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Abstract 
In two previous papers [1] and [2], a structure for vector products in n di-
mensions was presented, and at the same time it was possible to propose the 
existence of a vector analogous to the curl of a vector field, for a space of four 
dimensions. In continuation of these works, the objective is to develop, 
through dimensional analogy, the idea of a hypothetical vector field, asso-
ciated with the classical electromagnetic wave. This hypothetical field has a 
possible mathematical existence only when considering a space of four di-
mensions. The properties of the electromagnetic wave are preserved and equ-
ations with mathematical forms analogous to those of Maxwell’s equations 
are presented. 
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1. Introduction 

In [1] the concept of vector products in spaces of n dimensions was developed. 
In particular, for a space of four dimensions (IR4), we define the product of three 
linearly independent vectors represented in terms of quadruples  

1 2 3 4ˆ ˆ ˆ ˆi i i i im e n e p e q e= + + +F  as follows: 
Let ( )1̂ 1,0,0,0e = , ( )2ˆ 0,1,0,0e = , ( )3̂ 0,0,1,0e =  and ( )4ˆ 0,0,0,1e = . In 

symbolic terms, this product of vectors in Euclidean space IR4 is obtained start-
ing from the development of the determinant 

How to cite this paper: Simal Moreira, L. 
(2020) On a Hypothetical Vector Field 
Associated with the Classic Electromagnet-
ic Wave in a Space of Four Dimensions. 
Journal of Applied Mathematics and Phys-
ics, 8, 2836-2845. 
https://doi.org/10.4236/jamp.2020.812209  
 
Received: October 18, 2020 
Accepted: December 13, 2020 
Published: December 16, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.812209
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.812209
http://creativecommons.org/licenses/by/4.0/


L. Simal Moreira 
 

 

DOI: 10.4236/jamp.2020.812209 2837 Journal of Applied Mathematics and Physics 
 

[ ]
1 2 3 4

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

ˆ ˆ ˆ ˆe e e e
m n p q
m n p q
m n p q

=F F F                   (1) 

so that 

[ ]1 2 3 1 2 3 k=F F F F F F                     (2) 
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1 cos cos
cos 1 cos
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k
α α

α α
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=                  (3) 

In Equation (3), cos ijα  represents the angle between two of the generating vec-
tors of [ ]1 2 3F F F , and naturally cos cosij jiα α= , so that 2k  is the determinant of 
a symmetric matrix. In addition, it has to be [ ] ( )1 2 3 0 1,2,3i i⋅ = =F F F F . 

In [2], it was proposed to introduce an analog to the curl vector in IR4. Given 
two vector fields represented by 1 1 1 1 2 1 3 1 4ˆ ˆ ˆ ˆm e n e p e q e= + + +F  and  

2 2 1 2 2 2 3 2 4ˆ ˆ ˆ ˆm e n e p e q e= + + +F , the vector product [ ] ( )1 2 1 2,∇ = ∇×F F F F  is con-
sidered represented by the symbolic determinant 

( )

1 2 3 4

1 2 3 41 2

1 1 1 1

2 2 2 2

ˆ ˆ ˆ ˆ

,

e e e e

x x x x
m n p q
m n p q

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂∇× =F F              (4) 

with 1 2 3 4
1 2 3 4

ˆ ˆ ˆ ˆe e e e
x x x x
∂ ∂ ∂ ∂

∇ = + + +
∂ ∂ ∂ ∂

 being the operator del in four dimen-
sions.  

The analogy with the curl vector is based on its symbolic notation obtained 
based on the determinant structure and relationship with the vector del. 

With the application of (4), for example, it was possible to demonstrate that, 
for example, the geometric frameworks that relate the vectors r , ω  and v  
in a circular rotational motion with constant frequency are equivalent in three 
and four dimensions (see [2]). 

The objective of this paper is to apply the results obtained in a triad of vectors 
with similar relationships to those in between r , ω  and v . Specifically, the 
idea is to apply the results in relation to the equation 1 ˆ

c
= ×B u E  between the 

magnetic induction B, electric field E, and vector directional of propagation of 
electromagnetic wave, represented by û . 

