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Abstract

In this paper, based on complex variables and conformal mapping methods,
using the refined dynamic equation of plates, elastic wave scattering and dy-
namic stress concentrations in plates with two cutouts were studied. Applying
the orthogonal function expansion method, the problem to be solved can be
reduced into the solution of a set of infinite algebraic equations. According to
free boundary conditions, numerical results of dynamic moment concentra-
tion factors in thick plates with two circular cutouts analyze that: there will be
more complex interaction changes between two-cutout situation than single
cutout situation. In the case of low frequency or high frequency and thin
plate, the hole-spacing in the absence of coupling interactions was larger or
smaller. The numerical results and method can be used to analyze the dy-
namics and strength of plate-like structures.
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1. Introduction

Tablet is the typical components of aerospace, civil construction and other
projects. To meet the operational needs, sometimes works must be open row of
holes in the plate, because the interaction between holes, stress wave propagation
in the board during the complex scattering phenomenon will occur, resulting in
the dynamic stress concentration phenomenon near holes [1]. Because of the li-

mitations of classical plate theory, when analyzing the stress concentration such
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as openings, elastic dynamics problem, it will produce some errors.

Reissner [2] first proposed the consideration of shear deformation plate
theory equations of statics. Then, Mindlin [3] considered the transverse shear
deformation and rotary inertia effects, and gave the plate bending dynamic equ-
ation for engineering practice. Pao, etc. [4] [5] first studied Mindlin plate with a
single hole scattering of elastic waves and dynamic stress concentration problem,
giving analytical solution. Liu’s [6] complex variable method is following the
former Soviet Union mechanics. Mushkhelishvili [7] proposed the complex
function method is used to solve the two-dimensional static stress concentration
problem; the proposed is an effective way for dynamic problem solving plane
elasticity. The literature [8] [9] uses Liu’s complex variable method, which is
based on the Mindlin plate theory to solve the dynamic stress concentration of
thick plate holes. Based on the analysis literature [10] of the plate bending vibra-
tion precision equation and the Mindlin plate equation, the results show that:
The above based on Mindlin plate equation calculation results sometimes still
produces large errors, and its research aspects are relatively simple, only consi-
dering the solution of a plane or a single cutout.

This paper based on the literature [11] gives precise equation of bending vi-
bration plate, using Liu complex variable and conformal mapping method, stud-
ying the two openings on the flat elastic wave scattering and dynamic stress
concentration and giving the general solution and the numerical results, and
analyzes the wave number, thickness and pitch and other parameters on the dy-

namic moment of impact.

2. Plate Bending Wave Equation and Its Solution

According to the literature [11] flat dynamics theory, the plate bending wave

control equation:

DVZVZW—(2—V)DT22V2W+CT22W+(%—VJDT24W =0 (1a)

[(1—2;<)V2 +T) +}%}F = —[(3—2;<)v2 +(1-2x)T7 —}%}W (1b)
752

sz—(h—2+T22Jf=0 (L)

In the formula, C,D namely flat shear stiffness and flexural rigidity,
3
C Eh D= Eh
2(14v)" 12(1-v?)

; E,v the elastic modulus and Poisson's ratio re-

o &

spectively; 0 the density; ¢ the time; V’ the Laplace operator, V’ :F+a—2;

X oy

1@ ' : :

T; =c_2.¥’( j =1,2) ; ¢,c, namely elastic compression and shear wave ve-
J

A+2
locity, ¢ = i ’u,czzzﬁ.

P P
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Steady-state solution of the problem, let
W= We—i(ut,F — Fve—iwt’f — J;-e—iwt’ (2)
Of which, @ is aflat circular frequency of the bending vibration.
In the following analysis omitted symbol on time factor and the unknown the

potential function, by the Formula (1a) can be obtained flat lateral displacement

function should satisfy the equation.

