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Abstract 
The effects of the polarization potential serve to model spectra of alkaline 
atoms. These effects have been known for a long time and notably explained 
by the physicist Max Born (1926). The experimental knowledge of these alka-
line spectra enables us to specify the values of these quantum defects. A sim-
ple code is used to calculate two quantum defects for which lδ  can be dis-
tinguished as: sδ  0l =  and pδ  1l = . On the theoretical part, it is possible 
to have an analytical expression for these quantum defects lδ . A second code 
gives the correct wave functions modified by the quantum defects lδ  with 
the condition for the principal number: * 1ln n δ= − ≥ . It is well known that 

0lδ →  when the kinetic momentum 4l ≥ , and for such momenta the 
spectra turns out to be hydrogenic. Modern software such as Mathematica, 
allows us to efficiently generate the polynomes defining wave functions with 
fractional quantum numbers. This leads to a good theoretical representation 
of these wave functions. To get numerically the quantum defects, a simple 
code is given to obtain these quantities when the levels assigned to a transi-
tion are known. Then, the quantum defects are inserted into the arguments of 
the correct modified wave functions for the outer electron of an atom or ion 
undergoing the short range polarization potential. 
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1. Introduction 

If one admits that the linear response to an external electric field E is: Dα=p E  
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the energy associated with this external field is then: 

d dW = − ⋅p E E  that is: 
2 2

42 2
D DeW

r
α α×

= − = −
E

. 

This gives the correct expression for the polarization potential, a short range 
attractive potential deeper than the Coulomb potential, for short radial distance 
r. 

Using experimental spectroscopy and neglecting fine structure splittings, it is 
possible to measure the wavelengths of the transitions of these heavier atoms. 
These transitions depart from those of the non-relativistic of the hydrogen atom: 

2 2

1 1
2
Hyd

n m nm

R
E E h

n m
ν  − = = − 

 
. 

The regular spectrum of hydrogen is modified to deal with the experimental 
alkaline atoms spectra, such as Na, Li, or Mg, with an analytical approach intro-
ducing the quantum defects: * l

n n δδ= − . 
The modification for an 1l l+ →  electron jump is given by: 

( )
( )( )2 2

1

1 1
2
Hyd

n m
l l

R
E E

n mδ δ +

 
 − = − − − 

. 

It is possible to model the atoms with the so-called “optical electron” scheme, 
meaning that far from the cloud of the remaining electrons, appears a dipolar 
force. The compound cloud with the Z protons of the nucleus and the remaining 

1Z −  electrons interacts with the outer “optical” electron, acts as a dipolar inte-
raction, thus repelling the compound cloud. 

Using quantum defect theory, the quantum defects can be calculated two fold 
if the transition in an alkaline atom is observed experimentally two equations, 
suffice to specify the values of sδ  and pδ . 

Thus for an p s→  transition, 

( ) ( )
*

2 2

1 1
2
Hyd

nm
s p

R
h

n m
ν

δ δ

 
 = × −
 − − 

.  

The theory of these defects is explained when one introduces the polarization 
potential, which acts in the same sign as the Coulomb potential. Its expression is:  

( ) 42
D

pV r
r
α

= −  atomic units and 3
0D aα ∝  is the static dipole polarizability. 

The polarization effect on the outer electron, assuming nearly hydrogenic states, 
can be expressed as: 

( ) 4

1
2
DE nl

r
α

∆ = − × . 

Using known results [1] of the expectation value of: 4nl r nl− , the correc-
tion to the Coulomb potential is: 
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( )
( )( )

( )

( )

4 2

2
5

2

3 11
1 1 32 2 1
2 2 2

1
2

coreHyd D
Hyd

Hyd

l

Z n l lR
E nl R

n l l l l l n

R

n

α

δ

− +
∆ = − × − ⋅ ×

     − + + +     
     

= − ×
−

    (1) 

Solving this equation using a limited development, thus assuming that 1l

n
δ

< , 

the theorical quantum defect lδ  is fixed. Once the theorical lδ  is set, a  

simple code furnishes the numerical quantum defects associated with a spec-
troscopically identified transition wavelength of an alkaline atom. The compari-
son of these two values enables us an estimate the static polarizability Dα  for 
the considered atom species. 

