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Abstract 
We present a simple description of classical and quantum light propagating 
through homogeneous conducting linear media. With the choice of Coulomb 
gauge, we demonstrate that this description can be performed in terms of a 
damped harmonic oscillator which is governed by the Caldirola-Kanai Ha-
miltonian. By using the dynamical invariant method and the Fock states re-
presentation we solve the time-dependent Schrödinger equation associated 
with this Hamiltonian and write its solutions in terms of a special solution of 
the Milne-Pinney equation. We also construct coherent states for the quan-
tized light and show that they are equivalent to the well-known squeezed 
states. Finally, we evaluate some important properties of the quantized light 
such as expectation values of the amplitude and momentum of each mode,  
their variances and the respective uncertainty principle. 
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1. Introduction 

For a long time, the old and fascinating problem (from classical and quantum 
viewpoint) of the interaction of light with matter has received considerable at-
tention of physicists. The story of the solution of this problem is a familiar one. 
Further, the solution of this problem has been of crucial importance for the de-
velopment of our understanding of nature. 

In order to obtain the basic concepts to study the classical and quantum beha-
vior of light we must take into account Maxwell’s equations. In the quantum 
case, the quantization of these equations is traditionally performed in free space 
or in empty cavities by associating a time-independent mechanical oscillator 
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with each mode of the electromagnetic field [1] [2]. In the past few years, consi-
derable attention has been devoted to the study of the properties (mainly quan-
tum aspects) of light propagating through material media. This great interest is 
partially due to the advent of modern optical materials and partially by the 
growth of experiments on quantum optics process taking place within material 
media [3]-[9]. Several different approaches have been employed to treat with the 
propagation of light waves in conducting material media [10]-[18]. 

The main purpose of this work is to present a simpler and clearer approach to 
describe the classical and quantum behavior of light propagating through ho-
mogenous conducting linear media without charge sources. In order to do this, 
we choose the Coulomb gauge and demonstrate that this description can be 
performed by associating a damped harmonic oscillator, which is described by 
the Cadirola-Kanai Hamiltonian [19] [20] [21] [22], with each mode of the elec-
tromagnetic field. Further, by using the dynamical invariant method developed 
by Lewis and Riesenfeld [23] and the Fock states representation, we easily solve 
the Schrödinger equation associated with this Hamiltonian and write its solu-
tions in terms of a particular solution of the Milne-Pinney equation [22] [24] 
[25] [26]. Yet, by employing these solutions we construct coherent states for the 
quantized light and show that they correspond to the well-known squeezed 
states. Finally, we use Fock states and coherent states to calculate some impor-
tant quantum properties of quantum light such as expectation values of the am-
plitude and momentum of each mode, their variances and the respective uncer-
tainty principle. 

We organize this work as follows. In Sec. 2, by making use of the Coulomb 
gauge we first discuss the classical propagation of light in liner conducting me-
dia. We study the quantum behavior of light propagating in conducting media in 
Sec. 3. In this section, we use the invariant method and Fock states to solve the 
Schrödinger equation associated with the Caldirola-Kanai Hamiltonian and em-
ploy these solutions to derive some physical quantities of quantum light. In Sec. 
4, we construct coherent and squeezed states for the quantized light and calcu-
late the expectation values of the coordinate and momentum, their quantum va-
riances and the corresponding uncertainty principle. In Sec. 5, we conclude our 
work with a short summary. 

2. Classical Light Propagation in Conducting Media 

In this section, we present a simple classical description of the propagation of 
light in linear conducting media. To do this, let us write the Maxwell’s equations 
for the electromagnetic field in conducting linear media in the absence of charge 
distributions as [1] [2] 

0,∇⋅ =D                           (1) 

,
t

∂
∇× = −

∂
BE                          (2) 

0,∇⋅ =B                            (3) 
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,
t

∂
∇× = +

∂
DH J                         (4) 

where ε=D E , µ=B H  and σ=J E . Here, ε , σ  and µ  are respec-
tively the electric permittivity, conductivity and magnetic permeability of the 
media. In general, the electric permittivity and the magnetic permeability are 
complex; however, we will restrict our discussion to materials where they are 
real [27] [28]. Now, in the Coulomb gauge [1] [2] the divergence of the vector 
potential A  is zero and the scalar potential is null in the absence of sources. 
Consequently, both the electric E  and magnetic B  fields are determined 
from the vector potential as 

and
t

∂
= ∇× = −

∂
AB A E                    (5) 

