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Abstract 
Reverse Osmosis (RO) desalination plants are highly nonlinear mul-
ti-input-multioutput systems that are affected by uncertainties, constraints 
and some physical phenomena such as membrane fouling that are mathe-
matically difficult to describe. Such systems require effective control strategies 
that take these effects into account. Such a control strategy is the nonlinear 
model predictive (NMPC) controller. However, an NMPC depends very much 
on the accuracy of the internal model used for prediction in order to maintain 
feasible operating conditions of the RO desalination plant. Recurrent Neural 
Networks (RNNs), especially the Long-Short-Term Memory (LSTM) can cap-
ture complex nonlinear dynamic behavior and provide long-range predictions 
even in the presence of disturbances. Therefore, in this paper an NMPC for a 
RO desalination plant that utilizes an LSTM as the predictive model will be 
presented. It will be tested to maintain a given permeate flow rate and keep the 
permeate concentration under a certain limit by manipulating the feed pres-
sure. Results show a good performance of the system. 
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1. Introduction 

Recently, there have been an increased interest and commercialization of desali-
nation systems due to significant improvement in technology and the advanta-
geous developments in membrane technology. The dynamics of an RO desalina-
tion system are highly nonlinear, constrained and subject to uncertainties such 
as membrane fouling and varying feed water quality. Therefore, the design of a 
suitable controller for the RO desalination system is a very challenging task. 

How to cite this paper: Karimanzira, D. 
and Rauschenbach, T. (2020) Deep Learn-
ing Based Model Predictive Control for a 
Reverse Osmosis Desalination Plant. Jour-
nal of Applied Mathematics and Physics, 8, 
2713-2731.  
https://doi.org/10.4236/jamp.2020.812201  
 
Received: October 29, 2020 
Accepted: November 30, 2020 
Published: December 3, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jamp
https://doi.org/10.4236/jamp.2020.812201
https://www.scirp.org/
https://doi.org/10.4236/jamp.2020.812201
http://creativecommons.org/licenses/by/4.0/


D. Karimanzira, T. Rauschenbach 
 

 

DOI: 10.4236/jamp.2020.812201 2714 Journal of Applied Mathematics and Physics 
 

There have been several approaches for controlling nonlinear systems in gen-
eral such as the linear quadratic regulator (LQR) [1], proportional integral de-
rivative controller (PID) [2], backstepping control [3] and sliding mode control 
(SMC) [4]. Nevertheless, all these techniques usually do not take into account 
the actual constraints of the process and just consider the control effects. Fur-
thermore, the parameters of the controllers are chosen aimlessly, hence the op-
timality of the system cannot be guaranteed. 

Model predictive control has been applied to control RO desalination 
processes [5] [6] [7] [8] [9]. It is obvious that the performance of the model pre-
dictive controller largely depends on the quality of the predictive model used, 
especially if the system is complex and highly nonlinear. Several techniques have 
been used for system identification for the MPC, e.g., Kalman filtering [10], 
maximum likelihood estimation [11] [12]. However, it is known that the Kalman 
filter requires knowledge of the mathematics behind the system, which we know 
is very difficult to obtain for highly complex processes such as the RO desalina-
tion system with several unknown disturbances, and the physical phenomena 
such as membrane fouling. Artificial Neural Networks (ANNs) have proven to 
be very good function approximators and do not need any mathematical model, 
but the input-output data of the system [13]. There have been applications of 
ANNs for the MPC control [14] [15] [16], especially the Multilayer Perceptron 
(MLP). The MLP has some limitations to time variant systems, because the 
learned results are static input-output maps. Furthermore, the prediction steps 
of the MLP are limited [17]. 

In [18] [19], Recurrent Neural Networks (RNNs) were introduced into the 
structure of the MPC, because they can capture the system dynamics and pro-
vide long-range predictions [20]. It is well-known that RNNs have issues with 
vanishing and exploding gradients, which makes their training difficult some-
times, therefore we propose to use a special form of RNN, i.e., the Long Short 
Term Memory (LSTM). LSTM is a special version of RNNs structure that was 
designed to model chronological sequences and their long-range dependencies 
more precisely than conventional RNNs [18]. 

