −

−
=

−∂  = − −  ∂  

  − −    −          + −  
   −  − −          

∑ ∑

∑

         (5) 

( ) ( )

( )

1

1

1 ln ln ln

ln exp
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=

− −
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=

 − −∂    = + − − +    ∂      
  − − −      −              + −  

 −  − −       

∑

∑
     (6)
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=
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 − − +  ∂   = − ∂ −
  
 

  − −    −          + −  
   −  − − −          

∑

∑

        (7) 
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2.2. Bayesian Estimation of Frechet Based on Type-I Censored  
Data 

We consider Jeffreys prior for the scale and shape parameters. Moreover, the 
gamma prior will be in location parameter and the proposed prior is, see [8]. 

( ) 1g λ
λ

∝                            (8) 

( ) 1g α
α

∝                            (9) 

( ) ( )1, expcg c d dβ β β−∝ −                    (10) 

The joint prior distribution of three parameters is 

( ) ( )11, , , expcg c d dλ α β β β
λα

−∝ −                 (11) 

The posterior probability density function of the three parameters given the 
data ( )1, , nx x  is obtained by dividing the joint probability density function 
over the marginal density function, following [11].  

( ) ( ) ( )

( ) ( )
0 0

, , | , ,
, , |

, , | , , d d d

,

,

L x g
x

L x g

c d

c d

λ α β λ α
λ α β

λ α β λ α λ α

β

β β
∞ ∞ ∞

−∞

=Π

∫ ∫ ∫
      (12) 
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β β
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α β
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=

− + −

−

−

=

−

      − − −     − − −                            =
    − − −     − − −            

−

−
        

∏

∏
1

0 0

d d d
iδ

λ α β

−
∞ ∞ ∞

−∞

 
   

∫ ∫ ∫

(13) 

With this, the Bayesian estimates for the three parameters of Frechet distribu-
tion under squared error loss function are given as: 

( )
0 0

ˆ , , | d d ds xλ λ λ α β λ α β
∞ ∞ ∞

−∞

= Π∫ ∫ ∫                 (14) 

( )
0 0

ˆ , , | d d ds xα α λ α β λ α β
∞ ∞ ∞

−∞

= Π∫ ∫ ∫                 (15) 

( )
0 0

ˆ , , | d d ds xβ β λ α β λ α β
∞ ∞ ∞

−∞

= Π∫ ∫ ∫                 (16) 

The Bayesian estimates under Linear Exponential Loss Function (LINEX) 

( ) ( )
0 0

1ˆ ln exp , , | d d dl r x
r

λ λ λ α β λ α β
∞ ∞ ∞

−∞

 
= − − Π 

 
∫ ∫ ∫          (17) 

( ) ( )
0 0

1ˆ ln exp , , | d d dl r x
r

α α λ α β λ α β
∞ ∞ ∞

−∞

 
= − − Π 

 
∫ ∫ ∫          (18) 

( ) ( )
0 0

1ˆ ln exp , , | d d dl r x
r

β β λ α β λ α β
∞ ∞ ∞

−∞

 
= − − Π 

 
∫ ∫ ∫          (19) 

The parameters (scale, shape and location) of the Frechet distribution cannot be 
solved analytically under the Bayesian approach therefore, Metropolis-Hastings 
Algorithm is. Used instead. 
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Metropolis-Hastings Algorithm 
The Metropolis-Hastings algorithm is a very general Markov Chain Mote 

Carlo method. It can be used to obtain random samples from any arbitrarily 
complicated target distribution of any dimension that is known up to a norma-
lizing constant. In fact, Metropolis algorithm is an alternative to Gibbs sampler 
that does not require availability of full conditionals see [12] [13] and [14]. 