It is worth remarking that in the Coulomb gauge the vector potential is purely 
transverse [1] [2]. Therefore, it is easy to verify that it satisfies the damped wave 
equation 

2
2

2 0.
t t

µσ µε∂ ∂
∇ − − =

∂ ∂
A AA                    (6) 

Now, in order to obtain a solution of this equation we consider light waves in 
a certain volume of space. So, by the familiar procedure of separation of va-
riables, we write the vector potential in terms of the mode ( )lu r  and ampli-
tude ( )lq t  functions of each cavity mode [1] [2] as 

( ) ( ) ( ), .l l
l

t q t= ∑A r u r                      (7) 

The substitution of this equation into wave Equation (6) yields 

( ) ( )
2

2
2 0,l

l lc
ω

∇ + =u r u r                      (8) 

2
2

2 0,l l
l l

q q
q

tt
σ ω
ε

∂ ∂
+ + =

∂∂
                     (9) 

where lω  is the natural frequency of the mode l and ( )1 21c µε=  is the ve-
locity of light in the medium. 

In the follows let us discuss the solutions of Equations (8) and (9). The solu-
tion of Equation (9) can be written in the form 

( ) ( )2e sin ,t
l l l lq t A tσ ε δ−= Ω +                   (10) 

where lA  and lδ  are constants to be determined by the initial conditions and 

lΩ  is given by 
2

2 2 .
2l l
σω
ε

 Ω = −  
 

                      (11) 

Here we have only considered the oscillatory solutions, that is, 2 0lΩ > . At 
this point, it is worth noticing that the equation of motion (9) can be directly 
obtained from the classical Hamiltonian 
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( )
2

2 21e e ,
2 2

t tl
l l l

p
H t qσ ε σ εεω

ε
−= +                 (12) 

where the coordinate lq  and momentum lp  are canonically conjugate va-
riables. This Hamiltonian is the well-known Caldirola-Kanai Hamiltonian, 
which has been used in the literature to study time-dependent systems in various 
areas of physics [29] [30] [31] [32] [33]. Hence, the total Hamiltonian of the 
electromagnetic field is a sum of individual Hamiltonians corresponding to each 
mode, that is, llH H= ∑ . 

In the following discussion we focus our attention on the solution of Equation 
(8). Considering that the electromagnetic field is contained in a certain cubic 
volume V of side L of nonrefracting media, the mode functions are required to 
satisfy the transversality condition ( ) 0l∇⋅ =u r  and to form a complete or-
thonormal set. Furthermore, assuming periodic boundary conditions on the 
surface, the mode function ( )lu r  can be written in terms of plane waves as [1] 
[2] 

( ) 3 2 ˆe ,li
l lL eν ν

± ⋅−= k ru r                      (13) 

where 1 3L V=  is the size of the cube, l l cω=k  is the wave vector, and l̂eν  
are unit vectors in the directions of polarization ( 1,2ν = ), which must be per-
pendicular to the wave vector because of the transversality condition. Now, as 
the mode ( )lu r  and amplitude ( )lq t  functions are completely determined, 
we can obtain the vector potential ( ), tA r  (see Equation (7)) by using Equa-
tions (10) and (13). Hence, using Equations (7) and (13) we can write, for each 
mode l, the electric and magnetic fields (see Equation (5)), as 

( ) ( )
1

3
,2

2

e ˆ, e ,l
t

i
l l

l
t e p t

L

σ ε

ν
νε

−
± ⋅

=

= − ∑∑ k rE r                (14) 

( ) ( ) ( )
1,2

3 2
ˆ, e ,li

l l l l
l

it e q t
cL ν

ν
ω ± ⋅

=

= ×∑∑ k rB r k             (15) 

where we have used that ( ) e t
l lp t qσ εε=  . 