Even though, it is not new to combine MPC with recurrent neural networks 
[21] [22] [23], the application of LSTM as the predictive model for the MPC for 
desalination processes is hardly found in literature. This fact motivated us to put 
our focus on system identification using LSTM with a view towards closed-loop 
control with MPC for control of a RO desalination plant. The new contributions 
of this paper are the following: 
 Introduction of LSTM as the predictive model in MPC to capture nonlineari-

ties 
 The combined structure of LSTM and MPC is new to RO desalination con-

trol 
The remainder of the paper is outlined as follows. In Section 2 the model of 

the RO desalination plant and some scenarios for assessing the performance of 
the control system in closed loop will be described. Following this, in Section 3, a 
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section about the methods and materials will be given, in which the method of 
system identification using a LSTM and the problem formulation for the MPC 
using the identified LSTM as the prediction model will be described. Finally, the 
results of the system identification and the closed loop simulations control per-
formance and discussions will be given in Section 4. 

2. RO Desalination Plant Model and Control Scenarios 

In this section, the model of the RO desalination plant and some scenarios for 
assessing the performance of the control system in closed loop will be described. 

2.1. RO Desalination Plant Model 

A RO desalination plant shown in Figure 1 is used as the nonlinear plant on 
which the LSTM-based Model predictive control algorithm is applied to control 
the nonlinear process. The configuration of the system includes two tanks: a feed 
tank, and another tank for draining permeate. Furthermore, the plant includes 
reverse osmosis unit and a high pressure pump. A high-pressure pump is used to 
pump the water from the feed tank to the pressure ( fP ) into the RO unit. From 
the inflows and outflows of the feed tank, it is obvious that the feed water total 
dissolved solids (feed TDS)—feed water concentration ( fC ) is changing con-
stantly, because some TDS leave with permeate ( pC ), some TDS are lost due to 
adhesion on the membrane surface and some TDS ( inC ) enter the system with 
the filling water ( inQ ) for the feed water tank. The permeate concentration ( pC ) 
and the brine concentration ( bC ) and the total permeate quantity ( pQ ) and 
brine ( bQ ) at the outlet of the membrane module define the operating condi-
tions of the RO unit itself and they can be controlled by adjusting the feed pres-
sure at the RO unit inlet. 

From Figure 1, the mass and the salt balances for the feed tank are given by 
the following equations: 

d
d

f
p

Q
M

t
= −                           (1) 

 

 
Figure 1. Reverse osmosis desalination plant, fQ —Feedwater flow rate, x—Concentration 

[g/L], bx —Brine salinity [g/L], fx —Feed salinity [g/L], px —Permeate salinity [g/L], and 

bM —Brine flow rate [L/min], pM —Permeate flow rate [L/min]. 
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d
d

f f
p p

Q x
M x

t
= −                         (2) 

Expanding Equation (2) gives,  

d d
d d

f f
f f p p

x Q
Q x M x

t t
+ =                     (3) 

Substituting Equation (1) into Equation (3), Equation (4) is obtained to: 

( )d
d

f
f f p p p

x
Q x M M x

t
+ − =                    (4) 

( )d
d

f
p p f p f

x
M x x M Q

t
= − +                    (5) 

Finally, the feed tank can be described by Equations (1) and (5). 
The same can be done to characterize the permeate tank to get the following 

two equations of mass and salt balances: 

d
d

p
p

Q
M

t
=                            (6) 

d
d
pt pt

p p

Q x
M x

t
=                          (7) 

Substituting as we did previously, the two equations that describe the per-
meate tank can be obtained to Equations (6) and (8) 

( )d
d

pt
p p pt p pt

x
M x x M Q

t
= +                    (8) 

The differential Equations (1), (5), (6) and (8) coupled with theories of 
El-Dessouky and Ettouney in Equations (9)-(14) can be used to describe the RO 
system and give a complete characterization of the plant [24]. 

The salt passage rate through the reverse osmosis membrane [ ]kg ssM  can 
be expressed as in Equation (9). 

( ) 1000s s em s pM K A T C Cβ= − ×                  (9) 

( ) ( )f f b b f bC M C M C M M= + +                (10) 

where 3 2m m ssK ⋅    is the salt permeability coefficient at the reference tem-
perature [ ]CrefT  , the total membrane area is denoted by 2memA    , β  is the 
concentration polarization factor, sT  is the temperature correction factor for 
salt permeability, [ ]ppmC  is the net concentration, and [ ]ppmpC  is the 
permeate concentration.  