Vv 2K g3 k“[ 4 K ljwzo, (3a)

2(1-x) 4(1-x) 2\ R 6 3
f[(vzmj.)W:o, (3b)
Vif—alf=0. (30)

Of which, x = S Y (j=1,2) is the scattering wave number, Satisfies the

1 7-8v n’
equation of o —(2-v)kja® —6(1-v)ky | —————|=0, i =——k3;
1 (2-v)k (1-v)& K2nt o 48(1-v) Popr

k=a’/c (j=12).
At this point, the corresponding generalized displacement potential function

F(x,y):

F=F+F =Y (5,-1)W, (4)
Of which, (V2 +a]2.)Wj =05 o, (j=1,2) is the scale factor of displacement
16+2(a} —xk; ) 1*

8+[(3—2K)0!12. —kﬂh2 '

potential function, &, =

The general solution of wave Equation (1) can be described as:

0 2
w=> ZAanS)(amr)ei"ﬁ, (5a)
n=—o m=1
0 2
F=3% % 4,(5,-)H (a,r)e", (5b)
n=—owo m=1
f= i BK, (a;r)e". (5¢)

Of which, H(-) is the first kind Henkel function; K, (-) is Bessel function
of imaginary argument [12]; 4,,(m=1,2) and B,

n

are a generalized dis-
placement mode coefficient determined by the hole boundary conditions.

Flat structure generalized expression for the force:

M, =—D(1_V){i(5,~—1 %+ azf}

i )6x2 Ox0
. 4 (6a)

_%D{(W+k§)W+i(5j—1)v2W,},
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2 32Wj. o
M, =—D(1—v)[z_;(5j—1) 5 —Mf;}
" (6b)

—%Dv{(vz+k§)W+Zzl(5j—I)VZWJ.},
J=1

Mxy :Myx :_D(I_V)I:Zz:(é‘f _1)%_1[62_f_82fj:|’ (6c)

= oxdy 2l ox* &’

0, =—C{Zz:(§j —1)%+g}+Ca—W+%D{v(V2 +k22)aa—W
X

= ox 0Oy Ox (6d)
2 2 2 aVVj 2 2 a
+[(2—v)v +(1—v)k2]§(5/—1) p» +(1—v)(V +k2)%},
S I Y PCL/ o S A U BSR4
0, = c{;(aj 1) . ax}rc 5 +4D{V(V +47) . o

2 oW, of
+(2-v)V+(1-v)k} S —1)—L—(1-v)(V*+k2)=+.
[V s (1215 (6, -) B - +) 2
Using a complex variable method, a complex variable function corresponds to
a pair of real-valued functions with two real variables, the introduction of com-
plex variables: z =x+1y;Z = x—1y . By the Formula (6), by substitution, can be

obtained after finishing:

2
M +M, = —Dzl(aj —1)V*W, = DWW - DviG W, (7a)
J=
: 2 i , &’
M, -M_ +2iM, = 4D(1—V)Z;(5j —1)62—2W,, +4Di(1=v)—f, (7))

J

. 6 2 . 1 a 2 2
0,-i0, :—ZCE;[((SJ.—I)Wf—W+1f]+ED£{v(V +hy )W .
C

[V (1) B ]33, 1), +i(1-v)(7 <) 1 }

Jj=

62
0z0z
In the solution of plates flexural wave scattering and dynamic stress concen-

Among them, V’ =4

tration problems in the hole of arbitrarily-shaped, the conformal mapping tech-
nique can be used, the Z-plane non-circular openings L boundary Outland
(within the domain) mapped into 7 plane boundary S outside the domain of
the unit circle (within the domain). The mapping function is preferably the fol-

lowing form:
z=Q(n)=cn+y(n). (8)

Of which, w (77) is a holomorphic function.
In polar coordinates (r, g ) , the Formula (7) can be written as

2
M, +My=-DY (8, ~1)V*W, -~ DWW - DviS W, (9a)
Jj=I
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My—-M, +2iM,; = {40(1—v);i{§2:(5]. -1, +if}}exp(2iﬂ), (9b)

J=1

0, - { {Z &, -1, W—‘rlf:|+2Da { v(VZ k)W
(9¢)

[( VIV +(1-v)k; ]Z( —1)W +i(1- v)(V2+k22)f}exp(iﬂ).