Therefore, the above results give us a complete classical description of the 
propagation of light in conducting linear media since the electric E  and mag-
netic B  fields are completely specified. Here it is worth noticing that in the 
previous description we have associated a damped harmonic oscillator to the 
each mode of the electromagnetic field. Let us also observe that in the absence of 
the dissipation, that is, 0σ =  the Hamiltonian (12) reduces to that of the stan-
dard harmonic oscillator with the permittivity playing the role of the mass of the 
mechanical oscillator. As a consequence, all of our previous results coincide with 
those of the propagation of light in empty cavities. 

3. Quantum Light Propagation in Conducting Media 

In order to obtain a quantum description of light propagating in a conducting 
linear media we need to quantize the electromagnetic field. Now as the spatial 
mode functions ( )lu r  are completely determined, the amplitude of each nor-
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mal mode in Equation (7) needed to specify a particular field configuration is 
( )lq t  [1]. Thus, for each canonical operator lq  the electric E  and magnetic 

B  fields operators may be derived from the potential vector A  by using Equ-
ation (5). So, let us move our attention to the canonical operator ( )lq t  in order 
to obtain the vector potential. For this purpose, let us solve the Schrödinger equ-
ation associated with the Hamiltonian (12) 

, , ,lH t i t
t
∂

Ψ = Ψ
∂
                      (16) 

where the coordinate ( )lq t  and the momentum lp  are now canonically con-
jugate operators satisfying the relation [ ],l lq p i=   with lp i q= − ∂ ∂ . We 
can obtain the solutions of this equation with the aid of the dynamical invariant 
method developed by Lewis and Riesenfeld [23]. According to this method, we 
must look for a nontrivial Hermitian operator ( )lI t  which satisfies the equa-
tion 

[ ]d 1 , 0.
d

l l
l l

I I
I H

t i t
∂

= + =
∂

                   (17) 

Then, the solutions of the Schrödinger Equation (16) can be written in terms 
of orthonormalized eigenstates ,

ln tφ  of ( )lI t  (constant of motion) 

( ) , , ,
l l ll n n nI t t tφ λ φ=                     (18) 

and the phase functions ( )
ln tβ  as 

( ), e , .nl
l l

i t
n nt tβψ φ=                      (19) 

Here, the 
lnλ  are time-independent eigenvalues and the phase functions 

( )
ln tβ  are derived of the equation 

( )
( )

d
, , .

d
l

l l

n
n l n

t
t i H t t

t t
β

φ φ∂
= −

∂
                (20) 

with the orthonormality condition , ,
l l l ln n n nt tφ φ δ′ ′= . In what follows, let us 

consider a quadratic invariant that satisfies Equation (17). Here, we assume an 
invariant in the form 

( ) ( )( )
2

21 ,
2

l
l l l l l

l

q
I t p t qρ ρ

ρ

  
 = + − ∧ 
   

              (21) 

where ( )l tρ  is a time-dependent real function satisfying the Milne-Pinney eq-
uation [24] [25] 

( ) ( ) 2
2 3

1 ,l l l l
l

t tσρ ρ ω ρ
ε ρ

+ + =
∧

                   (22) 

where the dots represent time derivatives and ( )t∧  is given by 

( ) e .tt σ εε∧ =                         (23) 

We must now find the eigenstates of the invariant ( )lI t . To this end, we will 
use the Fock representation since, as is well-known, the quantum behavior of 
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some quantum systems, in particular quantum harmonic oscillator-type systems, 
is most obvious in Fock ststes, which are states with specific numbers of energy 
quanta. Then, let us introduce annihilation and creation-type operators ( )la t  
and ( )†

la t  defined by [16] [23] 

( ) ( )( )
1 21 ,

2
l

l l l l l
l

q
a t i p t qρ ρ

ρ
  = + − ∧  

   




            (24) 

( ) ( )( )
1 2

† 1 ,
2

l
l l l l l

l

q
a t i p t qρ ρ

ρ
  = − − ∧  

   




            (25) 

with 

( ) ( )†, 1.l la t a t  =                        (26) 

In terms of these operators, the invariant (21) can be factored as 

( ) ( ) ( )† 1 .
2l l lI t a t a t = +  


                   (27) 