The permeate flow rate (water passage rate) [ ]kg spM  required in Equation 
(1) given by Equation (11) is a function of the membrane differential pressure 

[ ]kPaP∆  and the net osmotic pressure [ ]kPaπ∆ .  

( )p w em m wM K A T P β π ρ= ∆ − ∆                (11) 

where 3 2m m s kPawK ⋅ ⋅    is the water permeability coefficient at the reference 
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temperature [ ]CrefT  , mT  is the temperature correction factor for water per-
meability, and 3kg mwρ     is the permeate density. 

The concentration of the permeate [ ]ppmpC  and the brine [ ]ppmbC  are 
given by Equations (12) and (14), respectively: 

exp
p s b s

JC K C K
J
k

= +
 
 
 

 
 
 
 
 
 

                (12) 

( )
p

m c em

QPJ
R R A

π
η
∆ −∆

= =
+

                   (13) 

f f p p
b

b

C M C M
C

M
−

=                     (14) 

where [ ]m sJ  is the permeate flux, [ ]m sk  is the mass transfer coefficient, 
[ ]kPa sη ⋅  is the seawater dynamic viscosity, 1mcR −    is the cake layer resis-

tance, and 1mmR −    is the intrinsic membrane resistance. 

2.2. Control Scenarios 

Since this study has the main focus on process control, the system performance 
should be evaluated in closed loop control, where the system will be tracking a 
setpoint. So, the objective of the controller is to bring the RO desalination sys-
tem quickly and smoothly to target set-point of the permeate flow rate and keep 
the permeate concentration under ,p dM  by adjusting the feed pressure. Fur-
thermore, it is important to compare the closed-loop performance of the 
LSTM-based MPC against a classical non-linear MPC controller that utilizes the 
true RO desalination plant model, as described in Equations (1)-(14), directly. 

3. Methods and Materials 

The procedure for using an LSTM as the predictive model in the MPC comprises 
of several steps starting from 1) generating a dataset by acquiring data from the 
system using perturbations of the manipulated variables, here in our case, the 
feed pressure; 2) dividing the dataset into training and validation sets and train-
ing the LSTM on the training dataset while testing the network on the validation 
dataset for early stopping. There are some hyperparameters which need to be se-
lected to find the best performance. This can be done manually, whereby several 
network configurations are trained and the best performing network selected, or 
one can use Bayesian optimization to find the parameters automatically [25]; 3) 
integrating the LSTM with the best performance with the MPC and 4) finally 
run closed loop simulations with LSTM-based MPC to evaluate its control per-
formance. 

3.1. Internal Model Using Long Short Term Memory Network 

The task of system identification is main focus of this section and comprises of 
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approximating the RO desalination system as described by Equations (1)-(14). 
The p-step ahead prediction issue is supposed to be of vital important interest 
for the control using MPC. Deep neural networks are universal function ap-
proximators and can be used to capture the nonlinear dynamics of systems. 
They are relatively simple to obtain and evaluate in real-time. To them belongs 
the LSTMs that can better capture temporal dependencies in the dynamical sys-
tem. Especially for predictive control, the LSTMs are particularly useful. They 
can be used to make the required p-step ahead predictions of state variables, 
based on the fact that the prediction for time-step p depends solely on the cur-
rent state and all control actions in time-step { }0, , 1k p∈ − . The time-step 

1p −  predictions used in the time-step p prediction are equally dependent on 
the current state and all control behaviour in time-step { }0, , 2k p∈ − , etc. 

Figure 2 shows the LSTM structure for the p-step ahead prediction problem. 
It is made out of repeating cells with four interacting components forming each 
layer, and in our case each cell represents a time-step, so that the state of the cell 
representing time-step { }0, , 1k p∈ −  serves as the input for a cell representing 
time-step 1k + . Each cell contains user-specifiable N number of hidden nodes 
that encode the state representation. These cells use several gating functions, like 
the “forget”, “input” and “output” gating functions, that serve to modulate the 
propagation of signals between cells. This cell structure avoids the gradient va-
nishing or exploding problem. 