2. Classical Electromagnetic Wave and Maxwell’s Equations 

Initially, it is intended to summarize some known results on the classic electro-
magnetic wave, which will be important in the development of this article. Con-
sidering the monochromatic wave represented in Figure 1, the relationship be-
tween the magnetic induction vector B, the electric field E and the directional  
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Figure 1. Classical electromagnetic wave, with schematic representation of the orienta-
tion of the vectors E, B and û . 
 
vector of electromagnetic wave propagation, represented by û , can be summa-
rized in the equation 

1 ˆ
c

= ×B u E                             (5) 

where: 

0 0

1c
ε µ

=  represents the speed of light in a vacuum [3]. 

The density of electromagnetic energy U is given by the expression [3] 

2 2
0

0

1 1
2 2E BU U U ε

µ
= + = +E B                   (6) 

while the Poynting vector [3] 

0

1
µ

= ×S E B                           (7) 

represents the current density of electromagnetic energy. In a flat classical wave, 
the densities of electric and magnetic energy are equal  
( 2 2E B E BU U U U U= ⇒ = = ). 

This work develops analogies essentially with the equations related to a wave 
propagating in a vacuum, in the absence of charges and currents. Maxwell’s eq-
uations in these conditions are given in [3]:  

0 0 t
ε µ ∂

∇× =
∂
EB                         (8) 

t
∂

∇× = −
∂
BE                          (9) 

0∇⋅ =B                           (10) 
0∇⋅ =E                           (11) 

Still from Figure 1, we will represent the unit vectors of the canonical base as 
follows: 

1
ˆˆ

E
= = =

E Ee i
E

                       (12) 

2
ˆˆ

B
= = =

B Be j
B

                       (13) 

3
ˆˆ ˆ= =e k u                           (14) 
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Note that equation 

ˆ ˆ ˆ

1 1 ˆˆ 0 0

0 0

EB
c c c

E

= × ⇒ = =

i j k

B u E j                (15) 

implies 
2E EB EB

c c
= ⇒ =  or 2 2EBB EB cB

c
= ⇒ = , that is: 

2

2

or
1

cB

EB
E

c


= 



                       (16) 

Also note that ( )
ˆˆ ˆ

ˆˆ 0 0
0 0

k
E EB

B
α α α= × = =

i j
u E B k , where α is a constant. 

But 
1ˆˆ 1EB

EB
α α= ⇒ = ⇒ =u k  and then: 

( ) ( ) ( )1 1ˆ ˆ ˆ
² ²

c
EB cB E

= × ⇔ = × ⇔ = ×u E B u E B u E B       (17) 

Regarding the Poynting vector: 

( )

( ) ( )

0 0 0

0 0 0

0 0

1 1 1 1ˆ ˆ

ˆ ˆ ˆ²

c c

E

µ µ µ

ε µ ε
µ µ

 = × = × × = × × 
 

= ⋅ − ⋅ ⇒ =  

S E B E u E E u E

u E E E E u S u
       (18) 

At the same time: 

0 0

0 0 0

2ˆ ˆ ˆ² EUE cU
ε ε
µ µ ε

= = ⇒ =S u u S u            (19) 

( ) 0
1 1 1 1ˆ ˆ

EB EB cU cU
µ= × = = ⇒ =u E B S S u S         (20) 

The results (19) and (20) are consistent, and are useful in obtaining and sim-
plifying the results shown in the next sections, that represent the true purpose of 
this paper. 

3. Hypothetical Vector Field Associated with Classical  
Electromagnetic Wave in a Four-Dimensional Space 

Equation (15) can be represented from vector products in four dimensions, as 
shown in [1] and [2]. 

Defining the unit vector ψ̂ : 

( )2 2

ˆ ˆ ˆ ˆ

1 10 0 1 0 ˆˆ
0 0 0

0 0 0

EB
cB cBB

E

−
= = −

i j k l

lψ             (21) 
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where 4
ˆˆ =e l . There is then 

ˆˆ E
cB

= lψ                             (22) 

with 

1E
cB

=                              (23) 

It is important to note that (23) is in agreement with the theory: 
2

2 2 2 2 2 2
0

0 0 0

1 11
2 2 E B

E BE c B E E B U U
cB

ε
ε µ µ

= ⇒ = ⇒ = ⇒ = ⇒ =    (24) 

COROLLARY: Considering the monochromatic flat wave, the relationship 
between the magnetic induction vector B, the electric field vector E, and the 
vector û  in the direction of propagation of the electromagnetic wave can be 
represented in the following equation developed for a 4-dimensional space: 