From Equations (26) and (27) we see that the eigenvalue equation for ( )lI t  
(see Equation (18)) can also be solved exactly, just as for harmonic oscillator in 
the time-independent case by using the Fock states ,ln t . So, defining the 
Hermitian number operator by †

l l lN a a=  so that , ,l l l lN n t n n t= , we find 
that 

( ) 1 .
2l lI t N = + 

 


                      (28) 

( ) 1, , ,
2l l l lI t n t n n t = + 

 


                  (29) 

( ) 1 2, 1, ,l l l la t n t n n t= −                    (30) 

( )1 2† , 1 1, .l l l la n t n n t= + +                   (31) 

From Equation (28) we see that the eigenstates of ( )lI t  are also eigenstates 
of lN  and vice versa. 

The next step is to find the phase functions given by Equation (20). By making 
the change , ,n lt n tφ →  and after performing some basic calculations, we get 
that 

( )
( ) ( )20

1 1 d .
2l

t
n l

l

t nβ τ
τ ρ τ

 = − +  ∧  ∫
               (32) 

We now consider a particular solution of the Milne-Pinney Equation (22) 
given by 

( )
( )

2

1 2

e .
t

l
l

t
σ ε

ρ
ε

−

=
Ω

                      (33) 

By inserting this equation into (32) we get that, 

( ) 1 .
2ln l lt n tβ  = −Ω + 

 
                    (34) 
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Therefore, the solutions of the Schrödinger Equation (16) can be written as 
( ), e , ,nli t

nl lt n tβψ =                      (35) 

with ( )nl tβ  given by (32). The general solution to the Schrödinger Equation 
(16) can be written as , ,

l
nl nl

n
t c tψΨ =∑ , where the coefficients nlc  are con-

stants. 
In the following, let us move our attention for the operators ( )la t  and 
( )†

la t  given by Equations (24) and (25). From the expressions of these opera-
tors, we obtain that 

( ) ( ) ( )†
1 2

,
2l l l lq t a t a tρ   = +    

                 (36) 

( ) ( ) ( )†
1 2 1 1 .

2l l l l l
l l

p t i i a t i a tρ ρ
ρ ρ

     = − ∧ − + ∧     
       



         (37) 

Thus, using Equations (7), (13), (23), (33) and (36) we can write the potential 
vector A  in the form 

( )
( )

( ) ( )
1 2

†

1
2

,2

2

3 2 1

ˆe, e e .
2

l l
t

i il
l l

l l

e
t a t a t

L

σ ε
ν

ν ν
νε

−
⋅ − ⋅

=

   = +     Ω
∑∑ k r k rA r      (38) 

In the above expression we have written the annihilation and creation opera-
tors ( )la t  and ( )†

la t  in terms of the directions of polarization so that we now 
have that ( ) ( )†, 1l la t a tν ν  =  . Then, by inserting the above equation into Equa-
tion (5) we obtain the electric e magnetic field operators as 

( )
( )

( )

( )

1/2 2

1,2
3 2

†

2 1

ˆe, e
2 2

e .
2

l

l

t
il

l l
l l

i
l l

e
t i a t

L

i a t

σ ε
ν

ν
ν

ν

σ
ε ε

σ
ε

−
⋅

=

− ⋅

   = − Ω      Ω 

 + + Ω    

∑∑ k r

k r

E r 

     (39) 

and 

( ) ( )
( )

( ) ( )
1 2 2

†

1
3 2

,2
1 2

ˆe, e e .
2

l l
t

l l l i i
l l

l l

e
t i a t a t

cL

σ ε
ν

ν ν
ν

ω
ε

−
⋅ − ⋅

=

×   = −     Ω
∑∑ k r k rk

B r    (40) 

The above field operators describe the quantum propagation of light in con-
ducting linear media. We also see that both electric and magnetic fields decrease 
exponentially in time due the conductivity of the medium proportionally to 

( )exp 2tσ ε−   . Further, in the absence of the dissipation, that is, 0σ =  these 
fields reduce to that in empty cavities [1]. 