Therefore, the full conditional posterior density function for the three para-
meters given the data for Jeffreys prior with likelihood are given below 

( )

( )
( )1

1

1

11 exp

, , |

exp

1 exp

i

i

n

i

c

x

x xd

x

δα α

δα

β β
λ

λ α β

α β β
λα λ λ

β
λ

−
− + −

=

−−

Π

  − −   ∝ −            

  − × − −        

− ∏     (20) 

From Equation (20) we can get the conditional posterior of the scale parame-
ter λ  as follows 

( )
( )1

1

1

| , , exp

1 exp

1
i

i

n

i

x xx

x

δα α

δα

α β βλ α β
λ λ λλ

β
λ

− + −

=

−−

  − −   Π ∝ −            

  − × − −        

∏
     (21)  

where the others the scale parameter will be constant for the conditional post-
erior of the scale parameter then from the posterior we can remove and get the 
final formula as given in Equation (21).  

The conditional posterior of the shape parameter is given below 

( )
( )1

1

1

1

| , , exp

1 exp

i

i

n
c

i

x xx

x

δα α

δα

α β ββ λ α β
λ λ λ

β
λ

− + −
−

=

−−

  − −   Π ∝ −            

  − × − −        

∏
     (22)  

The conditional posterior of the location parameter is given below 

( )
( )1

1

1

| , , exp

1 exp

1
i

i

n

i

x xx

x

δα α

δα

α β βα λ β
λ λ λα

β
λ

− + −

=

−−

  − −   Π ∝ −            

  − × − −        

∏
      (23) 

As shown in the conditional posterior of the three parameters, they do not 
follow any close form, hence the use of Metropolis-Hastings algorithm as de-
tailed below to generate MCMC sample, see [15] and [16]. 

Algorithm: 
1) Start with initial value 0 0 0, ,λ α β  
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2) The current value , ,i i iλ α β  and generate the candidate value *, ,λ α β∗ ∗  
from arbitrary distribution Uniform (0, 1). 

3) Taken the ratio at the candidate value λ∗  and current value iλ  

( )
( )1

| , ,
min 1,

| , ,i

x

x

λ α β
γ

λ α β

∗ Π =  
Π    

The next value of iλ  is given below as 

1
with probability
with probability 1i

i

p
p

λ
λ

λ

∗

+

= 
−

 

4) Generate u from Uniform (0, 1) and accept λ∗  with probability p if 
pλ∗ <  and return to step 2, otherwise accept iλ  and return to step 2. 

5) Taken the ratio at the candidate value α∗  and current value iα  

( )
( )2

| , ,
min 1,

| , ,i

x

x

α λ β
γ

α λ β

∗ Π =  
Π    

The next value of iα  is given below as 

1
with probability
with probability 1i

i

p
p

α
α

α

∗

+

= 
−

 

6) Generate u from Uniform (0, 1) and accept α∗  with probability p if 
pα∗ <  and return to step 2, otherwise accept iα  and return to step 2. 

7) Taken the ratio at the candidate value β ∗  and current value iβ  

( )
( )3

| , ,
min 1,

| , ,i

x

x

β λ α
γ

β λ α

∗ Π =  
Π    

The next value of iα  is given below as 

1
with probability
with probability 1i

i

p
p

β
β

β

∗

+

= 
−

 

8) Generate u from Uniform (0, 1) and accept β ∗  with probability p if 
pβ ∗ <  and return to step 2, otherwise accept iβ  and return to step 2. 

9) The Bayesian estimation of the scale, shape and location parameters under 
the squared error loss function is given as 

( )
1

1ˆ | , ,
n

S i
i

E x
n

λ α β λ
=

= ∑                     (24) 

( )
1

1ˆ | , ,
n

S i
i

E x
n

α λ β α
=

= ∑                     (25) 

( )
1

1ˆ | , ,
n

S i
i

E x
n

β λ α β
=

= ∑                     (26) 

10) The Bayesian estimation of the scale, shape and location parameters under 
the Linex loss function is given as 

( ) ( )
1

1 1ˆ | , , ln exp
n

L i
i

E x r
r n

λ α β λ
=

 = − −  
∑              (27) 
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( ) ( )
1