[ ]1 1ˆ ˆ ˆ ˆ
c c

  = =     
B uE u Eψ ψ                    (25) 

PROOF: 
ˆ ˆ ˆ ˆ

1 10 0 0 ˆ ˆ

0 0 0
0 0 0 1

EE Bc c c
E

 = = − − ⇒ = 
 

i j k l

B j j             (26) 

It is important to note that even here 

2 2 2
E B

EB E c B U U
c

= = ⇒ = ⇒ =B               (27) 

which is in agreement with the theory. 
PROPOSITION: 

[ ]4 1 1ˆ ˆ|IR
c c

  ∃ ∈ = =     
G G uBE u BE  

PROOF: 

[ ]2 2 2

1 1 1 1ˆ ˆ ˆ ˆ
ccB B B

  = = ⇒ =    
uBE u BE Gψ ψ           (28) 

which naturally implies: 
2 2 ˆˆB B= ⇔ =G G lψ                      (29) 

The vector G has the same direction as l̂ , being orthogonal to all the vectors 
of the electromagnetic wave. This can be synthesized by: 

:
⊥

 ⊥
 ⊥

G u
G G E

G B
                        (30) 

At the same time: 
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2
2

0 02 2
G BG B
µ µ

= = ⇒ =G                   (31) 

And also: 
2 2

20
0 0

02 2 ?
EG EG E G

c
ε

ε µ
µ

= ⇒ = ⇒ =              (32) 

A possible assumption is that the term 
0

1
2GU G
µ

=  represents the energy  

density associated with the hypothetical field G. One can speak of an energy 
density of the “electromagnetic wave with the inclusion of the field G”, treated 
here as a G-electromagnetic wave. Such an energy density would be  

*
G E B GU U U U U U= + = + + , and the portion GU  has no effect on the xyz sys-

tem. 
The total “G-electromagnetic energy density” is 

* 2 2
0

0 0

1 1 1
2 2 2

U E B Gε
µ µ

= + +                   (33) 

4. Analog of Maxwell’s Equations for the Four-Dimensional  
Space 

In what follows, for simplicity, it is considered: 

( ) ( ) ( ), ; , ; ,z t z t z t= = =E E B B G G               (34) 

where  

ˆ ˆ ˆ; ;x y hE B G= = =E i B j G l                    (35) 

In (35) the index h refers to the h-axis, which is orthogonal to the axes of the 
xyz system, and has the same direction as the unit vector ψ̂ . The following 
identities will also be used, which can be proved with the development of deter-
minants of order 4 and 3 respectively, from the concept of the analog of the curl 
vector defined in [2]. 

( )ˆ,∇× = ∇×E Eψ                        (36) 

( )ˆ,∇× = ∇×B Bψ                        (37) 

All developments have essentially the following mathematical characteristics, 
not speculating possible physical interpretations of the results. The equations re-
lated to the divergence of the magnetic and electric fields (10) and (11) are not of 
particular interest, since their representation in four dimensions would only re-
quire the addition of a fourth component. Therefore, developments and demon-
strations are focused on analogies with Equations (8) and (9), which involve the 
curl vector of fields B and E. Using (4): 

1) Developing the relationship for E: 

( ) ˆ ˆ ˆˆ, E E B
z y t t

∂ ∂ ∂ ∂
∇× = − = ∇× = − = −

∂ ∂ ∂ ∂
BE j k E jψ           (38) 

Therefore: 
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( )ˆ, ,  with 0E B
t z t

∂ ∂ ∂
∇× = − + =

∂ ∂ ∂
BE ψ                (39) 

2) Developing the relationship for B: 

( ) 0 0 0 0
ˆ ˆ ˆˆ, B B E

z x t t
ε µ ε µ∂ ∂ ∂ ∂

∇× = − + = ∇× = =
∂ ∂ ∂ ∂

EB i k B iψ        (40) 

Therefore: 

( ) 0 0 0 0ˆ, ,  with 0B E
t z t

ε µ ε µ∂ ∂ ∂
∇× = + =

∂ ∂ ∂
EB ψ            (41) 

3) Developing the relationship for G: 

( )ˆ,∇× =G 0ψ                         (42) 

Equation (42) is obvious, since ˆG ψ , noting that ˆ = G
G

ψ . 