In what follows, we use the Fock states to calculate the expectation values of 
the amplitude lq , momentum lp , their variances and the respective uncer-
tainty principle. Hence, making use of Equations (30) and (31) and after a little 
of algebra, we find that 

1 ,
2l lI n = + 

 


                       (41) 
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0,l lq p= =                        (42) 

2 2 1 ,
2l l lq nρ  = + 

 


                     (43) 

( )22
2

1 1 .
2l l l

l

p nρ
ρ
   = + ∧ +   

  


                 (44) 

The quantum variances are given by 

( )2 22 2 1 ,
2l l l l lq q q nρ  ∆ = − = + 

 


               (45) 

( ) ( )2 222
2

1 1 ,
2l l l l l

l

p p p nρ
ρ
   ∆ = − = + ∧ +   

  


           (46) 

By using the above expressions we obtain the uncertainty principle as 

( )( ) 2 2 2 1 2 11 ,
2l l l l lq p nρ ρ   ∆ ∆ = + ∧ +    




             (47) 

which, by making of Equation (23) and the particular solution (33), becomes 

( )( ) 1 .
2

l
l l l

l

q p n
ω  ∆ ∆ = + Ω  



                   (48) 

Here, it worth mentioning that if we multiply both sides of Equation (41) by 
the frequency lΩ  we get 

1 .
2l l lI n Ω = Ω + 

 


                     (49) 

whose right-hand side represents the energy eigenvalue of a harmonic oscillator 
with frequency lΩ . Finally, let us observe that for 0σ =  the particular solu-
tion of Equation (33) becomes ( )1 21l l lρ ε ω=  and the above results are re-
duced to that the time-independent harmonic oscillator, as it should be. 

4. Coherent and Squeezed States of Quantum Light 

It is well-known that, in addition to the Fock states, the coherent states provide 
another important set of states to investigate quantum properties of many phys-
ical systems. Yet, it is worth remarking that the coherent states were discovered 
at the early days of quantum mechanics by Schrödinger who was interested in 
finding quantum mechanical states that followed the motion of a classical par-
ticle in a given potential [34]. These states become popular during the 1960s for 
their usefulness in describing the radiation filed [35] [36]. This section will be 
devoted to construct coherent states for the quantized light propagating in linear 
conducting media. As will be seen later, these states are indeed equivalent to the 
squeezed states of the quantized light. 

4.1. Coherent States of Light in Conducting Media 

In Ref. [37] Hartley and Ray constructed coherent states for a mechanical oscil-
lator with time-dependent frequency. Thus, following the same step of these au-
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thors we find that the coherent states for the quantum system described by the 
Hamiltonian (12) are given by 

( )
( )

( )2

2

1, exp exp ,
2 !

l

l
l

n
ll

l n l
n l

t i t n t
n

αα
α β

 
  = −   

 
∑          (50) 

where lα  is an arbitrary complex number. These states satisfy the eigenvalue 
equation 

( ), , ,l l l la t t tα α α=                     (51) 

with ( )l tα  given by 

( ) 2e ,li t
l ltα α − Ω=                        (52) 

where we have used Equation (34) for 0ln = . 
Let us now calculate the expectation value of lq  in the coherent states 
,l tα . A straightforward calculation yields 

( )
2

2

1 2
2

e sin ,l t
l l l

l

q σ εα
ξ

ε
−

 
 = Ω +
 Ω 



              (53) 

where lξ  is the argument of the complex number lα . By comparing this result 
with that of Equation (10) we see that the center of the coherent state wave 
packet follows the classical motion of a particle [34]. Thus, the above result 
agrees with the original idea of Schrödinger about the coherent states. 

In what follows we evaluate the quantum variances in lq  and lp  in the 
state ,l tα . After some algebra we find that 

2 22 2 ,
2l l l lq q q ρ∆ = − =
                   (54) 

( )22 22
2

1 .
2l l l l

l

p p p ρ
ρ
 

∆ = − = + ∧ 
 



              (55) 

