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Abstract 
The main work of this paper is to discuss the stochastic coupling of stirp 

( ]( )SLE 0,4κ κ ∈  on the stirp region π . By constructing a bounded conti-

nuous local martingale, we prove that when a certain ordinary differential 
equation is satisfied, there is a coupling of two strip SLEκ  traces in π ; one 
is from a to b; the other is from b to a, such that the two curves visit the same 
set of points. 
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1. Introduction 

Stochastic Loewner evolution (SLE) is a family of random growth process in-
troduced by Oded Schramm [1] to study the scaling limit of loop-erased random 
walk (LERW) and uniform spanning tree (UST). The family of random growth 
process is described by the classic Loewner differential equation driven by 

( )B tκ , where κ  is a positive parameter, and ( )B t  is a one-dimensional 
standard Brownian motion. The behavior of SLE trace depends on the real-valued 
parameter 0κ > ; usually we write SLE as SLEκ  to illustrate that the behavior 
of SLE traces is related to κ . When ( ]0,4κ ∈ , the trace of SLEκ  is a simple 
curve; when 4κ > , the trace is no longer a simple curve; when 8κ > , the trace 
fills the whole space. 

SLE is an important and very cutting-edge research topic in today’s mathe-
matics field, which involves random processes, complex analysis and statistical 
physics. It is closely related to the scale limit of the grid model in statistical 
physics. Many mathematicians believe that different κ  describes the scale lim-
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its of different discrete models. In statistical physics, the scale limits of many 
two-dimensional systems are conjectured by theoretical physicists to be confor-
mal invariant under critical conditions, but it has not been not proven by rigor-
ous mathematical methods. Since Oded Schramm introduced SLEκ , a lot of 
conjectures have been proven, see [2]-[8]. 

The stochastic coupling technique is a useful tool in studying reversibility of 
stochastic Loewner evolution (SLE). Dapeng Zhan proved the coupling of the 
chordal SLE in the process of proving the reversibility of the chordal SLE in [9]. 
He then proved the coupling of the annulus SLE and the whole-plane SLE in 
[10], and on this basis he proved that the whole-plane SLE is reversible, which is 
closely related with Julien Dub’s work on SLE couple relationships in [11] [12]. 
The stochastic couplings of strip SLE has not been studied so far. The research of 
this paper will lay the foundation for the study of stirp SLE reversibility. 

This paper is organized as follows. In Section 2, we give some symbols that 
will be used frequently in this paper. The definition of strip ( )SLE ,κ Λ  is in-
troduced in Section 3. In Section 4, we construct a continuous local martingale 
M based on (4) (5), and then prove that M is bounded. On this basis, we prove 
that for ( ]0,4κ ∈ , there is a coupling of two strip SLEκ  process on the strip 
domain. 

2. Symbols 

In this article, we will use the following symbols: Let { }: 0 Imz zπ = ∈ < π< , 
{ }: Imz zπ π= ∈ = , { }: 1z z= < , { }: 1z z= = . The conformal map in 

this paper refers to a univalent analytic function. Let f be the conformal in 1D , 
and ( )1 2f D D= , f is said to be conformal map from 1D  onto 2D , denoted as 

1 2:f D D . Further, if 1, 2j = , jc  is points or collections in jD∂ , and f ex-
tension map 1c  onto 2c , denoted as ( ) ( )1 1 2 2: ; ;

conf
f D c D c . 

Many of the functions in this text have two variables, the first of which 
represent time, and the second is not. In this case, We use t∂  and n

t∂  to 
represent the partial derivative of the first variable, and ( )1,2jd j =  is used to 
represent the differentials of jt . We’ll use ( )coth 2z  frequently. For conveni-
ence, we will write 2 in the position of subscript, namely ( ) ( )2coth coth 2z z= . 

3. Strip Loewner Equation 

In this section we give a brief description of the definition and some basic con-
cepts of the strip Loewner equation, and more detailed background can be found 
in [13] [14]. 

Definition 3.1. Let ( )0,T ∈ +∞ , ( ) [ )( )0,t C Tξ ∈ . Let ( ),g t z  be the solu-
tion of 

( ) ( ) ( )( ) ( )2, coth , , , .t g t z g t z t g t z zξ∂ = − =              (1) 

For each [ )0,t T∈ , let ( )K t  be the set of z∈  at which ( ),g t z  is not 
defined. Then ( )K t  and ( ), ,0g t z t T≤ <  are called the strip Loewner hulls 
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and maps driven by ( )tξ . For each [ )0,t T∈ , ( )K t  is a bounded random 
growth hull in π  and ( )( ), 0dist K t π > ,  
( ) ( )( ) ( ), : \ ; ;

conf
g t K tπ π π π⋅     , ( ),g t z z t− → ± , ( )\ K t zπ → ±∞ . 

Let K is a bounded hull in π , and ( ), 0dist K π > . Then there is a constant 
0Kc ≥ , and a map Kg  determined by K, such that  
( ) ( ): \ ; ;

conf

Kg Kπ π π π    , K kg z c− → ± , \ K zπ → ±∞ . Kc  is called 
the capacity of K with respect to π  in π , denote ( )( )scap K t . Then, for the 
above strip Loewner hulls, the capacity of ( )K t  is t. 