1 1ˆ | , , ln exp
n

L i
i

E x r
r n

α λ β α
=

 = − −  
∑              (28) 

( ) ( )
1

1 1ˆ | , , ln exp
n

L i
i

E x r
r n

β λ α β
=

 = − −  
∑              (29)

 

3. Simulation Study 

The values specified for the parameters, sample sizes, censoring time and the Li-
nex loss function were meant for illustration purposes only and were therefore 
not restrictive. However, to assess the performance of the Maximum likelihood 
and Bayesian estimations based on Type-I censored data to estimate the three 
parameters of Frechet distribution, the Mean Squared Errors (MSE) were calcu-
lated after running 10,000 iterations. Different sets of sample sizes as well as 
censoring mechanisms were considered. The samples were n = 25, 50 and 100 
and that of the censoring time was 20%. The values considered for the Frechet 
distribution parameters were the scale parameter which was (1 and 2), the shape 
parameter which was (0.4 and 1.4) and the location parameter which was 3. Two 
values (both decreasing and increasing) were specified for the Linex loss function; 
these were; r = −0.7 and 0.7. The maximum likelihood (MLE) estimated the three 
parameters of Frechet distribution by using the numerical method with R 
programme in the Equation (4) via (maxLik) package. In the Bayesian estima-
tion, the Metropolis-Hastings Algorithm was used in Algorithm via (pscl) 
package in R programme for Bayesian under square error loss function and 
LINEX loss function to estimate the three parameters of Frechet distribution, 
where hyper-parameters of gamma priors were equal to 1.  

The results were displayed in Tables 1-6 and indicated the different choices of 
the three parameters, sample size, loss parameter and censoring rate. 

 
Table 1. Estimate the scale parameter of Frechet based on Type-I censored data. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 1.1042 0.9623 1.9827 2.1314 

BS 1.1486 0.9583 1.9644 2.1982 

BL (r = −0.7) 1.1580 0.9611 1.9761 2.2124 

BL (r = 0.7) 1.0716 0.9858 1.9996 2.0824 

50 

MLE 1.1062 0.9675 1.9547 2.1241 

BS 1.1304 0.9493 1.9342 2.1638 

BL (r = −0.7) 1.1354 0.9538 1.9403 2.1722 

BL (r = 0.7) 1.0878 0.9810 1.9822 2.0938 

100 

MLE 1.1010 0.9495 1.9279 2.1184 

BS 1.1128 0.9301 1.9122 2.1376 

BL (r = −0.7) 1.1152 0.9321 1.9151 2.1415 

BL (r = 0.7) 1.0918 0.9614 1.9467 2.1034 
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Table 2. MSE for the scale parameter of Frechet based Type-I censored data. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 0.1603 0.1429 0.1853 0.2014 

BS 0.1766 0.1436 0.1864 0.2305 

BL (r = −0.7) 0.1807 0.1428 0.1876 0.2379 

BL (r = 0.7) 0.1511 0.1419 0.1846 0.1864 

50 

MLE 0.1392 0.1286 0.1479 0.1639 

BS 0.1452 0.1293 0.1496 0.1746 

BL (r = −0.7) 0.1463 0.1296 0.1497 0.1774 

BL (r = 0.7) 0.1351 0.1263 0.1463 0.1572 

100 

MLE 0.1288 0.1219 0.1348 0.1442 

BS 0.1312 0.1237 0.1358 0.1486 

BL (r = −0.7) 0.1317 0.1245 0.1364 0.1496 

BL (r = 0.7) 0.1272 0.1208 0.1337 0.1412 

 
Table 3. Estimate the shape parameter of Frechet based Type-I censored data. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 0.5432 1.2733 0.4227 1.5116 