The basic LSTM cell structure (Figure 2(b)) is fully mathematically described 
in the appendix of [19]. It has three inputs denoted by 1kh − , 1kC −  and ku  and 
two outputs given by kh  and kC . At any given time step k, N

kh ∈  is the 
hidden state, kC  is the cell state, ku  is the current input. 

The first layer is a sigmoid layer [ ]: 0,1 NNσ →  which has two inputs 1kh −  
and ku . 1kh −  represent the hidden state of the previous cell. This is called the 
forget gate [ ]0,1kf ∈  because its output decides which information of the pre-
vious cell is to be included. 

[ ]1,k f k k ff W h u bσ −=  ′⋅ 
 

+                   (15) 

 

 

Figure 2. (a) LSTM structure for the p-step ahead prediction problem and (b) LSTM in-
ternal model structure with the three gates—forget gate, input gate and output gate. 
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The second layer is also a sigmoid layer and represents the input gate 
[ ]0,1ki ∈  that decides which new information is to be added to the cell. It takes 

two inputs 1kh −  and kx . A vector kC  of the new candidate values is created 
by the tanh layer. 

[ ]1,k i k k ii W h u bσ −=  ′⋅ 
 

+                   (16) 

[ ]1tanh ,k C k k cC W h u b−
 ′= + 
 

                  (17) 

The two layers are then composed to determine the information to be stored 
as the cell state. The operator * denotes point-wise multiplication. The point-wise 
multiplication of the input gate and the vector kC  of the new candidate values 

( )k ki C∗   gives the amount of information to be added to the LSTM cell state. 
This result is added with the result of the forget gate kf  multiplied with pre-
vious cell state ( )1k kf C −∗  to produce the current cell state kC . 

1k k k k kC f C i C− + ∗= ∗                      (18) 

Finally, the output of the LSTM cell is calculated using a sigmoid and a tanh 
layer, whereby the sigmoid layer determines the part of the cell state which will 
be present in the output whereas tanh layer shifts the output in the range of [−1, 
1]. The results of the two layers undergo point-wise multiplication to produce 
the output kh  of the cell. 

[ ]1,k o k k oo W h u bσ −
 ′= +


⋅ 


                  (19) 

( )tanhk k kh o C∗=                       (20) 

( )k ky h= Φ                         (21) 

where 2ˆky ∈  is the cell output which corresponds to the state vector predic-
tion for time-step k. 0h  is initialised in this study by using 0y . 

The regressors required to predict { }ˆ 1, ,ky p∈   are henceforth represented 
by { }0 0 1: , , ,k ky u uφ −=  , and they are introduced into the LSTM in a fashion 
illustrated in Figure 2(a). Equation (22) below serves as a shorthand to describe 
the LSTM: 

( ) { }ˆˆ , 1, ,k LSTM ky f k pφ= ∈                  (22) 

An LSTM is characterized by the values of the weights and biases for the dif-
ferent gates Forget gate ( fW , fb ), Input gate ( iW , ib ), Output gate ( oW , ob ), 

cW , cb , and for all layers, and these values constitute the set of parameters. 
These parameters are learnt from training data by minimizing the predictive er-
ror of the model on the training set as determined through a user-specified loss 
function. The learning process is performed through the back-propagation 
through time (BPTT) algorithm that estimates the gradient of the loss function 
as a function of the weights, and an optimization algorithm that uses the calcu-
lated gradient to adjust the existing weights. The adaptive moment estimation 
algorithm (Adam) [26] is an example of an optimization algorithm that is widely 
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used. In the BPTT, the weights are initialized, the information is passed through 
the different gates, the output kh  and current cell state kC  are calculated, the 
gradient through back propagation through time at time step k are calculated 
using chain rule and finally using all gradients, the weights associated with input 
gate, output gate, and forget gate are updated. 

3.2. Data Acquisition 

For training the LSTM, a dataset which covers the whole operating range of the 
RO desalination plant was collected by perturbation of the manipulated variable, 
the feed pressure and recording the dynamic system response. A pre-defined 
sequence of the manipulated variable, { }, , 0, , 1f k KP k T∈ −  is introduced into 
the system and the dynamic response { }, , 0, , 1p k KM k T∈ − ,  

{ }, , 0, , 1p k KQ k T∈ −  is recorded. Such a signal for the feed pressure and the 
dynamic response for permeate flow rate pM  and permeate concentration px , 
total permeate quantity pQ  and permeate concentration pC  are shown in 
Figure 3 and Figure 4(a) and Figure 4(b), respectively. KT  denotes the final 
time-step for the perturbation experiment. The perturbation is sampled at t∆ . 