Let ( )tξ  is a semi-martingale, whose stochastic part is ( )B tκ  and drift part 
is a continuously differentiable function. Then 

( )
( )

( )1: lim , ,0 ,
z t

t g t z t T
π ξ

γ −

→
= ≤ <

 
                 (2) 

a.s. for any [ )0,t T∈ , ( )tγ  exists. It is a continuous curve in π   , who 
starte from ( )0ξ . We call ( )tγ  the strip Loewner trace driven by ( )tξ . For 
each [ )0,t T∈ , ( )\ K tπ  is the unbounded branch of ( ]( )\ 0, tπ γ . Particu-
larly, when 0 4κ< ≤ , ( )tγ  is a simple curves, for each [ )0,t T∈ ,  

( ) ( ]( )0,K t tγ= . 
On the other hand, Let ( )tγ  be a simple curves in π   , and only inter-

secting with   when 0t = . Let ( )u t  be the capacity of ( )tγ  with respect to 

π  in π . Then ( )u t  is a continuous increase function, which maps [ )0,T  
to [ )0, S  ( S  is a constant in ( )0,+∞ ). there exist some ( ) [ )( )0,t C Sη ∈  so 
that ( )( )1u tγ −  is a strip Loewner trace driven by ( )tη . 

Definition 3.2. Let a b> ∈ , ( )( )1 0,CΛ∈ +∞ . Let ( ) ,0t t Tξ ≤ <  be the 
maximal solution to the SDE: 

( ) ( ) ( ) ( )( ) ( )d d , d ,  0 ,t B t t g t b t aξ κ ξ ξ= + Λ − =           (3) 

where ( ),g t ⋅  is a strip Loewner maps driven by ( )tξ . We call the strip Loewner 
trace driven by ( )tξ  the strip ( )SLE ,κ Λ  trace in π  started from a with 
marked point b. 

4. Coupling of Two Strip SLE Trace 

In this chapter we will discuss the stochastic coupling of the traces of strip SLE. 
We prove that for ( ]0,4κ ∈ , when certain ODE is satisfied, we can couple two 
strip SLE trace. That is, we have the following theorem. 

Theorem 4.1. Let ( ]0,4κ ∈ , 0s ∈ , Suppose ( )( )2 0,CΓ∈ +∞  is a positive 
function that satisfies 

2 2
3 10 coth coth ,

2 2
κ

κ
 ′′ ′ ′= Γ + Γ + − Γ 
 

               (4) 

( ) ( ) ( )
02

2 e ,    0, .
s

x x xκ
π

Γ + = Γ ∈ +∞π                 (5) 

Let κ
′Γ

Λ =
Γ

, ( ) ( )1 x xΛ = Λ , ( ) ( )2 x xΛ = −Λ − , then 1 2a a∀ > ∈ , there 

is a coupling of two curves: ( )1 1,0t t Tγ ≤ <  and ( )2 2,0t t Tγ ≤ < , such that for 

{ }1,2j k≠ ∈ , 
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(i) ( ) ,0j jt t Tγ ≤ <  is the strip ( )SLE ,κ Λ  trace in π  started from ja  
with marked point ka . 

(ii) If [ )0,k kt T∈  is a stopping time with respect to ( )k tγ , then conditioned 
on ( ) ,0k kt t tγ ≤ ≤ , After a time-change, ( ) ,0j jt t Tγ ≤ < , is the strip  

( )SLE ; jκ Λ  trace in ( ]( )\ 0,k ktπ β  started from ja  with marked point 
( )k ktγ , where ( )j kT t  is the first time that jγ  visits ( ]( )0,k ktγ , if such time 

not exist set to be jT . 

4.1. Ensemble 

Let 0T > , [ ]( )1 2, 0,C Tξ ξ ∈ , ( ),jg t ⋅  and ( )( ), 1, 2 ,0j t j t Tγ ⋅ = ≤ <  are the 
strip Loewner map and trace driven by ( )tξ . Define 

( ) [ ]( ) [ ]( ){ }1 2 1 1 2 2, : 0, 0, .t t t tβ β= = ∅
 

Fix 1,2j k≠ ∈ , [ )0,kt T∈ , let ( )j kT t  is the first time that jγ  visits 
( ]( )0,k ktγ . Define 

( ) ( )( ) ( ), , ,   0 .
kj t j k k j j j j kt g t t t T tγ γ= ≤ <

 

Then ( ) ( ), , 0
kj t j j j kt t T tγ ≤ <  is a simple curves start from  

( )( ), 0k k jg t ξ ∈ , when ( )0 j j kt T t≤ < , (( ), 0,
kj t jt πγ  ⊆  . Let  

( ) (( )( ), ,scap 0,
k kj t j j t ju t tγ =  , then , kj tu  is a continuous increase function,  

which maps ( ))0, j kT t  to ),0,
kj tS , where ( )), ,sup 0,

k kj t j t j kS u T t=  .  

( ) ( )( )1
, , , ,: ,0

k k k kj t j t j t j tt u t t Sβ γ −= ≤ ≤  is a strip Loewner trace driven by some 

)( ), ,0,
k kj t j tC Sη ∈  . 

Let ( ), kj tf t  be a strip Loewner trace map by , kj tη . For ( )0 j j kt T t≤ < , let 

( ) ( )( ), , ,, ,
k k kj t j j t j t jg t f u t⋅ = ⋅ , ( ) ( )( ), , ,k k kj t j t j tt u tξ η= , 

( ) ( ) ( ) ( )1
, ,, , , , .

k kk t j j t j k k j jG t g t g t g t−⋅ = ⋅ ⋅ ⋅               (6) 

( ), ,
kk t jG t ⋅  map ( ]( ),\ 0,

jk t ktπ β  to π , map π  to π . 