2. Experimental Quantum Defects for MgI and Ions MgII 
MgIII, NaI, NaII, NaII 

For alkaline atoms, such as Na, Ca, Li, Mg, K, and their ions, it is possible to 
measure the wavelengths associated with identified transitions. These can be 
found in tables Moore (1949) [2]. It is easy to use symbolic software like Ma-
thematica, and solve two equations, if one wants to have two quantum defects: 

sδ  and pδ , that requires two identified transitions of any alkaline, for instance 
for the Na (sodium) atom and Mg (magnesium). These data are listed in Table 1 
and Table 2. 

Using Mathematica syntax gives the way to proceed with the experimental 
determination of quantum defects sδ  and sδ  and is quite simple. Neglecting  

 
Table 1. Values of NaI quantum defects l = 0, 1, 2. 

NaI lδ  n = 3 n = 4 n = 5 n = 6 

l = 0 1.373 1.357 1.352 1.349 

l = 1 0.883 0.867 0.862 0.859 

l = 2 0.010 0.011 0.013 0.011 

l = 3 - 0.000 −0.001 −0.008 

 
Table 2. Values of MgI quantum defects l = 0, 1. 

MgI lδ  n = 4 n = 5 n = 6 n = 7 

l = 0 1.507 1.526 1.521 1.519 

l = 1 1.2068 1.258 1.253 1.249 

1At this stage, when the quantum defect is defined one can equalize the quantity:  

( )
( )22

1 10.5
l

E nl
n n δ

 
∆ = × −  − 

. This exactly represents the difference between the hydrogen energy le-

vels from the deeper energy levels associated with the effect of the polarization potential. This leads to an 

estimate of the static polarizability Dα  by solving the following set of equations. Dealing with charged 

ions one has to change the factor 20.5 0.5 Z→ × . 
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fine structure, one can find in tables of data [2], two transitions, observed in ex-
perimental spectroscopy such as for MgI that is neutral Magnesium: 

MgI 3 3s p→  and 4 3p s→  that is in atomic units: 

3 3 0.159715s pE∆ =  and 3 4 0.224959s pE∆ =  assuming that the quantum de-
fects depend on the value of the momenta 0l =  and 1l =  that is an p s→  
transition. 

One can perform the calculation of the two quantum defects by using the 
Solve function common in many symbolic softwares (Mathematica, Mapple, 
Matlab, Python). It is necessary to use two independent equations for two dis-
tinct quantum defects. 

( ) ( )2 2

1 1Solve 0.5 0.159715,
3 3s p

myapp
δ δ

  
  = × − ==
  − −  

       (2) 

( ) ( )
{ }2 2

1 10.5 0.224959, ,
3 4

s p
s p

δ δ
δ δ

 
 × − ==
 − −   

          (3) 

The two variables are: ,s pδ δ . A lot of solutions appear, it is easy two isolate 
the good set of variables. 

The numerical results are the following: 
0.95021, 4.33938, 0.95021p s pδ δ δ= = =               (4) 

1.66062, 3.49592, 3.47752s p sδ δ δ= = =               (5) 

3.49592, 2.52248, 4.77693 2.09315s s p iδ δ δ= = = − ×          (6) 

The complete set of solutions contains imaginary terms for the defects: thus 
ignored, 4.33938 3,4s nδ = ≥ =  is out of the range. It remains the correct 

1.66062sδ =  and 0.95021pδ = . 
This solve function can be used for any couple of identified transitions, for 

example charged ions: MgII, or MgIII MgIV, that is Mg+, Z = 1, Mg++, Z = 2, 
Mg+++, Z = 3. 

( ) ( )
2

3
3 4

3
2

l l
lE nl O

n n
δ δ

δ∆ = − − +                   (7) 

Using the first order of the development, requiring a small quantum defect 

2lδ =  (a D state), and setting 0.5HydR− =  atomic units and 1coreZ = . 

( ) 3
lE nl

n
δ

∆ = −                          (8) 

( )
( )( )

( )

4 2

5

3 1
0.5

1 1 32 1
2 2 2

coreD
Z n l l

E nl
l l l l l n

α − +
∆ = − ×

     − + + +     
     

          (9) 

Some simple Mathematica instructions, reproduce quickly the relation written 
in Equation (10) [1]. 