BS 0.5876 1.2693 0.4044 1.5784 

BL (r = −0.7) 0.5971 1.2722 0.4167 1.5926 

BL (r = 0.7) 0.5106 1.2968 0.4396 1.4626 

50 

MLE 0.5452 1.2785 0.3947 1.5042 

BS 0.5694 1.2603 0.3742 1.5447 

BL (r = −0.7) 0.5744 1.2648 0.3803 1.5522 

BL (r = 0.7) 0.5268 1.2922 0.4222 1.4747 

100 

MLE 0.5401 1.2605 0.3679 1.4986 

BS 0.5518 1.2416 0.3522 1.5178 

BL (r = −0.7) 0.5542 1.2431 0.3551 1.5217 

BL (r = 0.7) 0.5308 1.2724 0.3867 1.4836 
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Table 4. MSE for the shape parameter of Frechet based Type-I censored data. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 0.8724 0.8552 0.8974 0.9135 

BS 0.8887 0.8557 0.8985 0.9426 

BL (r = −0.7) 0.8928 0.8551 0.8997 0.9501 

BL (r = 0.7) 0.8631 0.8543 0.8967 0.8981 

50 

MLE 0.8511 0.8407 0.8686 0.8762 

BS 0.8571 0.8411 0.8617 0.8867 

BL (r = −0.7) 0.8584 0.8417 0.8618 0.8891 

BL (r = 0.7) 0.8472 0.8384 0.8584 0.8693 

100 

MLE 0.8409 0.8343 0.8469 0.8563 

BS 0.8433 0.8358 0.8479 0.8607 

BL (r = −0.7) 0.8438 0.8366 0.8485 0.8617 

BL (r = 0.7) 0.8391 0.8329 0.8458 0.8533 

 
Table 5. Estimate the location parameter of Frechet based Type-I censored data. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 3.1165 2.9746 3.0061 3.1548 

BS 3.1609 2.9706 2.9878 3.2216 

BL (r = −0.7) 3.1703 2.9733 2.9994 3.2358 

BL (r = 0.7) 3.0839 2.9981 3.0231 3.1058 

50 

MLE 3.1185 2.9798 2.9781 3.1474 

BS 3.1427 2.9616 2.9576 3.1872 

BL (r = −0.7) 3.1477 2.9661 2.9637 3.1954 

BL (r = 0.7) 3.1001 2.9933 3.0056 3.1172 

100 

MLE 3.1133 2.9618 2.9513 3.1418 

BS 3.1251 2.9423 2.9356 3.1612 

BL (r = −0.7) 3.1275 2.9444 2.9385 3.1649 

BL (r = 0.7) 3.1041 2.9737 2.9701 3.1268 
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Table 6. MSE for the location parameter of Frechet based Type-I censored dat. 

Size Estimators 

3β =  

1λ =  2λ =  

0.4α =  1.4α =  0.4α =  1.4α =  

25 

MLE 0.3102 0.2928 0.3352 0.3513 

BS 0.3265 0.2935 0.3363 0.3804 

BL (r = −0.7) 0.3306 0.2928 0.3375 0.3878 

BL (r = 0.7) 0.3009 0.2918 0.3345 0.3359 

50 

MLE 0.2889 0.2785 0.2978 0.3138 

BS 0.2949 0.2789 0.2995 0.3245 

BL (r = −0.7) 0.2962 0.2795 0.2996 0.3269 

BL (r = 0.7) 0.2852 0.2762 0.2962 0.3071 

100 

MLE 0.2787 0.2718 0.2847 0.2941 

BS 0.2811 0.2736 0.2857 0.2985 

BL (r = −0.7) 0.2816 0.2744 0.2863 0.2995 

BL (r = 0.7) 0.2769 0.2707 0.2836 0.2911 

4. Results and Discussion  

Four values of the estimators which are Maximum likelihood estimation (MLE), 
Bayesian under squared error loss function (BS), Bayesian under Linear Expo-
nential Loss Function with r = −0.7 (BL (r = −0.7)) and Bayesian under Linear 
Exponential Loss Function with r = 0.7 (BL (r = 0.7)) are shown in each column 
for each size.  