( ) ( )( )
( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

, , ,

1
, , ,

1
, , ,

1 1
, , , ,

,

,

, ,

, , , ,

k k k

k k k

k k k

k k k k

j t j j t j j t j

j t j j t j t j

j t j j t j j j t j

j t j j t j j j t j j j t j

t f t t

f t u t

f t g t u t

f t g t g u t u t

η β

γ

γ

ξ

−

−

− −

=

= ⋅

= ⋅ ⋅

= ⋅ ⋅ ⋅



 

  

 

Hence, 

( ) ( )( ), , , .
k kj t j k t j j jt G t tξ ξ=                    (7) 

For ( )0 j j kt T t≤ < , let 

( ) ( ) ( )( ), 1 2 ,, , ,   1, 2,3,
k

n
j n j jk tA t t G t t nξ= =                (8) 

( ) ( )
( )

( )
( )

2
,3 1 2 ,2 1 2

, 1 2
,1 1 2 ,1 1 2

, ,3, .
, 2 ,

j j
j S

j j

A t t A t t
A t t

A t t A t t
 

= −   
 

             (9) 
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By [15], Section 8.1 

( ) ( )( ) ( )
2 2

, , ,1 1 2, , .
k kj t j k t j j ju t G t t A t tξ′ ′= =              (10) 

So for ( )0 j j kt T t≤ < , 

( ) ( )( ) ( )
( ) ( ) ( )( )

, , , ,

2
,1 1 2 2 , ,

, ,

, coth , .

k k k k

k k

t j t j t j t j t j j t j

j j t j j t j

g t f u t u t

A t t g t tξ

′∂ ⋅ = ∂ ⋅

= ⋅ −
        (11) 

From (6) we get 

( ) ( ) ( ) ( ), ,, , , , .
k kk t j j j j t j k kG t g t z g t g t z⋅ = ⋅              (12) 

Differentiate (12) with respect to jt , we get 

( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

,

, , 2

2
,1 1 2 2 , ,

2
,1 1 2 2 , ,

, ,

, , , , coth ,

, coth , ,

, coth , , .

k

k k

k k

k k

t j t j k k

t k t j j j k t j j j j j j j

j j t j k k j t j

j k t j j j j t j

g t g t z

G t g t z G t g t z g t z t

A t t g t g t z t

A t t G t g t z t

ξ

ξ

ξ

∂ ⋅

′= ∂ ⋅ + ⋅ −

= ⋅ −

= ⋅ −



 





 (13) 

Let ( ),j jg t zω = , then 

( ) ( ) ( )( )
( ) ( ) ( )( )

, , 2

2
,1 1 2 2 , ,

, , coth

, coth , .

k k

k k

t k t j k t j j j

j k t j j t j

G t G t t

A t t G t t

ω ω ω ξ

ω ξ

′∂ + −

= −
 

Hence, 

( ) ( ) ( )( )
( ) ( ) ( )( )

, , 2

2
,1 1 2 2 , ,

, , coth

, coth , .

k k

k k

t k t j k t j j j

j k t j j t j

G t G t t

A t t G t t

ω ω ω ξ

ω ξ

′∂ = − −

+ −
      (14) 

The Taylor expansion of 2 2coth  , cothz z′  near 0z →  is: 

( ) ( )2
2 2 2

2 2 1coth  , coth .
6 6
zz o z z o z

z z
′= + + = − + +          (15) 

Let ( )j jtω ξ→ , from (7), (15) and L’Hopital’s Rule, 

( )( ) ( ), ,2 1 2, 3 , .
kt k t j j j jG t t A t tξ∂ = −                 (16) 

Differentiate (14) with respect to ω . Let ( )j jtω ξ→ , from (7), (15)and 
L’Hopital’s Rule, 

( )( )
( )( ) ( ) ( )

( )
( )
( )

2
, , ,3 1 2 ,2 1 22

,1 1 2 2
,1 1 2 ,1 1 2, ,

, , ,1 1 4 1, .
6 6 3 , 2 ,,

k k

k k

t k t j j t j j j
j

j jk t j j t j

G t t A t t A t t
A t t

A t t A t tG t t

ξ

ξ

′∂
= − − +

′
  (17) 

( ), ,
kk t jG t ⋅  and ( ), ,

jk t kg t ⋅  map ( ]( ),\ 0,
jk t ktπ β  conformal onto π , map 

π  conformal onto π . So exist ( )1 2,kC t t ∈ , such that 

( ) ( ) ( ), , 1 2, , , .
k jk t j k t k kG t g t C t t⋅ = ⋅ +                 (18) 

Similarly exist ( )1 2,jC t t ∈ , such that 

( ) ( ) ( ), , 1 2, , , .
k jj t j j t k jG t g t C t t⋅ = ⋅ +                 (19) 
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From (6), 

( ) ( ) ( ) ( ) ( ), , 1 2, , , , , .
k jj t j k k k t k j j kg t g t g t g t C t t⋅ ⋅ = ⋅ ⋅ +          (20) 

Similarly, 

( ) ( ) ( ) ( ) ( ), , 1 2, , , , , .
j kk t k j j j t j k k jg t g t g t g t C t t⋅ ⋅ = ⋅ ⋅ +          (21) 

Comparing (20) with (21), we get 

( ) ( )1 1 2 2 1 2, , 0.C t t C t t+ ≡                     (22) 

Define ( )1 1 2,X t t , ( )2 1 2,X t t , ( )1 2,t t ∈ : 

( ) ( ) ( )( )
( )( ) ( )( )

1 2 , ,

, ,

, ,

, , .
k k

k k

j j t j j t j k k

k t j j j j t j k k

X t t t g t t

G t t g t t

ξ ξ

ξ ξ

= −

= −
           (23) 

From (18), (19), (23), 

( ) ( )1 1 2 2 1 2, , 0.X t t X t t+ ≡                    (24) 

Since 2coth  is an odd function, 2coth′′′  is an even. Define ( ) ( )1 2 1 2, , ,E t t t t ∈  

( ) ( ) ( )1 2 2 1 1 2 2 2 1 2, coth , coth , .E t t X t t X t t′′′ ′′′= =             (25) 

Differentiate (11) with respect to z, we have 

( ) ( ) ( ) ( )( )2
, ,1 , 2 , ,, , coth , .

k k k kt j t j j j t j j t j j t jg t z A g t z g t z tξ′ ′ ′∂ = −       (26) 

so 

( )
( ) ( ) ( )( ), 2

,1 2 , ,
,

,
coth , .

