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Abstract 
One of the significant problems of molecular spectroscopy is the determina-
tion and detailed analysis of how molecular vibrations are dephased. The 
dephasing of infrared-active (IR-active) vibrations of molecules was investi-
gated by IR absorption spectroscopy. Pulse methods were used to investigate 
IR-vibrations as well. These methods revealed such coherent nonstationary 
effects as optical nutation, damping of the free polarization, photon echo, etc. 
New means of studying dephasing processes were uncovered by the method 
of nonstationary (time-domain) coherent anti-Stokes Raman scattering (CARS) 
spectroscopy. However, there are some aspects of CARS that still are not fully 
covered. One of them is related to Raman scattering by polaritons in di-
pole-active crystals whereas the second one is the increase of efficiency of 
CARS (minimization of the wave mismatch, the relationship between pulse 
width and the relaxation time, etc.). The purpose of the present research to 
study the case of “extreme” coherency between all interacting pulses (the du-
ration of each pulse is smaller than characteristic times and those pulses are 
traveling with the same speed) in dipole-active crystals. In this research, we 
analyzed the process of simultaneous propagation of three waves (anti-Stokes, 
Stokes, and the pump) under CARS by polaritons. We have found some solu-
tions modeling such simultaneous propagation. We also found the expression 
for the gain factor for such scattering. The gain factor was evaluated under the 
assumption of a given stationary pump field. It was shown that the typical 
values of the relative intensities were consistent with the experimental results.  
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1. Introduction 

Maker and Terhune were first who demonstrated the CARS technique [1]. In [1] 
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was also shown that the efficiency of the CARS generation is the function of the 
third-order susceptibilities which were extensively studied in the experiments of 
the nonlinear properties of solids and liquids [2] [3] [4]. Since then CARS spec-
troscopy has become a powerful technique in many fields of knowledge such as 
physics, biology, chemistry, healthcare, etc. [5] [6] [7] [8] [9]. The CARS imag-
ing proved its efficiency in cancer diagnosis as well [10] [11]. Begley et al. were 
among the researches who summarized the important advantages of vibrational 
spectroscopy based on nonlinear anti-Stokes generation [12] [13] [14]. This 
technique went to the next level when the ultrashort laser pulses resulted in the 
possibility of the coherent excitation of multiple Raman modes [15] [16] [17]. 
For example, the method of nonstationary (time-domain) CARS spectroscopy 
permitted direct observation of vibration dephasing in an ensemble of atoms or 
molecules or even in the simplest system-molecular hydrogen [18]. The further 
increase in efficiency would result from simultaneous propagation in the me-
dium of all interacting waves. In [19] [20] [21] we considered the cases of Raman 
scattering by polaritons in dipole-active crystals. In this paper, we considered the 
theoretical modeling of the processes of nonstationary CARS by polaritons in 
dipole-active crystals.  

2. Basic Principles and Equations 

In this paper, we consider the nonlinear interaction of four electromagnetic 
waves: anti-Stokes, Stokes, pump (laser), and polariton. Those waves are assumed 
to be linearly polarized plane waves. It is also assumed that the nonlinear me-
dium takes a form of a layer bounded by the planes z = 0 and z = L. The pump 
wave 

( ) ( ) ( )ˆ, , exp . .z
l l l l lE r t e A z t i k z t c cω = − + 


              (1) 

propagates along the z-axis. The subscripts a, l, s, and p denote the anti-Stokes, 
pump (laser), Stokes, and polariton wave fields, , , ,a l s pω  are the frequencies, 

, , ,a l s pn  and , , ,a l s pk


 are the refractive indices and the wave vectors in the un-
pumped medium, and , , ,ˆa l s pe  are the real unit vectors of electromagnetic fields. 
The nonlinear medium is assumed to be nonmagnetic and transparent at the 
frequencies , ,a l sω . We use the anti-Stokes, Stokes, and polariton fields in the 
form 

( ) ( ) ( )ˆ, , exp . .,z
a a a a aE r t e A z t i k z t c cω = − + 


              (2) 

( ) ( ) ( )ˆ, , exp . .,z
s s s s sE r t e A z t i k z t c cω = − + 


              (3) 

( ) ( ) ( )ˆ, , exp . .,z
p p p pE r t e A z t i W z t c cω = − + 


             (4) 

where , , ,a s a s a sk q n= ; , ,a s a sq cω= ; z z z
l sW k k= − ; p l sω ω ω= − .  