An important result can be obtained by combining Equations (39) and (41). 
Also note that these results relating fields B and E were obtained from the 
four-dimensional model. 

Differentiating (39) with respect to t, and (41) with respect to z: 
2 2

2 0E B
z t t
∂ ∂

+ =
∂ ∂ ∂

                       (43) 

2 2

0 02 0B E
z tz

ε µ∂ ∂
+ =

∂ ∂∂
                    (44) 

Noting that 0 0 2

1
c

ε µ =  and replacing (43) in (44): 
2 2 2 2

0 02 2 2 2 2

10 0B B B B
z t z c t

ε µ
 ∂ ∂ ∂ ∂

+ − = ⇒ − = 
∂ ∂ ∂ ∂ 

          (45) 

Differentiating (39) with respect to z and (41) with respect to t: 
2 2

2 0E B
z tz

∂ ∂
+ =
∂ ∂∂

                       (46) 

2 2

0 0 2 0B E
z t t

ε µ∂ ∂
+ =

∂ ∂ ∂
                    (47) 

Noting that 0 0 2

1
c

ε µ =  and replacing (47) in (46): 
2 2 2 2

0 02 2 2 2

10 0
²

E E E E
tz z c t

ε µ
 ∂ ∂ ∂ ∂

+ − = ⇒ − = ∂∂ ∂ ∂ 
           (48) 

Equations (45) and (48) show that even in the four-dimensional model, the 
components of the electric and magnetic fields satisfy the one-dimensional wave 
equation, with speed of propagation 

0 0

1c
ε µ

= . 

5. Results Involving the Hypothetical Vector Field G 

Considering the unit vectors ˆ
E

=
EE  and ˆ

B
=

BB , and relations 
2

2
2

EG B
c

= = : 

( ) ˆˆ, G
z

∂
∇× = −

∂
G E j                      (49) 
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This equation can be rewritten, showing a direct relationship between fields E 
and G: 

( ) ( )2
² 1 2ˆ ˆ ˆˆ,
² ² ²

2 2
² ²

EE E E
z c c z c z
E E

c t c t

∂∂ ∂ ∇× = − = − = − ∂ ∂ ∂ 
∂ ∂ = − − = ∂ ∂ 

G E j j j

B B
 

∴ ( ) ( ) ( )2 ?ˆ ˆ, ,
² 2
E c

c E
−

∇× = − ∇× ⇔ ∇× = ∇×G E E E G E  

² ,
2
c
E

 −
∇× = ∇×  

 

EE G
E

                      (50) 

There is a similar way: 

( ) ˆˆ, G
z

∂
∇× =

∂
G B i                         (51) 

This equation can be rewritten, showing a direct relationship between fields B 
and G: 

( ) ( )2
0 0

2ˆ ˆ ˆˆ, 2 2
²

B E BB B B
z z t c t

ε µ∂ ∂ ∂ ∂ ∇× = = = − = − ∂ ∂ ∂ ∂ 

EG B i i i  

∴ ( ) ( ) ( )1ˆ ˆ, 2 ,
2

B
B

∇× = − ∇× ⇔ ∇× = − ∇×G B B B G B  

1 ,
2B

 
∇× = − ∇×  

 

BB G
B

                     (52) 

It is known that 2G B B G= ⇔ = . Differentiating this relation separately in 
relation to t and z: 

22 2

2 3

1 1
² 2 4
B G G

t B tt B
∂ ∂ ∂ = −  ∂ ∂∂  

                  (53) 

22 2

2 2 3

1 1
2 4

B G G
B zz z B

∂ ∂ ∂ = −  ∂∂ ∂  
                  (54) 

Replacing (53) and (54) in the wave Equation (45): 
2 22 2

2 3 2 3

1 1 1 1 1 0
2 ?4 4

G G G G
B z c B tz B t B

 ∂ ∂ ∂ ∂   − − − =     ∂ ∂∂ ∂    
 

∴
2 22 2

2 2 2 2 2 2

1 1 1
2 2

G G G G
z tz c t B c B

∂ ∂ ∂ ∂   − = −   ∂ ∂∂ ∂    
          (55) 

As E BU U= , we have that 2 2 2E c B= , and so: 
2 2 2 22 2 2

2 2 2
2 4 2

4 24 2E B c E B B E BB B B c
t t t tc c c

∂ ∂ ∂ ∂       = ⇒ = ⇒ =       ∂ ∂ ∂ ∂       
  (56) 