Thus, in the 77 = pe'’ plane, the Formula (9) can be rewritten as

oW,  4Dv oW
M = L —-Dvicw, (10
T e )IﬂZI( Vawer om0
4D(1 v)n' o 1 0] .
M,—M,+2iM ,, IS (s, -1)Ww, , (10b
' o) an{ '(n)@n@(f )f“f}} aew
. -2Cnp 8
0,-iQ, = |Q'7|an[z (6, -1)w, - W+1f]
20p 0 ) | 1 62W+k2W
p|Q 6 ( | onon 4
(10¢)
z LAY -
+; | onon (1_V)TW’}

. 1 & K
+l(l_v)[lszxn)r o Tf}'

The Formula (10a) minus (10b), can be obtained:

. 2 oW, 2Dv /4 _Dv ,
M —iM
a
2D(1—v)77 o] 1 0| .
_ o —1\\W, R
sz'(n) ‘3’7{9'(’7)‘3’7{;( ! )W"Hf}}
2 W, 2Dv W Dv
M J_ _=" 2
p M0 = |Q I Z( )677677 ' () om07 2 ?
(11b)

P’ (n) on | Q(n)on | =

By the Formula (10c) can be obtained:
C a 2 2
0, ——{ —{ s, -1)W, - W+1f}+77—{ V)W, W~ lf:|}
o %) 5(5-1)
2 2 2 2
D’n 21, ;2 aW_+k—2W +i(1-v) ! 5 af_+k—2f
ple(m|on | | |e(n) ononr 4 ()|} om0~ 4

2 1 aZVVj k22
+;(5,- —1)[(2—‘/) @ (n)f 07 +(1 —v)TWjE

_Mﬁ{Lﬂ{i(Ej -1, —if}}
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D @0 1 oW kK . 1 &f Kk

Q'( 77VQ’77 non 4 IVQ'U non 4
p )@ ()286 ()266

2
1o, I

+;(5/_1) (2-v )ﬁaﬂaﬂ (1—")7”’/-

(11c)

3. The Excitation of Incident Wave and Total Wave Field

Studying of double hole case, without loss of generality, located at infinity inci-
dent a positive direction along the x-axis plane wave propagation, omitting the

time factor, and its expression is:

Y =W =, Y (i)'1, (ar)e”” (122)
FU) — (8, —l)W(i) (12b)
f(") =0 (12¢)

When solving the edge data of flat panel openings, in the flat panel, near each
hole the total wave field should be superimposed together by incident field and
scattered field generated by the various openings, namely the flat panel’s dis-

placement function and generalized displacement function can be expressed as

SUGEOLEAERD D) Wi (|ngﬂy<M)

m=1n=—w0 j=1 Q(T])|

— F(i) + ZZ:F(S)

m=1

()| (13b)
= (5, —1)We”’”‘+z Z ZA”’( -1) S)(a‘/|§2(7])|){—77}

m=ln=—0 j=I |Q(77)

S YR S

m=1 m=1 n=—o0 |Q(77)|

In the analysis and calculation, the generalized force component in each local

polar coordinate system should be converted to polar coordinates.

4. Boundary Conditions and Model Coefficients

In the 7 planar, let opening hole for free boundary conditions, each hole

should meet the following three boundary conditions

M, =0, Mpg|p:l =0, Qp|p:1 =0. (14)

From the Formulas (9) to (13) substituted into Formula (14), which satisfies
the boundary conditions of the opening hole, the following expression can be

obtained
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6 ©
>3 EIX]=E (i=1,2,3,4,5,6) (15)

Both ends of Formula (15) multiply by exp(—isﬁ,), and integrate into the
interval (—m,7), the infinite algebraic equations can be obtained as follows

i E X, =E, (16)

n=—0n

. 1 (= . 1 (n .
Of which, E, :EL1 E, exp(—ls@j)d@j,Elv :ZL‘ E, exp(—ls(?,.)dt?f

E lnl E, ]”2 E, I’; E, ]'zt E, ]"5 ElnG A:r] [ 1
Ey By En Ey Ex By A
By By By By By By B,
! EZI EZZ E4”3 Eﬁ:’4 E4”5 E:é ! A}fl