,
k

k k

k

t j t j
j j t j j t j

j t j

g t z
A g t z t

g t z
ξ

′∂
′= −

′
          (27) 

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )

2
, ,1 , 2 , ,

22
,1 , 2 , ,

, , coth ,

, coth , .

k k k k

k k k

t j t j j j t j j t j j t j

j j t j j t j j t j

g t z A g t z g t z t

A g t z g t z t

ξ

ξ

′′ ′′ ′∂ = −

′ ′′+ −
    (28) 

From (26) and (28) we have 

( )
( )

( )( ) ( ) ( )( ) ( )
( )( )

( ) ( ) ( )( )

, , , ,,
2

, ,

2
,1 , 2 , ,

, , , ,,

, ,

, coth , .

k k k kk

k k

k k k

t j t j j t j t j t j j t jj t j
t

j t j j t j

j j t j j t j j t j

g t z g t z g t z g t zg t z

g t z g t z

A g t z g t z tξ

′′ ′ ′ ′′  ∂ − ∂′′
 ∂ =
 ′ ′ 

′ ′′= −

 (29) 

Differentiate (29) with respect to z, we have 

( )
( )

( )
( )

( )( ) ( ) ( )( )
( ) ( ) ( )( )

2

, ,

, ,

22
,1 , 2 , ,

2
,1 , 2 , ,

, ,

, ,

, coth ,

, coth , .

k k

k k

k k k

k k k

j t j j t j
t

j t j j t j

j j t j j t j j t j

j j t j j t j j t j

g t z g t z

g t z g t z

A g t z g t z t

A g t z g t z t

ξ

ξ

  ′′′ ′′  ∂ −  ′ ′   

′ ′′′= −

′′ ′′+ −

          (30) 

Let ( )k kz tξ=  in (11), (27), (29), (30) we have 

( )( ) ( )2
, ,1 2, coth ,

kj j t j k k j jg t t A Xξ∂ = −               (31) 
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( ),1 2
,1 2

,1

coth ,j k
j j

k

A
A X

A
∂

′=                     (32) 

( ),2 2
,1 ,1 2

,1

coth ,k
j j k j

k

A
A A X

A
 

′′∂ = −  
 

                (33) 

( )
2

,3 ,2 2 2
,1 ,1 2 ,2 2

,1 ,1

coth coth .k k
j j k j k j

k k

A A
A A X A X

A A

  
   ′′′ ′′∂ − = − −       

     (34) 

From (34) we have 
2

,3 ,2 2 2
, ,1 ,1

,1 ,1

3 .
2

k k
j k S j j k

k k

A A
A A A E

A A

   ∂ = ∂ − =     
            (35) 

Define ( ) ( )1 2 1 2, , ,H t t t t ∈  

( ) ( ) ( ) ( )( )2 1 2 2
1 2 1,1 1 2 2,1 1 2 1 2 1 20 0
, exp , , , d d .

t t
H t t A s s A s s E s s s s= ∫ ∫       (36) 

As ( ) ( ), ,0, 0,
k kj t j tg f id⋅ = ⋅ = , when 0jt = , ,1 0kA = , ,2 0kA = , ,3 0kA = , so 

, 0k SA = . Hence from (35), (36) we have 

( ) ( ) ( ) ( )( )2 1 2 2
1,1 1 2 2,1 1 2 1 2 1 2 ,0 0

ln , , , d d  .
t tj

j j j S

H
H A s s A s s E s s s s A

H
∂

= ∂ = ∂ =∫ ∫   (37) 

4.2. Transformations of ODE 

Lemma 4.2. If positive function [ )( )2 0,CΓ∈ +∞  satisfy (4), : κ
′Γ

Λ =
Γ

, then 

2 2 20 3 coth coth coth .
2 2
κ κ ′′ ′′ ′ ′= Λ + − + Λ + Λ + ΛΛ 

 
         (38) 

Proof. 

: ,κ
′Γ

Λ =
Γ  

so 

( )( ) ( )
( ) ( )1ln .
s

s s
s κ

′Γ′Γ = = Λ
Γ  

Integral on both sides, we have 

( )( ) ( )
1 1

1ln d d .
x x

s s s s
κ

′Γ = Λ∫ ∫  
i.e. 

( ) ( ) ( )
1

1ln ln 1 d .
x

x s s
κ

Γ − Γ = Λ∫  
so 

( ) ( ) ( )1
1 d

1 e .
x s s

x κ
Λ∫

Γ = Γ  
Thus 

https://doi.org/10.4236/jamp.2020.89143


S. H. Zou 
 

 

DOI: 10.4236/jamp.2020.89143 1903 Journal of Applied Mathematics and Physics 
 

( ) ( ) ( ) ( )1
1 d1 1 e ,

x s s
x xκ

κ
Λ∫′Γ = Γ Λ

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1
1 1d d21 11 e 1 e .

x xs s s s
x x xκ κ

κ κ
Λ Λ∫ ∫′′ ′Γ = Γ Λ + Γ Λ

 
From (4), we get 

( ) ( )1

2 2

1 d 2
2 2

3 10 coth coth
2 2

1 11 e coth 3 coth .
2 2 2

x s s
κ

κ
κ

κ κ
κ

Λ∫

 ′′ ′= Γ + Γ + − Γ 
 

  ′ ′= Γ Λ + Λ + Λ + −      
Hence, 

2
2 2

1 coth 3 coth 0.
2 2 2

κ κ ′ ′Λ + Λ + Λ + − = 
   

Differentiate with respect to x, we have 

2 2 23 coth coth coth 0 .
2 2
κ κ ′′ ′′ ′ ′ ′Λ + − + Λ + Λ + ΛΛ = 

 
            