,p kQ , is the measured system output at time-step k after , 1f kP − , has been applied 
to the system for a period of t∆ . These correspondences of the input and output 
variables are referred to in machine learning terminology as labels, and the data 
set is thereafter constructed from both the experimental sequences and their as-
sociated labels. For the p-step ahead prediction problem, each data point thus 
takes the form { }1 1, , , ,k k k k py u u u+ + −  with the associated label { }1, ,k k py y+ + , 

{ }0, , Kk T p∈ − . KT p−  data points can thus be extracted from each expe-
rimental sequence. 

The input to the system, the feed water concentration is an uncertainty. 
Therefore, Gaussian noise was added to its signal before it was used to excite the 
system (Figure 3). 

Using the normal approach in machine learning, before training the LSTM, 
the labeled dataset is split into three parts with one part for training (data used 
for adapting the network weights), one part for validation and the last part for 
testing. 
 

 

Figure 3. Perturbating the manipulated variable, feed pressure. The feed concentration is 
modeled as a disturbance. 
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Figure 4. Dynamic system response to the perturbation signal in Figure 3. (a) The per-
meate flow rate and the permeate concentration; (b) The total permeate produced and the 
total permeate tank concentration. 

3.3. Nonlinear Model Predictive Control Problem 

The structure of the model predictive controller for a RO desalination system is 
shown in Figure 5. Briefly explained, the model predictive controller (MPC) de-
cides m control moves for the future, { }0 1, , mu u − , that minimizes an objective 
function over a finite prediction horizon of p steps by utilizing the dynamic sys-
tem predictions for those p steps, { }1ˆ ˆ, , py y . Typically, the objective function 
is chosen to penalize large control effort, which means higher power consump-
tion for the actuator, and discrepancies between the state vector and the 
set-point at each time instance. Constraints on input and output may also be 
factored into the MPC formulation. Since MPC performance depends on the 
quality of the system’s predictions, a reasonably accurate model obtained 
through system identification is crucial. 

The Equations (23)-(26) below describe the MPC problem 

{ } ( ) ( )0 1 1

1* *
, , , 1 0

ˆ ˆmin
m

p m
k k y k k k u ku u u k ky Q y uy Q uy

−

−
∆ ∆ ∆ = =

 ′ ′− − + ∆ ∆ 
 
∑ ∑



   (23) 

s.t. 

( ) { }ˆ 1, ,ˆ ,k LSTM kf k py φ= ∈                    (24) 

{ }min, max,, , 0, , 1k k ku u u k m ∈ ∈ −                  (25) 

{ }min, max,, , 0, , 1k k ku u u k m ∆ ∈ ∆ ∆ ∈ −                (26) 
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Figure 5. Schematic representation of a model predictive controller with full state feed-
back. 
 
where p +∈  is the prediction horizon, { }1, ,m p∈   the control horizon, 

2ˆky ∈  the prediction of the state vector for the discrete-time step k obtained 
from the LSTM, L̂STMf  described in Equation (16), * 2

ky ∈  the set-point at 
time-step k, 2

ku ∈  the manipulated vector for time-step k, 1k k ku u u −∆ ≅ −  
the discrete-time rate of change of the manipulated vector which corresponds to 
the control action size at time-step k, ( ) ( )22 2,y uQ Q ×∈   symmetric positive 
semi-definite weight matrices, and ( ) ( )42

min, max, min, max,, , ,k k k ku u u u∆ ∆ ∈   the 
lower and upper limits for u∆  and the rate of change of u∆  at time-step k. 

Within this formulation, no changes within actuator position are assumed 
beyond the time-stage 1m − , i.e., { }1 0, 0, , 1m m ku u k p m− +∆ = ∆ = ∈ − − . 