By By, Ey By By E A5
LB Eo Eo Ey Es Eg ) | B, | -

()

(17a)

[N

oy
I
oy by By

=N

Of which,

2,20y
E" __(l_V)O[jnl(2 (771)(5]—1)H(1) (ajrl)ei(”’z)'gl

v Q' (m,)
k2 ;
+2af Re(é'j)—l—i-v 1-= HE}I)(ajrl)eme‘
a’

J

P
(1_‘/)0‘/2"71 Q'(m) = 0 i(m2)0 [
- 5 -1)H . (=12
Qv(m) (/ ) n+2(a/r1)e (] )
g - TH(1=v)an Q' (n,)

13- ;

Q (’71)
Li(-v)edn @ (n)

Q' (m)

1-v)a iy _
o (1-v)a,_ (1) (5]_73 B 1)HS‘1E2 (ajisrz)el(nfz)ez

Y Q'(m)

+ 20{,2-,3 l:Re(5j3)—1 + v(l _;TZZH HS) (05173”2 )emaz

j-3

Kn_z (Otﬂi )ei(nfz)a,

(17b)

i(n+2)6,

K, (0‘3’”1 )e

e
B (1 —V)a_,2>3771 Q'(’?l) (3 . _1)H(1)2 (0(. 3rz)ei(mz)ez (] _ 4,5)
Q,(ﬂl) - n+ J-
g - T(1=v)ainiQ'(m)
16 = S

'(n,)

Li(l-v)adn ' (n)
Q'(m,)

K,,_z (a3r2 )ei(n—z)ez

(17¢)

i(n+2)<92
K, (0{31”2 )e

. —-i(1 —v)aefan'(n1 )
2j Q'(Th)

i(l—v)af.n_le'(m) = (1) i(n42)0 (-
0. —1)H : ' =12
i Q'(m) ( J ) n+2(ajr])e (j=12)

(54 _ 1) Hf,',)z (airl)ei(n-z)al _ 20{? Im(é'j)HS) (0-’_,-”1 )eim91

J
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_ 2. 2y .

E - (1-v)niQ (771)Kn () i(n-2)8

Q' ()
—y—
+ (1—1/)0(32771 Q (771)

Q'(n,)

i) et

" ()
- Zai} Im(5j—3 ) HS) (a{j—3r2 ) e

e n ),
'(n,)

o (1=v)ain’ Y (n
E26:( ) ,3 1 ( 1)sz(%rz)e
()

—2r =
+(1—1/)053?771 Q (nl)Kn+2
Q' (n,)

(17d)

K,,+2 (0!3’i )ei(n+2)6|

S 5— 1) HY, (aHr2 ) el

J n

é—‘F 1)H21+)2 ( ] 7 )ei(n+2)52 (] _ 4,5)

i(n-2)0,

(17e)

(0!37’2 )ei(n+2)92

£ = —2Ca,n, Q' (n, )(

ol (0

J

+2Ca 7Q (77)(
DIe ()

_omQY (’71){V( :

2|Q’(771)| af—k§)+[(2—v)af—(1—v)k22:|

)HM (a‘;”l )ei(nﬂ)@l

. Q!
(0, ) S )

+[(2-v)a} ~(1-v)K |(5,-1)} 1L, (a5 ) (ji=1,2)

n 2iC’71Q’(771) i(n-1);
=—a,K, (a4 )e
. D|Q'(171)| } 1( } l)

1 OC3K (0637"1)6i(n+1)61

n+l

1 o (17)
~ 1( —V)771 (771)(0(32 +k22>0£3K}H (0(3;’1)6(;1-1)91

v

(a32 +k; )a3Kn+1 (a3r1 )ei(nﬂ)‘gl

i(n+1)6,

5j_3 - 2) HSL (aj_3r2 )e
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A Q)
(0 ) 2 o )