2

2 2

2
105l D
n

n
δ α=

−
= ×                       (10) 
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The results obtained with a small code are in accordance with Equation (10) 
in [1]: 

2l =                            (11) 
3nx ≥                            (12) 

( ) ( )
2

3
4 3

3,
2lEnl nx O

nx nx
δ δδ δ∆ = − − +               (13) 

( ) 3, l
lEnl nx

nx
δ

δ∆ =                       (14) 

D states 2l =                         (15) 

Jungen formula                       (16) 
2

2

2
105

D
D

nx
nx

α
δ

× −
=                       (17) 

Mathematica                        (18) 

( )
( )( )

( )

4 2

5

3 1
, ,

1 1 31
2 2 2

D hyd core
pol D

R Z nx l l
U nx l

l l l l l nx

α
α

× − +
= −

     − + + +     
     

         (19) 

( ) ( )Solve , , , ,l pol D lEnl nx U nx lδ α δ ∆ =               (20) 

solution is: 2

0.01904760.00952381l Dnx
δ α = − × 

 
         (21) 

For 4n =  and 2l =  
my solution 2 0.00833333l Dδ α= = ×                (22) 

Jungen value 2 0.00833333l Dδ α= = ×               (23) 

Assuming a small quantum defect: 2 0.011lδ = =  and 4n =  for Na+ atom, 
this equation enables us to give an estimate of the static polarizability 3

01.4D aα = . 

3. Some Remarks on the Laguerre Polynomial  
Mathematica Function LaguerreL 

Table 3 below shows how the quantum defects vary for an atom like Magnesium 
and its ions. The greater coreZ  is, the greater the quantum defects are. These 
data are taken from the Topbase on line database. 

To deal with quantum wave functions, one uses the following form ( )a
nL x  

called the generalized Laguerre polynomial, which satisfies the differential equa-
tion: 

( )1 0xy a x y ny′′ ′+ + − + =                    (24) 

The equation below shows the hydrogenic wave functions; it is given because 
it serves to show how the quantum defect wave functions are modified from 

( ), ,H n l rΨ . 

( ) ( )
( ) 2

1 ! 2 2 2, , 1, 2 1,
!

l

H

n l r r rn l r e LaguerreL n l l
n l n n nn

−− −      Ψ = × × − − +     +      
 (25) 

The LaguerreL polynomial is written as given in the Mathematica software 
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Table 3. Values of Mg ions quantum defects l = 0, 1 as function of the coreZ . 

Mg ions coreZ  sδ  pδ  
12 1.544 0.982 

11 1.069 0.700 

10 0.829 0.417 

9 0696 0.696 

7 0.517 0.426 

6 0.307 0.233 

5 0.225 0.154 

4 0.138 0.071 

3 0.071 0.015 

2 0.071 0.015 

a ( )coreZ e×  is the charge that moves the optical electron. The building of the wave function for low quantum 

numbers: * 1n n δ= − ≤  breaks down. A relativistic theory is needed and is an open research problem. 

 
where the ( ), ,H n l rΨ  serves to represent the hydrogen wave functions. If one 
deals with an hydrogenic ion with a nuclear charge Z the radial r has to be 

changed to r
Z

. When solved with correct physical parameters using atomic 

units: 1ee m= = = , this equation for the motion of a bound electron gives the 
discrete spectrum for the bound states: 

2

1
n

= . 

The total energy H is H T V= +  and the full solution for the radial part is 
obtained using spherical coordinates ( ), ,r θ φ . This is called the Schrodinger 
wave equation and the bound states are obtained by solving: 

( )( ) ( ) [ ]Solve , , , , 0,H HH n l r n l r Ψ − Ψ =    

is easily solved, using two Mathematica functions. The Solve function, when 
correctly written, gives the correct solution for the attractive Coulomb potential  

2

1
r

−  with the centrifugal term 
( )

2

1l l
r
+

− . 

In the complete Schrodinger equation, the angles θ  and φ  separate, from 
the variable r, it is well known that the eigen function for the angles is the spher-
ical harmonics: ( ),lmY θ φ . 

4. Building of the Wave Function with a Principal  
Quantum Number ln n∗ = −δ  

The Case of the Alkaline Optical Electron Radial Wave Functions 

For what concerns the construction of a wave function using the non integer 
principal quantum number, defined as: ln n δ∗ = − , we need to change the ar-
guments, of the well built LaguerreL polynomial. In any version of the Mathe-

https://doi.org/10.4236/jamp.2020.811193


A. de Kertanguy 
 

 

DOI: 10.4236/jamp.2020.811193 2607 Journal of Applied Mathematics and Physics 
 

matica software, the l momentum has to be changed to * ll l δ= −  together with 
for the projection of the momentum * * *l m l− ≤ ≤ . With this software, it possi-
ble is to obtain a correct result, for non integer arguments: for instance the  

1 ,1.4 0.141185
2

LaguerreL   =  
 gives good numbers. 