In general this problem of optimization is not convex and therefore does not have 
special structures suitable for global optimality. Therefore, this is a Non-Linear Pro-
gramming (NLP) problem, and it can be solved with modern off-the-shelf solvers. 
For every step of the time, this problem is solved to yield the optimal control 
chain for that time-step, { }0 1, , mu u∗ ∗

−∆ ∆ . The first element, 0u∗∆ , is applied to 
the system until the next instant of sampling, where the problem is again re-
solved to yield another optimal control sequence. This process is then repeated 
in the form of a moving horizon. The complete procedure of the model predic-
tive control is shown in Table 1. 

4. Results and Discussions 

The results will be discussed in two parts, the first part is about the results of the 
system identification and the second part describes the closed loop results for the 
MPC. 

4.1. Model Identification Results 

To measure the LSTM model predictive capability, we used the mean absolute 
error (MAE), the root mean square error (RMSE) as well as the correlation coef-
ficient ρ. The model is implemented in Python environment on a PC with Intel 
(R) Core (TM) E5-2620 CPU, 62 GB memory. The training for 10 epochs took 
1.45 s and the prediction for the test data of 1871 data points, about 0.02 s and 
did not show significant improvement after five epochs. Figures 6(a)-(d) show 
the validation MAE loss functions for the permeate flow rate, permeate concen-
tration, total permeate flow and the total permeate concentration for 10 epochs.  
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Figure 6. Loss functions of the (a) permeate flow rate pM ; (b) permeate concentration 

pX ; (c) total permeate flow quantity pQ ; (d) total permeate concentration pC . 

 
Table 1. NMPC algorithm. 

Given 
Model f, initial conditions x(0), prediction horizon p, control horizon m, 
sampling time Δt, and weighting matrices Q and R 

Step 1 At the current sampling time kt , set ( ) ( )1k kx t t− ←  

Step 2 
Solve Equations (23)-(26) for a sequence of m optimal input variables 

( ) ( ) ( ){ }1 , 2 , ,U U U m
 

Step 3 Set ( ) ( )1ku t U←  and inject the input to the plant 

Step 4 At 1kt + , obtain the plant measurement my  

Step 5 Corresponding to my , estimate the states ( )*
1kx t +  

Step 6 set 1k kt t +←  

Step 7 Shift the prediction horizon p forward and repeat Step 1 

 
A sharp drop in the MAE in the first a few iterations is shown. The training 
cycles stopped after 10 epochs with a smallest validation MAE value for the 
permeate flow rate, permeate concentration, total permeate flow and the total 
permeate concentration of 0.030, 0.0355, 0.0.0052 and 0.0039, respectively. 

The hyperparameters in the prediction model such as the learning rate, batch 
size, dropout filtersize etc., need to be explored carefully to achieve the best pre-
diction results. We utilize Bayesian optimization to search for these hyperpara-
meters efficiently. From the Bayesian optimization, the best LSTM for system 
identification was found with the key parameters shown in Table 2. 

Table 3 illustrates the model performance of the proposed method. Benefiting 
from the temporal convolutional architecture, dilated convolution and the resi-
dual unit, the method achieves remarkable predictive accuracy for the permeate 
flow rate, total permeate flow, permeate concentration and the total permeate 
concentration. The smaller the RMSE of the model on the test data, the better its 
general predictive power. 
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Table 2. Key hyperparameters of the LSTM. 

Hyperparameter Value 

Number of LSTM layer 3 

Number of Hidden layers 50 

Number of dense layers 1 

Dropout rate 0.2 

Batch size 250 

Learning rate 0.001 

 
Table 3. Model performance on the test data based on correlation coefficient and root 
mean square error (RMSE). 

Parameter Root Mean square Error Correlation Coefficient 

Permeate flow rate [L/min] 0.0083 0.996 

Permeate concentration[g/L] 0.0012 0.983 

Permeate flow quantity [L] 0.0023 0.996 

Total permeate tank concentration [g/L] 0.0052 0.983 

 
Figure 7(a), Figure 8(a), Figure 9(a) and Figure 10(a) reveal a good fit of the 

LSTM to the training data for the permeate flow rate, total permeate flow, per-
meate concentration and the total permeate concentration, respectively, and tes-
tifies to the model’s ability to reflect highly dynamic outputs from highly dy-
namic training data. The validation to determine the predictive capability of the 
model on a different data set was performed and Figure 7(b), Figure 8(b), Fig-
ure 9(b) and Figure 10(b) show that the model succeeded in capturing the gen-
eral trends for previously unseen test data for the permeate flow rate, total per-
meate flow, permeate concentration and the total permeate concentration, re-
spectively. 