In the process of CARS, the nonlinear interaction of two electromagnetic 
waves ,l sω  results in the generation of anti-Stokes and polariton waves. The 
system of shortened equations for the amplitudes , , ,a l s pA  is obtained from Max-
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well’s equations by using the standard approximation of slowly-varying ampli-
tudes [22] and takes the form 

( ) ( ){ }2 221 e ,
cos

zi k za a a
a l p a l s az z

a a a

A A
i A A A A A

z tv cn
ω

χ γ
θ

∆∂ ∂
+ = +

∂
π

+
∂

     (5) 

( ) { }*
1 2

21 e ,
cos

zi k zl l l
l s p l a pz z

l l l

A A
i A A A A

z tv cn
ω

χ χ
θ

− ∆π∂ ∂
+ = +

∂ ∂
        (6) 

( ) ( ){ }2 2*21 ,
cos

s s s
s l p s l s sz z

s s s

A A
i A A A A A

z tv cn
ω

χ γ
θ

∂ ∂
+ = + +

∂ ∂
π        (7) 

{ }
* * 2 22

* * *
1 22

21 1 e ,
2

zp p p p p i k z
p p l s p a lz z z

p p p

A A q qWi A i A A A A
z tv W q W

ε
χ χ

ε

∞
∆

∞

 ∂ ∂
+ = − − + 

π
∂ ∂  

 (8) 

where 1, 2 1, 2 ,, , , ,a l l s p p a sχ χ χ χ γ  are the corresponding tensor contractions of 
non-resonance quadratic and cubic nonlinear polarizabilities with unit vectors 
of polarization of interacting waves; pe∞  is the non-resonance part of dielectric 
permeability at frequency pω ; , , ,

z
a l s pv  are z-components of velocities of waves 

on , , ,a l s pω ; z z z z
l ak k W k∆ ≡ + −  is the wave mismatch between the pump, po-

lariton, and anti-Stokes waves.  
Given the strong polariton absorption we have [23] 

* * 2 2
*

2

1 1 ,
2

p p p p
pz z

p p p

A A q W A
z tv W q

ε
ε

∞

∞

 ∂ ∂
≈ −  ∂ ∂  

                (9) 

so that we can neglect in (8) the terms with the derivatives after which this equa-
tion yields 

( ) ( )
2

* * *
1 22 2

4
e .

zp i k z
p p l s p a l

p p

q
A A A A A

W q
χ χ

ε
∆

∞
+

−

π
=            (10) 

If we insert the obtained expression for the amplitude of polariton wave in 
(5)-(6), we get a system of 3 differential equations for , ,a l sA  as follows: 

( ) ( )
2 *

2 21 2 *
12 2

1

42
e ,

cos
z

a a
z
a

p a p i k za
l s a l a a s az

a a p p

A A
z tv

q
i A A A A A A
cn W q

χ χω
γ γ

θ ε
∆

∞

∂ ∂
+

∂ ∂

  = + + 


π



π

− 

   (11) 

( )
( )
( )

( )

2 *
1 2 2 1 *
2 2

2
2 2 22 2

12 2

421 e
cos

4
,

zp l p l p i k zl l l
a l sz z

l l l p p

p l p
a l l s l l l l

p p

qA A
i A A A

z tv cn W q

q
A A A A A A

W q

χ χ χ χω
θ ε

χ χ
γ γ

ε

− ∆
∞

∞

π +∂ ∂ + = 
∂ ∂ −

+ + + 

π

− 

π
   (12) 

( ) ( )
2

2 22 2 *
12 2

1

42
e ,

cos
z

s s
z
s

p s p i k zs
l a s l s s s sz

s s p p

A A
z tv

q
i A A A A A A
cn W q

χ χω
γ γ

θ ε
∆

∞

∂ ∂
+

∂ ∂

  = + + 


π



π

− 

   (13) 
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where p pq cω≡ , 
( )

2 *
2

1 2 2

4 p a p
a a

p p

q

W q

χ χ
γ γ

ε ∞
≡ +

−

π
, 

( )
2

1
1 2 2

4 p s p
s s

p p

q

W q

χ χ
γ γ

ε ∞
≡

−

π
+ , and 

( )
2 *

1 1
1 2 2

4 p l p
l l

p p

q

W q

χ χ
γ γ

ε ∞
≡

−

π
+ .  

