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Abstract 
A novel coronavirus disease (COVID-19) is an infectious viral disease caused 
by SARS-CoV-2. The disease was first reported in Wuhan, China, in Decem-
ber 2019, and it has been epidemic in more than 110 countries. The first case 
of COVID-19 was found in Nepal on 23 January, 2020. Now the number of 
confirmed cases is increasing day by day. Thus, the disease has become a ma-
jor public health concern in Nepal. The propose of this study is to describe 
the development of outbreak of the disease and to predict the outbreak in 
Nepal. In the present work, the transmission dynamics of the disease in Nepal 
is analyzed mathematically with the help of SIR compartmental model. Re-
ported data from June 1st to June 17th 2020 of Nepal are used to identify the 
model parameters. The basic reproduction number of COVID-19 outbreak in 
Nepal is estimated. Predictions of the peak epidemic time and the final size of 
the epidemic are made using the model. Our work predicts that, after 125 
days from June 1 the infection will reach the peak. In this work, a good corre-
lation between the reported data and the estimation given by our model is 
observed. 
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1. Introduction 

COVID-19 was first reported in December 2019 in Wuhan city of China, and 
later it also became rapidly epidemic in other countries. On 17 June 2020, more 
than 8.4 million cases have been reported from more than 110 countries and 
territories. More than 452 thousand deaths and more than 4.24 million people 
have recovered [1]. The latest data of COVID-19 cases show that the cases are 
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increasing rapidly in Nepal.  
The first imported case of coronavirus was reported in Nepal on 23 January 

2020, from a person traveling from Wuhan, China [2] [3]. There are total 7177 
infected people in Nepal from 73 districts out of 77 district on 17th June, 2020; 
age ranged from 2-month infants to 81-year-old women [3]. Government of 
Nepal announced country-wide lockdown from 24 March to 21 July to control 
the disease. 

Several mathematical research works have been made to study the transmission 
dynamics of infectious diseases [4] [5] [6] [7] [8]. Compartmental epidemic 
models [9] [10] [11] [12] have been proposed to predict future COVID-19 cases, 
to study its transmission dynamics, and so on. Y. Souleiman et al. predicted the 
outbreak of COVID-19 in Djibouti with the help of mathematical model [13]. Y. 
Tang and S. Wang investigated the outbreak of COVID-19 in US [10].  

In the present work, a simple epidemic SIR model is taken to track the 
outbreaks of COVID-19 in Nepal. At first we estimate some model parameters 
from the data provided by the Government of Nepal and we define the basic 
reproduction number. Then, using estimated parameters in the model we identify 
the peak of the outbreak and predict the infected population at the end of infection 
when no control efforts are implemented. The sources of COVID-19 cases data 
are taken from [3]. 

The outbreak of COVID-19 in Nepal has gone through different phases. In the 
beginning of the first week of May, the total cumulated cases were less than 100. 
In the last week, the total number of reported cases was increased to over 1000 
and the number went up in June continuously and reached 7177 reported positive 
cases on June 17. Therefore, our modeling work started from 1st June.  

2. Materials and Methods 
2.1. Data 

The study is based on the daily reported cases extracted from the Ministry of 
Health and Population of Nepal [3]. The data contains suspected cases, new 
confirmed cases, cumulative confirmed cases, recovered cases, and death cases 
due to COVID-19 infection (Figure 1). From the first week of June, new confirmed 
cases have been more than 200. Thus, we choose June 1st to June 17th 2020 as the 
observation date and use the daily reported cumulative and new conform cases 
(Figure 2). 

2.2. Model Formulation 

For the formulation of the model, the total population at time t is denoted by 
( )N t , it is subdivided into three compartments: Susceptible: ( )S t , Infected: 
( )I t , and Recovered: ( )R t . Thus, ( ) ( ) ( ) ( )N t S t I t R t= + + . It is assumed 

that there is no birth, no immigration, and recovery from the disease confers 
immunity against the disease. Also there is a fixed infection rate per day and a 
fixed recovery time. People are well mixed.  
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Figure 1. Reported cumulated cases of COVID-19 in Nepal (Mar 23 to Jun 17). 