4.3. Martingales in Two Time Variables 

Let 1 2 1 2, , , ,a a Γ Λ Λ  be as Theoerm 4.1. Let ( ) ( )1 2,B t B t  be two independent 
Brownian motion, ( )( )( );0 1,2j

t jB s s t jσ= ≤ ≤ = . For 1, 2j = , Let  
( ) ,0j j j jt t Tξ ≤ < , be the solution of 

( ) ( ) ( ) ( )( ) ( )d d , d ,  0 ,j j j j j j j j j j j jt B t t g t b t aξ κ ξ ξ= + Λ − =      (39) 

then ( ) ( )1 2,ξ ξ  are independent. When ( ]0,4κ ∈ , ( )( )1,2j jt jξ =  is a.s. a 
simple curves, denoted by ( )j jtγ . ( ) ( ), ,j j j jt g tγ ⋅  are driven by ( )j jtξ , Thus, 
They are 

j

j
t -adapted. ( )j jtγ  is 

j

j
t -adapted, ( ),k kg t ⋅  is 

k

k
t -adapted, so 

( ) ( ) ( )( ) ( )1 2 , 1 2, , , ,
kj t j k k j jt t t g t t t tγ β= ∈   are ( )1 2

1 2
t t×  -adapted.  

( ), ,
kj t jf t ⋅  is determined by ( ), , 0

kj t j j js s tγ ≤ < , hence, ( ), ,
kj t jf t ⋅  is  

( )1 2

1 2
t t×  -adapted. From (6) we get, ( )( ), ,

kk t jG t ⋅  is ( )1 2

1 2
t t×  -adapted. 

From (7) we have, ( )( ), kj t jtξ  is ( )1 2

1 2
t t×  -adapted. From (8), (9), (23) we 

get, ( ) ( )( ),, 1, 2,3j j nA nξ =  and ( ),j SA  are ( )1 2

1 2
t t×  -adapted. 

Fix { }1,2j k≠ ∈  and a k
t -stopping time [ )0,k kt T∈ . Let  

, , 0k
j kj

j t j k
t t j jt t T= × ≤ <   , then ( ), k

j

j t
t  is a filtration. ( )j jB t  is independent 

of 
k

k
t , so it is a ( ), k

j

j t
t -Brownian motion. Hence, (39) is ( ), k

j

j t
t -adapted 

SDE. 
From (23), (16), (8), (11), we get 

( )( ) ( )( )

( )
, ,

2
,1 ,2 ,1 2

d d , d ,

d 3 d coth d .
2

k kj j j k t j j j j j t j k k

j j j j j j j j

X G t t g t t

A t A t A X t

ξ ξ

κξ

= −

 = + − + 
 

        (40) 

Let ( ) ( )1 x xΓ = Γ , ( ) ( )2 x xΓ = Γ − , ( )1,2j
j

j

jκ
′Γ

Λ = =
Γ

. Suppose jΓ  sa-

tisfy (4). From (24), we define ( ) ( )1 2 1 2, , ,Y t t t t ∈ : 
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( ) ( )1 1 2 2 .Y X X= Γ = Γ                     (41) 

From Itô formula and (4), (40) we have 

( ) ( )( )
( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )( )

2

,1 ,2

2
,1 2

2
,1 ,2 ,1 2

1d dd 2

1 1d 3 d
2

3 1 coth d
2

1 3 1d coth d .
2

j j j j j j j jj

j j

j j j j j j j j j

j j j

j j j j j j j j j j j

X X X XY
Y X

X A t A X t

A X t

X A t A X A X t

κξ
κ κ

κ

ξ
κ κ

′ ′′Γ + Γ
=

Γ

 = Λ + − Λ 
 

  ′− − 
 

  ′= Λ − − Λ + 
 

 (42) 

From Itô formula and (17) we have 

( )( )

( )

,,1

,1 ,1

2
,2 ,3 ,2 2

,1
,1 ,1 ,1

d ,d

4 1 1 1d d .
2 3 2 6 6

kk t j j jj j

j j

j j j
j j j j

j j j

G t tA
A A

A A A
t A t

A A A

ξ

κξ

′
=

    = + − + + −         

   (43) 

Let 

( )( )8 3 66 ,   .
2 2

c
κ κκα

κ κ
− −−

= =
 

From Itô formula and (43), we get 

( ) ( )

( )

( )

21 2
,1 ,1 ,1 ,1,1

,1 ,1

2
,1 ,1

,1 ,1

,2 2
, ,1

,1

1d 1 dd 2

d d1 1
2

1 1d d .
6 6 6

j j j j j jj j

j j

j j j j

j j

j
j j j S j j

j

A A A AA
A A

A A
A A

A ct A A t
A

α αα

α α

α α α

α α α

α ξ α α

− −+ −
=

 
= + −   

 

 = + + − 
 

        (44) 

From (19) and (32) we get 

( )( ) ( ),,1 ,1 2
,1 2

,1 ,1 ,1

d ,d
coth d .jj j t k k kj k j k

j j j
k k k

G t tA A
A X t

A A A

ξ′ ∂
′= = =       (45) 

Thus 

( ),1 2
,1 2

,1

d
coth d .j k

j j j
k

A
A X t

A

α

α α ′=                   (46) 

Define ( ) ( )1 2 1 2
ˆ , , ,M t t t t ∈ : 

( ) 6
1 2 1,1 2,1

ˆ , .
c

M t t A A H Yα α −
=                     (47) 

Lemma 4.3. Let 1 2 3 4, , ,X X X X  be a Itô process in  , let 1 2 3 4tN X X X X= , 
then 
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3 31 2 4 1 2 1

1 2 3 4 1 2 1 3

3 31 4 2 2 4 4

1 4 2 3 2 4 3 4

d d dd d d d d d

d dd d d d d d
.

t

t

N X XX X X X X X
N X X X X X X X X

X XX X X X X X
X X X X X X X X

= + + + + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅
 

Proof. Process from Itô formula we have 

( )1 2 1 2 2 1 1 2d d d d d .X X X X X X X X= + + ⋅  
Then 

( )1 2 1 2 1 2

1 2 1 2 1 2

d d d d d
.