+[(2—v)05j2.73 —(l—v)kﬂ(gjf3 —1)} Hilll (aﬂrz)ei(m)ez (j=4.5)
K, (azrz)ei(nil)gz

2iCr, f) () @K, )ei(n+1)02
Dl (n,)
(17g)

(=)' ) » > i(n-1)0
- 7 N7 k K 2
2|Q'(771 )| (a3 Ky )0‘3 wi(an)e

i(1—v)77_19'(771) 2, 12 i(n+1)6
_ 7 7 k K 2
2|Q’(771 )| (aa Tk )as n+l (0‘3”2 )e

- (1-v)aim: Q' (,) (5]_ —1)HS}2 (0!,-71 )ea(nfz)al
Q'(m,)

+2a’ [Re((sj)—lw[l—k—%j]HEj) ()™

a;

——
_ (I—V)Of;z"b Q (772)(5 _I)H(l)2 (a-ri)ei(’ﬁz)el (] _ 1’2)
Q!(Tb) J n+ J
—i(1- 2p2Q) .
- 1( V)'053772 (UZ)anz (0!37‘1)61("72)9'
Q (’72) (17h)
i(l—v)azry_zQ'(n )
+ '3 b 2k
Q'(n,)

1- el .
_( v)a; Q' (1,) (5]_73 _I)HEBZ (05,,-73”2 )el(n-z)az

n —

E! =
4 Q,(ﬂz)

2
+ 20{}2.73 {Re(é'j3 ) -1 +v(l _ akzz J] HE,I) (Olj,y’z )einﬁz
j-3
1-v)a;. 77_29’ )= i
( )6'3(772) : 2)(5f‘3_I)HSEZ(O‘J‘%Q)G(
2
L —i(1=v)alnQ (n o
gy
2 .
. 22757 (171)
+ 1(1 _ V)gzaf(’]z )Q (772) Ker (a3r2)ei(n+2)6’2
U

_i(l ~ V)aJZ'WQZQI(nZ) (5. _I)H(l) (0(.7’1 )ei(n—2)€1
J

n —_—
J n-2

! '(m,)
—2a’ Im(8,)H (e, )"

(@)™ (j=12)

i(1-v)aln, () —
+1( V)ijnz (772)(5]_1)1—1922
Q (’72)
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1-v)a2niQ) _
ES”3=( V)Ol3772 (772)K (%rl)el(,,fz)gl

Q’
(ZZL , (17)
+(1_V)a3,772 c (772) n+2(a3’i)e (-+2)4
Q'(n,)
-i(1-v)a’_ m
E 1( v)‘frsﬂz (’72)(5/73 —I)HS z(a’_, 3r2)e(n 2)0
Q'(n,)
2a; Im(ﬁj 3)HS) (aj_3r )e"’g2
(=) 7, ), < o
Q/'En:) - (5/—3_1)H522 (a_j73’”2)e( 2 (J:4’5)
1 2 ZQ/
AL 00
732_2 (17k)
1- Q'
+ ( V)a3' m, (772 ) K,Hz (0(3}’2 )G (n+2)0;
Q'(n,)
2Ca,n,Q' (n,) .
no_ J 5. —2)H ) , (n-1)6,
o DI ()| ( j ) n 1(06’1)6
2Ca 77—29,(772) = 1 i(n+1)8,
2|H
Dl (n, )| (0, =2)He (@)
a,m (1,) 2 g2 2 2
—_—— "y -k 2-v)a;: —(1-v)k
2|Q’(772)| { ( J 2) [( ) J ( ) :|
i(n— aU_Q’ 77
(00 ) )
[2-v)a] =(1=-v)i2 (5, - 1)} HE) (@)™ (j=1,2)
n ZICUZQ'(TIZ ) i(nfl)Hl
=—Fa;K, _ (517))e
63 D|Q'(772)| 3 1( 3 1)
2iCn,
1C772, ( ) 3Kn+1(a3rl)e(n+1)€
D| (n,)| -
_i(l—v)nzﬂ'(nz)

(% K )