Noting that 2

2E B G
t zc

∂ ∂
= −

∂ ∂
 by (49) and (50), and 2 B GB

t t
∂ ∂

=
∂ ∂

 because of 

2G B= , and replacing in (56): 
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2 2 2 2

2 2 2

1 1²
2 2

G G G Gc
t z z tB c B

∂ ∂ ∂ ∂       = − ⇒ =       ∂ ∂ ∂ ∂       
 

∴
2 2

2 2 2

1 1 0
2 2

G G
z tB c B

∂ ∂   − =   ∂ ∂   
                (57) 

This important result shows that the second member in (55) is zero, and 
therefore: 

2 2

2 2 2

1 0G G
z c t

∂ ∂
− =

∂ ∂
                      (58) 

The hypothetical vector field G also satisfies the one-dimensional wave equa-

tion, with speed of propagation 
0 0

1c
ε µ

= . 

The same result is obtained using the wave Equation (48). 
Some more additional results are presented involving the hypothetical vector 

field G. As previously, all of them result from the product of vectors defined by 
Equation (1), from the vector analogous to the curl one given by Equation (4), 
and from the other results obtained in the previous sections: 

( ) ( )2, 2G B
t

∂
∇× = − +

∂
BE G                   (59) 

( )
2

2

2, G B
tc

 + ∂
∇× =   ∂ 

EB G                   (60) 

Since 22 2 3G B G G G+ = + = , the results above can be written as: 

( ) ( )
2

2

,
,

3 3
c

G E
∇×

∇× = ⇔ ∇× = ∇×
E G

E E E G          (61) 

( ) ( )2

, 1 ,
3 3G B

∇×
∇× = ⇔ ∇× = ∇×

B G
B B B G          (62) 

Note that the displacement current 0 0 t
ε µ ∂

∂
E  it is related to ∇×B  also in 

the model in four dimensions. 
Since 2 2E = E  and 2 2B = B , the “energy density” *U  can be written and 

manipulated as follows: 
2

* 20

0 02 2 2
GU

ε
µ µ

= + +
BE  

*

0
0 0

1
2

U G
t t t t

ε
µ µ

∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
E B BE  

( ) ( )
*

0 0 0

ˆ, 1ˆ,
2

U G
t tµ µ µ

∇× ∂ ∂
= − − ∇× + 

∂ ∂ 

B BE J E
ψ

ψ  

( ) ( )
*

0 0

1 1ˆ ˆ, ,
2

U G
t tµ µ

∂ ∂
− = ⋅ + ⋅∇× − ⋅∇× −  ∂ ∂

J E B E E Bψ ψ  

( )
*

0 0

1 1
2

U G
t tµ µ

∂ ∂
− = ⋅ + ∇ ⋅ × −

∂ ∂
J E E B  
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*
GUU

t t
∂∂

− = ⋅ +∇ ⋅ −
∂ ∂

J E S                    (63)

 
In the absence of current and charges, would be simply: 

*
GU U

t t
∂ ∂

− = ∇ ⋅
∂ ∂

S                        (64) 

Writing *
GU U V− = − , it results that: 

0V
t

∂
∇ ⋅ + =

∂
S                         (65) 

This is the local form of the Energy Conservation Law. 

6. Conclusions 

Through the previously developed concepts regarding vector products in higher 
dimensions, as well as the use of the vector analogous to the curl vector for a 
four-dimensional space, it was possible to study the classical electromagnetic 
wave equations with a focus on a dimensional space larger than three. 

In this context, it was shown that the inclusion of a hypothetical vector field G 
to the electromagnetic wave does not alter the wave representations for fields B 
and E, known for the IR³ space, at the same time that they are fully equivalent in 
the IR4 space. 

Still in relation to the vector field G, it was possible to show that it meets equ-
ations analogous to Maxwell’s equations for the classical electromagnetic wave. 
Although it was never intended to make physical interpretations for the hypo-
thetical vector field, it was visible that it retains fundamental mathematical 
properties, such as satisfying the one-dimensional wave equation, presenting an 
expression for a kind of “energy density” that is consistent with the results al-
ready known for the electromagnetic wave, and complies with the energy con-
servation law. 
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