4.2. LSTM-Based MPC Closed-Loop Control Performance 

The MPC controller in this study was implemented in Python version 3.6.5 
through the scipy.optimize.minimize function, and the sequential least squares 
quadratic programming (SLSQP) algorithm was selected as the option for this 
solver. 

The parameters for the MPC controller were set as shown in Table 4 and its 
main objective was to track a target set point trajectory as fast and as smooth as 
possible. The LSTM-based system was compared to a system which uses the true 
model of the RO desalination system and the results will be discussed in the fol-
lowing. 

The response graphs in Figure 11 show that the LSTM-based MPC strategy 
successfully tracks the signal showing the robustness and successful set point 
tracking ability of the controller employed to RO desalination system. To be able 
to compare the performance of the two controllers quantitatively, we designed a  
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(a) 

 
(b) 

Figure 7. System identification performance of the optimised LSTM for the permeate 
flow rate, pM . (a) Training performance of the optimised LSTM; (b) Validation perfor-

mance of the optimised LSTM on test data. 
 
Table 4. Parameter settings for the model predictive controller. 

Parameter Description Value 

ns Simulation Length 100 min 

p Prediction Horizon 30 steps 

m Control Horizon 10 steps 

min,ku  
Lower and upper bounds for the control action at time-step k 

2500 kPa 

max,ku  7000 kPa 

min,ku∆  
The rate of change of the control action at time-step k 

10 kPa 

max,ku∆  100 kPa 

yQ  
The weight matrices for the controller, Qy and Qu 

1 

uQ  20 

,p dM  Upper limit of the permeate flow concentration 3 g/L 
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(a) 

 
(b) 

Figure 8. System identification performance of the optimised LSTM for the total per-
meate flow, pM . (a) Training performance of the optimized LSTM; (b) Validation per-

formance of the optimised LSTM on test data. 
 
performance metric I given in Equation (28). This metric gives an indication of 
how good the LSTM-based MPC is compared to the MPC, which uses the full 
RO desalination system model as the predictive model. 

( ) ( )* *
1

ˆ ˆns
k k y k k k u kkJ y Q y uy uy Q

=

 ′ ′= − − + ∆ ∆ 
 

∑             (27) 

LSTM1 100%
J J

I
J
− = − ∗ 

 
                   (28) 

For the target set point trajectory shown in Figure 11, the performance metric 
I for the LSTM-based MPC was 98.7%I =  which shows slight deviations but a 
very good performance. 

The results of the permeate concentration in Figure 12 shows that the model 
predictive controller could achieve close set point tracking (Figure 11), while 
staying in the required constraints of the permeate concentration. 
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(a) 

 
(b) 

Figure 9. System identification performance of the optimised LSTM for the permeate 
concentration, pX . (a) Training performance of the optimized LSTM; (b) Validation 

performance of the optimised LSTM on test data. 

5. Conclusion 

A nonlinear model predictive controller for RO desalination systems has been 
presented. To take model uncertainties, constraints, nonlinear dynamics into 
account, the system utilizes an LSTM Network as the predictive model. The 
LSTM can capture complex nonlinear dynamic behavior and provide long-range 
predictions even in the presence of disturbances. The main aim was to control 
the permeate flow rate obeying the constraints on the permeate concentration by 
manipulating the feed pressure. The LSTM based MPC was tested on reference 
signals which exhibits, the possible nonlinear process dynamics occurring inside 
a real RO desalination plant. It can be seen from the response graphs that the 
NMPC strategy successfully tracks the reference signal. These results illustrate 
and prove the tracking ability of LSTM-based MPC controller. Almost offset free 
and very close set point tracking is obtained using the strategy. 
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(a) 

 
(b) 

Figure 10. System identification performance of the optimised LSTM for the total per-
meate concentration, pC . (a) Training performance of the optimized LSTM; (b) Valida-

tion performance of the optimised LSTM on test data. 
 

 

Figure 11. Closed loop results of the two model predictive controllers. Measured CV is 
the result of the MPC with the true model and measured CV-LSTM is the result of the 
MPC with the LSTM as predictive model. 
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Figure 12. Closed loop results for the permeate concentration, where the red line is the 
maximum allowed concentration. 
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