) (a32 + k22 )a3Kn+l (afsrl )ei(’”l)gl

J 3’72 (

4gmﬁﬁ%rw[@w ~1-0)K]
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N (5‘_3 a 1)} HO, (aj_3r2 )ei(n,l)ez " LQ’(T){V (af._3 —k2 )

' 2o (
+[(2_V)a./2'—3 _(l_v)k22:'<é_‘j73 —1)} n+1(a, 3;’2)el (n+1)02 (j = 4,5)
EOB() e
D|Q,(772 )|
O] (e
D|Q'(772 )| (17m)
i(1-v)n,Q (n i(n-
_w(af +k22)a3Kn71 (a3rz)e( v
2
i I_V U_Q' 77 i(n+
b
= 2 k22 ic Re[ Q)]
E, ==2a | Re(6,)—1+v|1-= | |W,e
a
20 (17n)
_2(1—‘/)0(12 Re 7712{)* (771)(51 _1):|VV()eialRe[Q(m)]
| Q' (nm)
E, =207 Im (5, )W, ¢ ")
+2(1-v)a?Im i (m )( )}W cire ()] (170)
Q'(m,)
E'3 —£1 lRe[ ]W ux]Re[Q m
D
+1V( k2 [ ] lal Rc[ﬂ ’71 (17p)
i 77 Q 77 ia) Re
+1[(2_V)“12—(1—V)kﬂa1 R{ |;2,(E711)|)(§1 _1)}[4/06 1 Re[ Q)]
k? -
foma {Re(é‘)_l+V[l‘_22H%e‘“”‘e["<"zﬂ
a,
i ' 1 (17q)
-2(1-v)a} Re —n_zglz (772)(51 1) Woei“lRe[Q(ﬂz)]
'(n,)
E; =2a;] Im(é‘1 )Wo el Re[ ()]
Pas) 1 . (17r)
+2(1—V)a121m n , (772)(61 _1) Woenalke[g(qz)]
| Q'(m) i
E6 :£1a1 Re 7729 (77 )(5 2) W iy RC[Q 772 ]
b [ (m,)
+iV( kz |: ] uxl Re[Q(17,) ] (178)
[(2 v)e) —(1-v)k; Jal Re[ |é’2(7(7772)|) (5, _1)]W0€ial Re[Q(2)]
2
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Of which,
c 6(1-v)
P (171)
. . o
n =exp(iad,), r, :\/a2 +d* +2adsing, , 0, = arccos L7 (17u)
n
. PR : acos6,
n, =exp(iab,), r, =\/a +d* —2adsin@, , 6, =—arccos 17v)

Ul

By the definition of opening hole of dynamic stress concentration: dynamic
stress concentration factor is the ratio of the hoop moving bending moment on
the periphery of opening hole and the wave amplitude bending moment of the

incident direction of the incident, that

My=M,/M, (18a)
Of which,
My =M +M}) (18b)
MY = pa? [51 ~LRe(s)-10- v)}WO gt
—%kazzW0 g kL] (18¢)
_ ZQI o Re
e Re[n—, s —1>}Woe‘ o]
2 Q'(n)

[2(7) 2
DU (5 1) 5 a8 oot 22 »
PUTED (5 1) § o) 21
,ip(l :sz)?;?(n) o zw BXK,,(a |Q(n)|){%}“
L) 5, ,,ﬂ(aslsz(n)l){%}w
MO:%Dv[(af—k§)+(2—v)(5l—l)afJWO (18¢)

Thus, for a flat with double holes, openings around the m-th dynamic stress

concentration factor can be expressed as
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M}, =Da; [5 —ERe(d )—%(l—v)}Woem‘Re[Q("’")]—%kafWo g1 ReLm)]

20y )
_DI_V 2 Re 17,£2 (77m ) (51 _1) W, e Re[Q(7,,)]
2 ()

ot S o]

(TR URE Y (1.)
D Q' (m,) ;(5«/_1)“/”;0’4 HEHZ( |Q T ){| o m)}

) 2 5 e (0o, >I){ ) } "

aQ'(n) = ()|

DU S5 s § ot o) 20

_pil=v)m, () S BK, (o IQ(nm)I){ Q(nm)}

49’(77»1) n=-x |Q(77m )|

Formula (19) is a general expression of m-th dynamic stress concentration
factor for a flat with double holes.