X X X X X X
X X X X X X

= + + ⋅
 

Thus 

( ) ( ) ( )

( ) ( )

1 2 3 1 2 3 3 1 2 1 2 3

1 2 3 1 2 3

1 2 1 23 3

3 1 2 1 2 3

3 3 31 2 1 2 1 2

1 2 3 1 2 1 3 2 3

d d d d d

d dd d

d d dd d d d d d
.

X X X X X X X X X X X X
X X X X X X

X X X XX X
X X X X X X

X X XX X X X X X
X X X X X X X X X

+ + ⋅
=

= + + ⋅

= + + + ⋅ + ⋅ + ⋅
 

and 

( ) ( ) ( )

( ) ( )

1 2 3 4 1 2 3 4 4 1 2 3 1 2 3 4

1 2 3 4 1 2 3 4

1 2 3 1 2 34 4

4 1 2 3 1 2 3 4

3 31 2 4 1 2 1

1 2 3 4 1 2 1 3

3 32 1 4 2 4 4

2 3 1 4 2 4 3 4

d d d d d

d dd d

d dd d d d d d

d dd d d d d d
.

X X X X X X X X X X X X X X X X
X X X X X X X X

X X X X X XX X
X X X X X X X X

X XX X X X X X
X X X X X X X X

X XX X X X X X
X X X X X X X X

+ + ⋅
=

= + + ⋅

= + + + + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅

      

From (47), Lemma (3.1), (44), (46), (37), (42), 

( ) ( ) ( )

6
,1 ,1 ,1

,1 ,1 ,16

,2 2
,1 ,1

,2

ˆd d d d d d d
ˆ d d

1 1 1d d d .
6 6

c

j j j j k j j j j j
c

j jj k j

j
j j j j j j j j j

j

M A A H Y A Y
Y YA A AM H

A
t X A t A t

A

α α α

α α α

α ξ ξ α α
κ

−

−
= + + + + ⋅

 = + Λ + − 
 

   (48) 

Define ( ) ( )1 2 1 2, , ,M t t t t ∈ : 

( ) ( ) ( )
( ) ( )

1 2
1 2

1 2

ˆ ˆ, 0,0
, .ˆ ˆ,0 0,

M t t M
M t t

M t M t
=                   (49) 

Obviously, M is a positive, and ( ) ( ),0 0, 1M M⋅ ≡ ⋅ ≡ . 
Proposition 4.4. (i) Fix any 2

t -stopping time [ )2 20,t T∈ ,  

( ) ( ))( )1 2 1 1 2, , 0,M t t t T t∈   is a ( )1 2 1

1 2

0t t t ≥
×  -adapted continuous local martin-

gale, and 
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( )
( ) ( ) ( ) ( )( ) ( )1,21 1 2 1 1

1,1 1 1 1 1 1 1 1 2
1 2 1,1

d , d
3 , .

, 2
AM t t B t

A X t g t a
M t t A

κ ξ
κ

  = − + Λ −Λ −  
   

 (50) 

(ii) Fix any 1
t -stopping time [ )1 10,t T∈ , ( ) ( ))( )1 2 2 2 1, , 0,M t t t T t∈   is a 

( )1 2 2

1 2

0t t t ≥
×  -adapted continuous local martingale, and 

( )
( ) ( ) ( ) ( )( ) ( )2,22 1 2 2 2

2,1 2 2 2 2 2 2 2 1
1 2 2,1

d , d
3 , .

, 2
AM t t B t

A X t g t a
M t t A

κ ξ
κ

  = − + Λ −Λ −  
     

Proof. (i) From Lemma 4.1, we have 

( ) ( )
( )

( )
( )( )2

1 1 1 1 12 3
1 1 1

1 1 1ˆ ˆd d ,0 d ,0 ,ˆ ˆ ˆ,0 ,0 ,0
M t M t

M t M t M t
= − +

 
then 

( )
( ) ( )

( )
( )

( )( )2

1 1 1 1 1 12
1 1 1

1 1 1ˆ ˆ ˆ,0 d d ,0 d ,0 .ˆ ˆ ˆ,0 ,0 ,0
M t M t M t

M t M t M t
= − +    (51) 

From (48) and (51) we get 

( )
( )

( )
( )

( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( )

1 1 2 1 2 1 2
1

11 2 1

1
1 1 2 1 2 1

1 2 1 1 2

1 1 2 1
1 2

ˆd , , ,
d ˆ,0, ,0

ˆ ,0 1 1ˆ ˆd , , dˆ ˆ ˆ, ,0 ,

1ˆd , d ˆ ,

M t t M t t M t t
M tM t t M t

M t
M t t M t t

M t t M t M t t

M t t
M t t

  
=         


= +



+ ⋅ 

  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

1 1 2 1 1 2
1 1 1 1

1 2 1 1 2 1

2

1 1 2 1 1 1 1 1 1 2 1 1

1 2 1 1 1 2 1

1,2
1

1,1

ˆ ˆd , d ,1 1ˆ ˆ,0 d ,0 dˆ ˆ ˆ ˆ, ,0 , ,0

ˆ ˆ ˆ ˆ ˆd , d ,0 d ,0 d , d ,0
ˆ ˆ ˆ ˆ ˆ, ,0 ,0 , ,0

3
2

M t t M t t
M t M t

M t t M t M t t M t

M t t M t M t M t t M t
M t t M t M t M t t M t

A
A

A
κ

 
= + + ⋅  

 

     
= − + − ⋅          

     

 = − + 
 

( ) ( ) ( )( ) ( )1 1 1
,1 1 1 1 1 1 1 1 2

d
, .