The system (11)-(13) can be simplified if we use new variables 

2e
zi k z

a aA A
∆

−
′ ≡                         (14) 

and 2e
zi k z

s sA A
∆

−
′ ≡ .                        (15) 

The system (11)-(13) in terms of ,a sA′  can be written as follows: 

( ) ( )
2 *

2 21 2 *
12 2

1
2

42
,

cos

z
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az
a

p a pa
l s a l a a s az
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  ′ ′ ′= + + 
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π



π
    (16) 

( )
( )
( )
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1 2 2 1 *
2 2

2
2 2 22 2
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421
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l l l p p
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l s l l l l a l

p p

qA A
i A A A
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A A A A A A

W q

χ χ χ χω
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χ χ
γ γ

ε

∞

∞
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∂ ∂ −

π
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−

π
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    (17) 

( ) ( )
2

2 22 2 *
12 2

1
2

42
.
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z
s s
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s

p s ps
l a s l s s s sz

s s p p

A A i k A
z tv

q
i A A A A A A

cn W q

χ χω
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θ ε ∞

′ ′∂ ∂ ∆ ′+ +
∂ ∂

  ′ ′ ′ ′= + + 
−

π



π
     (18) 

And, finally, if we assume a “week” wave mismatch at Stokes and anti-Stokes 
frequencies, that is 

, ,
,

,

1 ,
2

z
a s a s

a sz
a s

A A k A
z tv
′ ′∂ ∂ ∆ ′+

∂ ∂
                   (19) 

then the final system of equations simulating CARS can be expressed as 

( ) ( )
2 *

2 21 2 *
12 2

1

42
,

cos

a a
z
a

p a pa
l s a l a a s az

a a p p

A A
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q
i A A A A A A
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χ χω
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θ ε ∞

′ ′∂ ∂
+

∂ ∂

  ′ ′ ′ ′= + + 
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π
    (20) 
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2
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( ) ( )
2

2 22 2 *
12 2

1

42
.

cos

s s
z
s

p s ps
l a s l s s s sz

s s p p

A A
z tv

q
i A A A A A A

cn W q

χ χω
γ γ

θ ε ∞

′ ′∂ ∂
+

∂ ∂
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3. Asymptotic Solutions in a Form of Simultaneously  
Propagating Waves at Frequencies a l sω , ,  

Since we will conduct the numerical analysis of the system (20)-(22) we bring it 
to unitless form first. To do that we multiply both the left and right part of each 
equation by the factor 0 0z A  ( 0A  and 0τ  are the peak amplitude and char-
acteristic duration of the pump, 0 0z cτ= ). After that, the system (20)-(22) can 
be reduced to 

{ }2 22 *
1 2 3

1 ,a a
a l s a l a a s az

a

A A
i C A A C A A C A A

z tv
′ ′∂ ∂ ′ ′ ′ ′+ = + +

∂ ∂

 

     



 

       (23) 

{ }2 2 2*
1 2 3 4

1 ,l l
l a s l l s l l l l l a lz

l

A A
i C A A A C A A C A A C A A

z tv
∂ ∂ ′ ′ ′ ′+ = + + +
∂ ∂

 

        



 

  (24) 

{ }2 22 *
1 2 3
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s l a s l s s s sz

s

A A
i C A A C A A C A A

z tv
′ ′∂ ∂ ′ ′ ′ ′+ = + +
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 

     



 

        (25) 

where ,
,

0

a s
a s

A
A

A
′

′ ≡ , 
0

l
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A
A

A
≡ , 

0
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We are looking for stationary solutions as 

( ) ( ) ( ),
, ,, e a si

a s a sA z t B ξξ Φ′ ≡


 



  and ( ) ( ) ( ), e li
l lA z t B ξξ Φ≡



 



 ,      (26) 

where zt zξ ν≡ −




 ; zν  is the velocity of simultaneously propagating waves at 

the frequencies , ,a l sω ; , ,a l sB  and , ,a l sΦ  are the real amplitudes and phases of 
the waves, respectively. Such a standard procedure of presenting the complex 
amplitudes of waves in terms of real and imaginary parts results in duplication 
of the system of (23)-(25): 

( )2
1

d
sin ,

d
a

a a l s
B

C B Bκ
ξ

= − Φ


                   (27) 
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2 2
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B
κ

ξ
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          (28) 
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d
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where ( ). . , , , ,
z z z z

a s l a s l a s lv v v vκ ≡ − , 2 l s aΦ ≡ Φ −Φ −Φ .  
If we introduce the amplitude of simultaneously propagated waves as 