Table 1 contains the estimate of the scale parameter of Frechet distribution 
based on Type-I censored data with Maximum likelihood, Bayesian under 
squared error loss function and under Linear Exponential Loss Function with r 
= −0.7 and 0.7. As shown in the results when the shape paramemter λ  was 1 
and location pramster α  was 0.4 with size 25, the Maximum Likelihood Esti-
mation (MLE) was 1.1042, the Bayesian under squared error loss function (BS) 
estimation was 1.1486, BL (r = −0.7) estimation was 1.1580 and BL (r = 0.7) es-
timation was 1.0716, we observed that the BL (r = 0.7) was closer to true value 
than others estimation.  

From Table 2 the results show that, the Bayesian estimation under Linear 
Exponential Loss Function with r = 0.7 is better compared to the others with 
respect to the MSE of scale parameter. We observed from Table 2 that the 
maximum likelihood estimation has the smallest MSE and therefore is a better 
estimate that Bayesian under squared error loss function as well as Bayesian un-
der Linear Exponential Loss Function with r = −0.7 for all cases except with size 
25 when. 

Table 3 presented the estimates of the shape parameter of Frechet distribution 
based on Type-I censored data by employing the four estimators above as illu-
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strated earlier. The initial values of the shape parameter were 0.4 and 1.4.  
As shown in the results, the Maximum Likelihood Estimation (MLE) was 

0.5432 and the Bayesian under squared error loss function (BS) estimation was 
0.5876. When the true value of the shape parameter was 0.4, we observed that 
the MLE was closer to true value than BS estimation.  

As shown in the results when the shape paramemter λ  was 1 and location 
pramster α  was 0.4 with size 25, the Maximum Likelihood Estimation (MLE) 
was 0 5432, the Bayesian under squared error loss function (BS) estimation was 
0.5876, BL (r = −0.7) estimation was 0.5971 and BL (r = 0.7) estimation was 
0.5106, we observed that the BL (r = 0.7) was closer to true value than others es-
timation.  

As shown in Table 4 the performance of the estimators for the estimation of 
the shape parameter was compared again using mean squared error (MSE). We 
again observed that the Bayesian estimation under Linear Exponential Loss 
Function with r = 0.7 performed better compared to the others with respect to 
the MSE of scale parameter. Moreover, the maximum likelihood estimation is 
better than Bayesian under squared error loss function and Bayesian under Li-
near Exponential Loss Function with r = −0.7 for all cases except with size 25 
when also with size 50 when Table 5 presented the estimates of the location pa-
rameter of Frechet distribution based on Type-I censored data by employing the 
four estimators. The initial value of the location parameter was 3. The result 
showed that the MLE was 3.1165 and Bayesian under Linear Exponential Loss 
Function with r = −0.7 (BL (r = 0.7)) estimation was 3.0839. We observed that 
the Bayesian under Linear Exponential Loss Function with r = −0.7 (BL (r = 0.7)) 
estimation was closer to true value than the MLE.  

In Table 6 the estimators of the location parameter were compared by mean 
square error (MSE) and it was observed that the Bayesian estimation under Li-
near Exponential Loss Function with r = 0.7 is better compared to the others 
with respect to the MSE of scale parameter. Moreover, the maximum likelihood 
estimation is better than Bayesian under squared error loss function and Baye-
sian under Linear Exponential Loss Function with r = −0.7. 

5. Conclusion 

The results from this study show that the Bayesian estimation under Linear Ex-
ponential Loss Function with r = 0.7 based on Type-I censored data was a better 
estimator for all the parameters (scale, shape and location) estimates. The con-
tribution to knowledge in this manuscript was the application of the Bayesian 
estimation approaches based on Type-I censored data that was considered un-
der Markov Chain Monte Carlo (MCMC) for the three parameters of Frechet 
distribution. The Maximum Likelihood Estimation (MLE) was better than 
Bayesian under square error loss function and Exponential Loss Function with r 
= −0.7 for all the parameters (scale, shape and location) estimates. When the 
number of sample size increases, the mean squared errors (MSE) decrease in all 
cases.  
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