I will simply change the arguments of the Laguerre polynomial: 

( ) ( )
( ) 2

1 ! 2 2 2, , 1, 2 1,
!

l

H

n l r r rn l r e LaguerreL n l l
n l n n nn

−− −      Ψ = × × − − +     +      
 (26) 

* ln n n δ→ = −                        (27) 

* ll l l δ→ = −                         (28) 

( ) ( )
( )

*

* * *2
* * * * **

1 ! 2 2 2, , 1, 2 1,
!

l

Alk

n l r r rn l r e LaguerreL n l l
n l n n nn

−− −      
Ψ = × × − − +     +      

 (29) 

One may notice that some arguments do not change with the transformation 

* * *l l ln n n l l l lδ δ δ→ = − → = − → = −  that is ( )1 !n l− − . 
The factorial function with Mathematica, works for any number:  

[ ] [ ]2.325 2.325! 2.75407Factorial N= =  and the Laguerre polynomial: that is 
the generalized [ ], ,LaguerreL n a x  function n,l, fractional arguments. 

If one deals with an ionic core of charge Z, one has to change the r radial va-

riable into r
Z

 in the ( )* *, ,Alk n l rΨ . 

For what concerns the calculation of the quantum defect wave function it is 
possible to extend continuously the transformation to * ln n n δ→ = − . 

5. Conclusions 

The author shows how the quantum theory, with the use of wave functions tak-
ing into account the modification of the quantum numbers, as explained by 
Kostelecky and Nieto [3] provides a simple framework for computing atomic 
and ionic wave functions using current symbolic software. 

This is a consequence of the extreme refinement of symbolic softwares now 
available: Mathematica, Mapple, MatLab, Python. The old quantum theory ex-
posed by Max Born [4] explains that the effect of the polarization potential re-
sults in a precession of the elliptical trajectory of the electron around its perihe-
lion. This work shows how to simply produce, with the help of a modified 
Schrodinger equation, the probability distribution for the optical electron near 
the nucleus of alkaline atoms and their ions. Our approach to this problem is 
self-consistent that is: a simple code is given, this enables to calculate the quan-
tum defects associated with a spectroscopically identified transition of an alka-
line atom such as MgI Equation (2), then another code is used to construct the 
quantum wave functions using these set of quantum defects Equation (29), as 
shown in the figures. 

Our approach is coherent: it conciliates the calculation of the quantum defects 
coming from spectroscopical data, for which exist databases, with the building of 
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the wave functions. These change from those of hydrogen with the the ,n l  set 
of quantum numbers. The change means that the set quantum numbers used are 

* *,l ln n l lδ δ= − = − . It is the simple and easy way to determine the static polari-
zability Dα  of many atoms, these quantities are still an open research problem, 
beyond the scope of this paper. 

Figure 1 shows the hydrogen wave function ( )4, 0,Hyd n l rΨ = = , (a S state), 
and two alkaline wave functions ( )* *3.75, 0.5,Alk n l rΨ = =  and  

( )* *3.1, 0.5,Alk n l rΨ = = . 
Figure 2 concerns P state, ( )4, 1,Hyd n l rΨ = =  and three wave functions 

( )* *4 , 1 ,Alk n l rδ δΨ = − = −  (with different δ ). 
The probability for the outer electron to be near the nucleus is enhanced, and 

illustrated as shown in Figure 1 and Figure 2, it is a consequence of the attractive  

polarization potential ( ) 42
D

pV r
r
α

= −  effect dominating the Coulomb potential 

( )
2

c
eV r
r

= − . 

 

 
Figure 1. Red curve is the n = 4 l = 0 ( ), ,Hyd n l rΨ , green curve corresponds to ( )* *, ,Alk n l rΨ  * 3.75n = , * 0.5l =  with 

( ) 1I l = , the scarlet curve corresponds to ( )* *, ,Alk n l rΨ  * 3.1n = , * 0.5l =  with ( ) 1I l = , this curve shows clearly that the 

probability for the electron to be near the nucleus is greater than the hydrogen electron. 
 