2 2 2

1 1 1

a s l

a a s s l l

B B B
Q

C C Cκ κ κ
≡ − = − =                  (33) 

we could reduce the system above to 

( )2d sin ,
d
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

                      (34) 
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d
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ξ
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where  
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The system (34)-(35) can be further simplified as follows 
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Q
x
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α
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We can reduce the number of equations by using the integral of motion 

( )
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Q

β
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Φ + 
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where 0Q > , 2β > . 
If we express the phase Φ  as the function of Q in (37) we get 
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∫
 

                 (40) 
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The integral on the left can be found as follows: 
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∫  

 



   



  (41) 

where ( )F x m  is the elliptic integral of the first kind with the parameter 
2m k= , ( )1sinh x−

  is the inverse hyperbolic sine function.  
In Figure 1 it is shown that the solution of (37) and (38) exists in the form of 

pulses. The duration of those pulses can be easily evaluated as follows: first, we 
assume, that 1 1 1a s lC C C C≈ ≈ ≈  (in the next topic it is shown that g C≈  
where g is the gain factor of Raman scattering) so that the coefficient  

2 2 2
a l s C gα λ λ λ= ≈ ≈ . The typical values of the gain factor in crystals are of or-

der 10−3 cm/MW [24]. Hence, if we consider the pump of the intensity of 102 - 
103 MW and 1 cmz = , then 1g ≈ .  

4. Gain Factor g 

To show that the system of Equations (5)-(8) is consistent with experimental re-
sults for CARS by polaritons we consider the stationary solutions of the coupled 
wave equations in the constant pump approximation. The system for Stokes and 
anti-Stokes (20), (22) under the above suggestions can be expressed as 

*
1 e

zi k zs
s a

A
iC A

z
∆∂

=
∂







                      (42) 

*

1 e
zi k za

a s
A

iC A
z

− ∆∂
= −

∂







                     (43) 

 

 
Figure 1. Q versus x.  
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After introducing new variables 
2e

zi k z
s sF A − ∆≡   and * * 2e

zi k z
a aF A ∆≡                 (44) 

the system of differential equations of the first order can be readily transformed to 
the single differential equation of the second order (for example, for ( )sF z ) as 

22

1 12 .
2

z
s

s a s s
F k F C C F
z

 ∂ ∆
+ = ∂  

                  (45) 

We solve this equation by adopting a trial solution for sF  in the form 

( ) ( )0 egz
s sF z F=                       (46) 

where g represents a gain factor. Then we substitute (46) into (45) to obtain the 
approximate value for g as 

( )
1
21 1a sg C C C≈ ≈                       (47) 

(here we assumed that the pump was strong enough to provide 
2

1 1 2

z

a s
kC C

 ∆
 
 

 ).  

Finally, the expression for g can be reduced to  

( )2 2 2
0 08g C z A cnω χπ≈ ≈                    (48) 

(
( ) ( ) ( ) ( ) ( )

( )( ) ( )

1 2
2 * 2 2 21

1 0 2 00 021 1 2 2 2 2

2 2 2 2 2 2
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4 42 2
cos cos

8 8

p a p p s pa s
a s z z

a a p p s s p p

q A q Az z
g C C

cn W q cn W q

z nc A z A cn

χ χ χ χω ω
θ ε θ ε

ω ε χ ω χ

∞ ∞

 
 ≈ =
 − − 

ππ

′≈ π ≈ π

ππ

).  

As the experimental data for this gain, we used the following [25]: pulse width 
of the pulsed Ar+ laser  30 ps, the peak output power ≈ 2.5 kW, the wavelength 
was 514.5 nm, the cross-section ≈ 10−18 cm−2, 110 cmfγ

−≈ , and 810 esuχ −≈ . 
In [26] the nonlinear medium was zinc blende ZnS, in which the polariton fre-
quencies were in the rage 200 - 400 cm−1. Both the experimental results for the 
gain factor in [26] and calculations based on (48) have resulted in g ≈ 1.  

5. Conclusion 

In this paper, we have found the system of differential equations that model the 
process of coherent anti-Stokes Raman scattering by polaritons in crystals. We 
have also found the asymptotic solutions of that system that correspond to the si-
multaneous propagation of all waves participating in the process of Raman scat-
tering. And, lastly, we showed that the value of such an important feature as the 
gain factor resulted from that system is consistent with the experimental results.  
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