Thus, the uncertainty principle can be expressed as 

( )( ) ,
2

l
l l

l

q p
ω

∆ ∆ =
Ω


                      (56) 

where we have used the particular solution (33). By comparing Equations (48) 
and (56) we see that the uncertainty principle in the coherent states is exactly the 
same as the minimum value of that in the number states. It may be helpful at 
this point to note that these uncertainty principles do not depend on time and 
that their values become larger when the conductivity increases. We also observe 
that the uncertainty principle (56), in general, does not attain its minimum val-
ue. This occurs because the states ,l tα  are indeed equivalent to the squeezed 
states. This will be seen more clearly below. Further, it is worth noticing that 
when the conductivity is null, that is, 0σ =  the uncertainty principle attains its 
minimum value because in this case the states ,l tα  reduce to the coherent 
states of the ordinary mechanical harmonic oscillator model. 
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4.2. Squeezed States of Light in Conducting Media 

In the following discussion, we are going to show that the states ,l tα  corres-
pond to the squeezed states. In order to do so, let us consider the annihilation 
and creation operators lb  and †

lb  of the standard oscillator model given by 

[ ]
1 2

1 ,
2l l l l

l

b q ipεω
εω

 
= + 
 

                  (57) 

[ ]
1 2

† 1 .
2l l l l

l

b q ipεω
εω

 
= − 
 

                  (58) 

These operators are related to operators la  and †
la , which were defined 

previously, by the relations [33] [34] [35] [36] 

( ) ( ) ,l l lb u t a v t a= + †                      (59) 

( ) ( )* * ,l l lb u t a v t a= +† †                     (60) 

whose coefficients can be expressed as 

( ) ( )
1 2

1 1 ,
4 l l l

l l

u t i t ρ εω ρ
εω ρ

   
= − ∧ +   
   

              (61) 

( ) ( )
1 2

1 1 .
4 l l l

l l

v t i t ρ εω ρ
εω ρ

   
= − ∧ −   
   

              (62) 

A straightforward calculation shows that the coefficients ( )u t  and ( )v t  ful-
fills the relation 

( ) ( )2 2
1.u t v t− =                       (63) 

Therefore, from Equations (51), (59) and (63), we see that the states ,l tα  
are, by definition, equal to the well-known squeezed states [38] [39] [40] [41] 
[42]. Furthermore, in terms of the coefficients ( )u t  and ( )v t  the quantum 
variances in ( )lq t  and ( )lp t  for the squeezed states ,l tα  can be written as 

( )2 2 ,
2l

l

q u v
εω

∆ = −
                     (64) 

( )2 2 ,
2

l
lp u v

εω
∆ = +



                    (65) 

so that the uncertainty principle is converted into 

( )( ) .
2l lq p u v u v∆ ∆ = − +
                   (66) 

The uncertainty principle is minimized if u vγ=  for γ  real [39] [41]. Fur-
ther, note that the relation (66) is equivalent to Equation (56), as it should be. 

5. Summary 

In this work, we have presented a direct and simple approach to describe the 
propagation of classical and quantum light in a homogenous conducting linear 
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media. We have used the Coulomb gauge and considered light waves confined in 
a cubical volume of side L filled with a conductive medium as well as light prop-
agating under periodic boundary conditions. We have demonstrated that this 
propagation can be performed by associating a damped mechanical oscillator 
with each mode of the electromagnetic field. As a consequence, we have estab-
lished a unification of the procedure to obtain the classical and quantum propa-
gation of light in empty cavities (or free space) and cavities filled with a material 
medium. In the former case, it is usually performed by associating an ordinary 
harmonic oscillator with each mode of the electromagnetic field, and in the latter 
one it can be performed by the association of a damped harmonic oscillator. 
Further, using the invariant method, appropriated annihilation and crea-
tion-type operators and the Fock states we have easily solved the time-dependent 
Schrödinger for our problem and write its solutions in terms of a special solution 
of the Milne-Pinney equation. We have also constructed coherent states for the 
quantized light and have calculated the quantum variances of the amplitude 

( )lq t  and momentum ( )lp t  as well as the uncertainty principle for each 
mode of the electromagnetic field in both states, namely, Fock and coherent 
states. We have seen that the uncertainty product in the coherent states is equal 
to the minimum value of that of the number states. In addition, we have seen 
that the uncertainty principle in the coherent states, in general, does not attain 
its minimum value. By employing a direct procedure we have shown that this 
latter result occurs because the coherent states constructed previously corres-
pond to the squeezed states. Finally, we expected that the simple procedure de-
veloped in this work can be helpful to investigate subjects related to the interac-
tion of light with material media. 
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