B t
X t g t aξ

κ

 
Λ −Λ − 

    
(ii) Similarly, 

( )
( ) ( ) ( ) ( )( ) ( )2,22 1 2 2 2 2

2,1 2 2 2 2 2 2 2 1
1 2 2,1

d , d
3 , .

, 2
AM t t B t

A X t g t a
M t t A

κ ξ
κ

  = − + Λ −Λ −  
   

   

Let   be the set of simple curves between π  and   with only two 
endpoint in  , for , 1, 2J i∈ = , let ( )jT J  be the first time that jβ  visit J. 
Let ( ){ }2

1 2 1 2 1 2 1 2, | , , , is on the left side ofJ J J J J J J J= ∈ = ∅   then 
( )1 2 ,J J∀ ∈ , when ( ) ( )1 1 1 2 2 2,t T J t T J≤ ≤ , ( ]( ) ( ]( )1 1 2 20, 0,t tβ β = ∅ . 

thus, ( ) ( )1 1 2 20, 0,T J T J× ⊂        . 
Proposition 4.5. (Boundedness) Fix 2

1 2,J J ∈ , then ( )ln M  is bounded 
on ( ) ( )1 1 2 20, 0,T J T J×        by a constant depend on 1J  and 2J  only. 

Proof. We say a function is uniformly bounded if the absolute value of func-
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tion is bounded on ( ) ( )1 1 2 20, 0,T J T J×        by a constant depend on 1J  and 

2J  only. 
Define 

( ) ( ) ( )
0

0 0 0 1e ,    ,
s x

s s sx x Y Xκ
−

Γ = Γ = Γ
 

0 0 0 0
6 6

1,1 2,1 1,1 2,1
ˆ ˆ,   .

c c

s s s sM A A H Y M A A H Yα α α α− −
= =

 

From [10], Lemma 4.4, ( ) ( ),1 ,2ln , lnj jA A  are uniformly bounded, when 
( ) ( ) ( )1 2 1 1 2 2, 0, 0,t T T J T J∈ ×       , exist 0m > , such that 

( ) ( )( ) ( )( )1 2 , ,, , , .
k kj k t j j j k t j k kX t t G t t g t t mξ ξ= − ≥          (52) 

2

2 21 e e
x x

− 
−  

 
 is a decreasing function, so 

2

2 21 e e
j jX X

− 
−  

 
 is uniformly 

bounded. 

2coth x  and 2coth jX  are uniformly bounded, so  

( )
2

2 2 2
2 2coth 1 3coth e e

j jX X

j jX X
− 

′′′ = − −  
 

 is uniformly bounded. 

From (36) we get, ( )ln H  is uniformly bounded on ( ) ( )1 1 2 20, 0,T J T J×       . 
From (5) we have 

( )
( )

( )
( )

( ) ( ) ( )
0 0 0 0

0 0

2 2 2

2 e 2 e e e ,
s x s x s s x

s sx x x x xκ κ κ κ
+ π + π π

− −
Γ + π = Γ + π = Γ = Γ = Γ

 
so 

0sΓ  is a continuous function with period 2π . Then 
0sY  is uniformly 

bounded on ( ) ( )1 1 2 20, 0,T J T J×       . Thus, 
0

ˆln sM  is uniformly bounded on 
( ) ( )1 1 2 20, 0,T J T J×       . 

Since 

( ) ( ) ( )( ) ( )
0 01 2 1 2 1 2 1 2ln , ln , ln , ln , ,s sM t t M t t M t t M t t= − +

 

It is suffices to proof that ( ) ( )
01 2 1 2ln , ln ,sM t t M t t−  is uniformly bounded 

on ( ) ( )1 1 2 20, 0,T J T J×       . 
From (49), (47) we have, 

( )( ) ( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( )

0

0 0

0 0

0 0

0 0

1 2 1 2

1 2 1 2

1 1 2 2

1 2 1 2

1 1 2 2

0
1 1 2 1 1 1 1

ln , ln ,

ˆ ˆ ˆ ˆln , ln , ln 0,0 ln 0,0

ˆ ˆ ˆ ˆln ,0 ln ,0 ln 0, ln 0,

ln , ln , ln 0,0 ln 0,0

ln ,0 ln ,0 ln 0, ln 0,

, 0,0 ,0 0,

s

s s

s s

s s

s s

M t t M t t

M t t M t t M M

M t M t M t M t

Y t t Y t t Y Y

Y t Y t Y t Y t

s
X t t X X t X

κ

−

= − + −

− − − −

= − + −

− − − −

= + − − ( )( )2 .t

   (53) 

Let ( ) ( )( )21 2 2, 1 1 1, ,tG t t G t tξ= , ( ) ( )( )21 2 1, 1 2 2, ,tg t t g t tξ= . From (23) we see 
that 1X G g= − . It is suffices to proof that ( ) ( ) ( ) ( )1 2 1 2, ,0 0, 0,0G t t G t G t G− − +  
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and ( ) ( ) ( ) ( )1 2 1 2, ,0 0, 0,0g t t g t g t g− − +  are uniformly bounded. From (31) we 
have 

( ) ( ) ( )( )
( ) ( )( )

1

2

1

1 2 2 1, 2 20

2
,1 1 2 2 20

, 0, , d

, coth , d .

t
s t

t
j j

g t t g t g s t s

A s t X s t s

ξ− = ∂

= −

∫

∫  
2
,1jA  and 2coth jX  are uniformly bounded, so ( ) ( )1 2 2, 0,g t t g t−  is un-

iformly bounded. 
So ( ) ( ) ( ) ( )1 2 1 2, ,0 0, 0,0g t t g t g t g− − +  is uniformly bounded. 
Let ( ) ( ) ( )1 2 1 2 1 1

ˆ , ,G t t G t t tξ= − , then 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

, ,0 0, 0,0
ˆ ˆ ˆ ˆ, ,0 0, 0,0 .