 
Figure 2. Red curve is the n = 4 l = 1 hydrogen wave function ( ), ,Hyd n l rΨ , green, blue and scarlet curves correspond to the wave 

function ( )* *, ,Alk n l rΨ  * 4n δ= − , ( )* 1l I lδ= − + , r) with ( ) 1I l = , the higher is δ , the higher is the contribution of the alka-

line wave function near the nucleus, here obtained near the origin r = 0. 

https://doi.org/10.4236/jamp.2020.811193


A. de Kertanguy 
 

 

DOI: 10.4236/jamp.2020.811193 2609 Journal of Applied Mathematics and Physics 
 

Finally it is possible to build the difference function, here called:  
( ) ( ) ( )2 2, , , , , , ,l Alk l l Hdif n l r n l r n l rδ δ δ= Ψ − − −Ψ  and to give a correct illu-

stration of the effect inherent to the polarization potential ( )pV r . These are the 
main purposes of this article. 

6. Comments on the Figures 

Figure 3 contains S and P states representations of the hydrogen wave functions  

 

 
Figure 3. This shows how the introduction of the quantum defects in the wave function 

( )* *, ,Alk n l rΨ  differs from the hydrogen wave functions ( ), ,H n l rΨ  red curves. The 

first plot and the second represent respectively a S state and a P state for the hydrogen 
electron (red curve) and the other color curves describe the model alkaline electron. The 
third plot superposes all these. 
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and those of alkaline wave functions modified by the introduction of the quan-
tum defects 0lδ > . 

Figure 4 represents the square of the wave functions ( ) 2
3, 1,Hyd n l rΨ = =  

and ( ) 2
1.96, 0.96,Alk n l rΨ = = , these squared wave functions are the true 

probabilities for the electron of the hydrogen atom, and the optical electron to be 
near the nucleus, a proton or an ionic core with 1coreZ = . 

Figure 5 shows that the optical electron with its squared wave function 
( ) 2
3 , ,Alk l rδ δΨ − − , with 1.04δ =  and * 3 1.96n δ= − =  gets nearer to the 

nucleus than the electron of the hydrogen atom ( ) 2
3,1,Hyd rΨ . 

This is a consequencce of the attractive effect of the polarisation potential. It is 
not difficult to write a small code, taking into account the modification of the 
wave functions, using non integer *n n δ= −  and *l l δ= − , the limits of valid-
ity of the modified wave function: 

( ) ( )
( )

*

* * *2
* * * * **

1 ! 2 2 2, , 1, 2 1,
!

l

Alk

n l r r rn l r e LaguerreL n l l
n l n n nn

−− −      
Ψ = × × − − +     +        

 

 

Figure 4. The red curve is ( ) 2
3,1,Hyd rΨ  with the blue curve ( ) 2

3 , ,Alk l rδ δΨ − −  with 

1.04δ = . These curves are everywhere positive, showing the real probabilty functions for 
the electron of the hydrogen atom, and the optical electron of a model alkaline atom. 
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Figure 5. The difference function: ( ) ( ) ( )2 2, , , , , , ,l Alk l l Hdif n l r n l r n l rδ δ δ= Ψ − − −Ψ  is plotted, that 

is n = 3 S l = 0 and P l = 1 states of the hydrogen squared wave functions subtracted from the squared wave 
functions modified by different quantum defects ( 0 1,l lδ δ= = ). The greater the quantum defects are, the higher 
are the contributions of the polarization potential near the origin r = 0, that is near the core nucleus. 

 

 

Figure 6. ( ) ( )2 2
* *4,0, 4 0.9, 0.1,Hyd Alkr n l rΨ −Ψ = − =  and  

( ) ( )2 2
* *3,1, 3 1.35, 0.0.65,Hyd Alkr n l rΨ −Ψ = − = . These plots illustrate and isolate the 

quantum effect of the polarization potential ( )
2

42
D

pol
eV r

r
α

=  once subtracted the Cou-

lomb potential for hydrogen. 
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are * 1n n δ= − ≤  and * 0l l δ= − ≤ , this is well explained by two authors Kos-
telecky and Nieto with their factor: ( )*l l I lδ= − +  where the integer factor 
( ) 1I l =  or ( ) 2I l = , this transformation enables to obtain a continuous wave 

function: ( )* *, ,Alk n l rΨ  even when one deals with low quantum numbers n and 
high quantum defect lδ . Figure 6 illustrates the quantum strength of the polari-
zation potential alone, it can be visualized in the old quantum theory as a preces-
sion motion added to the elliptical trajectory described by the outer electron. 
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