5. Numerical Results

The above analysis process can be used to calculate the thick plate with two
round hole for its hole dynamic stress concentration factor. According to the
theory of plate exact formulas [6], the computational procedure for the flat plate
with two round holes for its dynamic stress concentration factor can be com-
piled. According to the actual situation and empirical value, it is determined as,
Poisson ratio v =0.3, dimensionless parameter’s pore size and plate thickness
ratio a/h=0.1~2.0, the wave number ka=0.1~3.0.

The distribution of dynamic moment’s concentration coefficient shown in
Figures 1-17, the upper hole is calculated between the hole on the upper and
lower deployment hole in the figure, connecting the center of two holes perpen-
dicular to the x-axis, and the center of the two holes’ distance is Z. The upper
half of Figures 1-16 is the regular pattern of a single hole when ¢=0 the con-
centration factor of dynamic moment changed with the circumferential angle
(0~m), and the lower half of Figures 1-16 is the regular pattern of two round
holes when 7=0 the concentration factor of dynamic moment changed with
the circumferential angle (—m~0). Figure 17 shows the double-hole between
the dynamic moment concentration factor with dimensionless hole spacing
changes in the law. Figure 17 is the regular pattern of the dynamic moment
concentration factor between the double-hole changed with dimensionless varia-

tion of hole spacing L/a .
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Figure 1. Dynamic moment factor 1.
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180
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(ka=0.1,a/h=0.1,L/a=2.5)

Figure 2. Dynamic moment factor 2.
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Figure 3. Dynamic moment factor 3.
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(ka=0.1,a/h=0.1,L/a=6.0)

Figure 4. Dynamic moment factor 4.
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(ka =0.5,a/h :O.S,L/a=2.1)

Figure 5. Dynamic moment factor 5.

180

(ka=0.5,a/h =0.5,L/a=2.5)

Figure 6. Dynamic moment factor 6.
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Figure 7. Dynamic moment factor 7.

(ka=0.5,a/h =0.5L/a= 6.0)

Figure 8. Dynamic moment factor 8.
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Figure 9. Dynamic moment factor 9.
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Figure 10. Dynamic moment factor 10.
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Figure 11. Dynamic moment factor 11.
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Figure 12. Dynamic moment factor 12.
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Figure 13. Dynamic moment factor 13.
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Figure 14. Dynamic moment factor 14.
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Figure 15. Dynamic moment factor 15.
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Figure 16. Dynamic moment factor 16.
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Figure 17. Dynamic moment factors vs dimensionless wave number (ka =0.1,6 =7/2).

6. Conclusions

Based on the precise equation [11] of bending vibration flat, using Liu’s complex
variable method, the flat hole elastic wave scattering and dynamic stress concen-
tration were studied. Through analysis of the calculation results can be seen:

1) In the case of low incident frequency, dynamic moment concentration
coefficient with two holes pitch change is gentle. When the frequency of the in-
cident wave is high, the dynamic moment concentration factor changes with the
distance between the two holes, and even a negative bending moment appears.

2) Compared with the literature [10] of the single-hole, because of the interac-
tion between the holes, double holes between the dynamic moments concentra-
tions factors will become more complex. Sometimes actions relieve stress, but

sometimes intensify. Therefore, in the process of design, you can not apply the
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full static load strength design standards or specifications should do a compre-
hensive analysis of dynamic stress.

According to precision plate bending vibration equations [11] that are used in
the absence of any works obtained under the hypothetical situation, the kinetic
equation is more accurate. Based on the vibration equation, if it needs to be
solved by conformal mapping transformation, the analysis problem of two holes
of arbitrary shape with dynamic stress concentration can be solved, thereby pro-
viding a standardized method. This research method and numerical results are
expected to be applied in the thick-walled structural engineering’s dynamics

analysis and strength design.
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