G t t G t G t G

G t t G t G t G

− − −

= − − +  
It is suffices to proof that ( )1 2

ˆ ,G t t  is uniformly bounded. In fact, 

( ) ( ) ( )

( ) ( ) ( )( )( ) ( )

( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( )( ) ( )( )( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( ) ( )( )

2

2

2

1 2 1 2 1 1

1
1, 1 2 2 1 1 1 1 1 1

1 1
1, 1 2 2 1 1 1 1 2 2 1 1 1 1

1 1 1
2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1
1, 1 2 2 1 1 1 1 2 2 1 1 1 1

2

ˆ , ,

, , ,

, , , , ,

, , , ,

, , , , ,

t

t

t

G t t G t t t

g t g t g t t t

g t g t g t t g t g t t

g t g t t g t t g t t t

g t g t g t t g t g t t

g

ξ

ξ ξ

ξ ξ

ξ ξ ξ ξ

ξ ξ

−

− −

− − −

− −

= −

= ⋅ ⋅ −

= ⋅ ⋅ − ⋅

+ ⋅ − + −

≤ ⋅ ⋅ + ⋅

+

 

  



  

( ) ( )( ) ( )( )( ) ( )( ) ( )( )1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1, , , , .t g t t g t t g t t tξ ξ ξ ξ− − −⋅ − + −

 

Similarly, we can prove that the other parts of the formula above are uniform-
ly bounded. Thus, ( )1 2

ˆ ,G t t  is uniformly bounded is proved.               

4.4. Coupling Measure 

Let jµ  denote the distribution of ( )jξ , 1,2j = . Let 1 2µ µ µ= × . 1ξ  and 2ξ  
be independent, so µ  is the joint distribution of ( )1ξ  and ( )2ξ . Fix  
( ) 2

1 2,J J ∈ , from the properties of local martingale and proposition 4.1, 
( ) ( )( ) ( )1 1 2 2, 0,0 1E M T J T J Mµ   = =  . 

Define 
1 2,J Jν  by ( ) ( )( )1 2, 1 1 2 2d d ,J J M T J T Jν µ = , then 

1 2,J Jν  is a probabil-
ity measure. Let 1ν  and 2ν  are marginal measure of 

1 2,J Jν . 

( )( ) ( )( )1 2
1 1 2 2

1 2

d d
,0 1,     ,0 1 .

d d
M T J M T Jν ν

µ µ
= = = =

 
So, , 1, 2j j jν µ= = . Suppose ( )1ξ  and ( )2ξ  are the joint distribution of 

1 2,J Jν . For each ( )jξ , we have the joint distribution of ( )jξ  is jµ . 
The proof of Theorem 4.1: Fix an ( )2

t -stopping time ( )2 2 2t T J≤ . From 
(39), (50) and Girsnov theorem. Under the measure of 

1 2,J Jν , exist an  

( )1 2 1

1 2

0t t t ≥
×  -Brownian motion ( )

21, 1
ˆ

tB t , such that ( ) ( )1 1 1 1 1,0t t T Jξ ≤ ≤  sa-
tisfy ( )1 2

1 2
t t×  -adapted SDE: 

( ) ( ) ( ) ( )( )( )2 2 21 1 1,1 1, 1 1,1 1 1, 1 1, 1 2 2 1

1,2
1

1,1

ˆd d , d

3 d .
2

t t tt A B t A t g t t t

A
t

A

ξ κ ξ ξ

κ

= + Λ −

 − − 
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From the formula above and (6), (14) and Itô formula, 

( ) ( )( )

( )

( ) ( ) ( )( )

2 2

2 2 2

1, 1 2, 1 1 1

1,1 1 1 1,2 1

2
1,1 1, 1 1,1 1 1, 1 1, 1 2 2 1

d d ,

d 3 d
2

ˆd , d .

t t

t t t

t G t t

A t A t

A B t A t g t t t

ξ ξ

κξ

κ ξ ξ

=

 = + − 
 

= + Λ −  
Since ( ) ( )( )2 2 2

1
1, 1 1, 1, 1t t tt u tη ξ −= , ( ) ( )( )2 2 2

1
1, 1 1, 1, 1, ,t t tf t g u t−⋅ = ⋅ , from (8), there is 

a Brownian motion ( )
21, 1

ˆ
tB s  such that for ( )( )21 1, 1 10 ts u T s≤ ≤ , 

( ) ( ) ( ) ( )( )( )2 2 2 21, 1 1, 1 1 1, 1 1, 1 2 2 1
ˆd d , d ,t t t tt B t t f t t tη κ η ξ= + Λ −

 

( ) ( ) ( )( ) ( )
2 2 21, 1, 1 2, 1 2 2 10 0, 0 , .t t tt G g t aη ξ ξ= = =

 
Thus, after a time-change, ( )( ) ( )2 2 1 1 1 1 1, ,0g t t t T Jγ ≤ ≤ , is a strip a ( )SLE ,κ Λ  

trace in π  started from ( )2 2 1,g t a  with marked point ( )2 2tξ . This shows 
that, conditioning on 

2

2
t , after a time-change, ( ) ( )1 1 1 1 1,0t t T Jγ ≤ ≤  is a strip 

( )SLE ,κ Λ  trace in ( )2 2\ tπ β  started from 1a  with marked point ( )2 2tγ . 

5. Conclusion 

In this paper, A bounded continuous local martingale M based on ordinary dif-
ferential Equation ((4), (5)) is constructed. On this basis, we prove that for 

( ]0,4κ ∈ , there is a coupling of two strip SLEκ  traces on the strip domain. 
The method in this article can provide reference for the study of stochastic 
coupling of SLE on disk and other regions. The conclusion of this paper can be 
used to study the reversibility of SLE on the strip domain.                   
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