 

 
Figure 2. Reported cumulated cases of COVID-19 in Nepal (Jun 1 to Jun 17). 

 
In the present model, the susceptible individuals get infected of COVID-19 

when they come in contact with the infectious individuals and they either die or 
recover from the disease.  
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We consider that β  represents the transmission rate of infectious individuals 
contacting with ( )S t  and γ  represents the removal rate (that is, recovery or 
death rate) from infection of disease. We do not consider the quarantine and 
RDT-PCR tested population.  
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By re-scaling the state variables with  
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An epidemic occurs if the number of infection increases, that is  
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At the outset of the epidemic, we have ~ 1s   
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0R  is the basic reproduction number of the epidemic. Basic reproduction 
number is defined as the average number of secondary infections caused by a 
single infectious individuals during their entire infectious life time [14] [15]. 
Thus we have [14]  

( ) ( )0 Rate of secondary infection duration of infectionR = ×  

0
1R β
γ

⇒ = ×  

0 1R β
γ

⇒ = >  

We use the Least Square Method to fit best-line fit in COVID-19 data from 
June 1 to June 17, 2020 of Nepal [3]. After estimating the values of β  and γ , 
we get the basic reproduction number  

0 2.72R =  

In general, initially the infection of disease i grows exponentially as in Figure 
3. Then reach the peak, then gradually decay back to 0. We have  
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d
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β γ= −                         (3) 
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Since, at the peak d 0
d

i
t
= , from (3)  
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Figure 3. State variables of SIR model of COVID-19 in Nepal. 
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Putting the value of s in (4), we get  

max 1 ln 1i γ γ
β β
 
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Using COVID-19 data from June 1 to June 17, 2020 in Nepal [3], we get  

max 0.2643i =  

Therefore, 26% get sick at the peak. 
At the end of infection, we know that 0i =  as t →∞ . Thus, Equation (4) 

becomes  

1 ln 0s sγ
β

− + =  

On solving, we obtain  
0.047S∞ =  

Thus, 0.47% of the population remain susceptible at the end of epidemic. 
Therefore, 99.53% get infected at the same time if any control measures does not 
use. 

3. Result 

In this section, we use the model (1) to fit the cumulative infectious cases from 
June 1st to June 17th, 2020 in Nepal. Through some rational assumptions and 
parameter estimations, the fitting curves of cumulative cases using model (1) are 
shown in Figure 4. The simulation of the model is made by numerical solution 
applying Runge Kutta method of order 4. The figure indicates that our model 
provides a well fit to the reported data from June 1st to June 17th 2020 in Nepal. 
Figure 4 shows that the disease will grow rapidly in the coming days until it 
reached to the peak and end of June, there will be about 20,000 infected population 
in Nepal.  
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Figure 4. Cumulative confirmed cases and predicted cases by the model. 

4. Conclusions 

Based on the transmission dynamics of COVID-19 in Nepal, we built the time- 
dependent simple mathematical model of COVID-19. Mathematical modeling 
plays an important role to predict how an outbreak is developing and where it 
may go and in what kind of time framework. Such types of informations are very 
critical to control the outbreak, utilize the resources, and to return the normal 
daily life of citizen of a country.  

We use our model to fit the cumulative confirmed cases in Nepal from June 1st 
to June 17th 2020 and get a reasonable match. The basic reproduction number is 
estimated 0 2.72R =  based on the outbreak data which growth exponentially. 
Later on, we estimated the maximum number of infection at the peak max 0.2643i = , 
and susceptible population as 0.047S∞ = , if any control measures are not used. 
The result shows that the infection will reach at the peak after 125 days from 
June 1st 2020 (From Figure 3). Effective control measures such as social distancing, 
self-isolation, disease testing facilities, face mask wearing, related policies etc. are 
helpful in the control of the disease. 
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