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Abstract
The main work of this paper is to discuss the stochastic coupling of stirp
SLE, (K' (O, 4]) on the stirp region S_. By constructing a bounded conti-

nuous local martingale, we prove that when a certain ordinary differential
equation is satisfied, there is a coupling of two strip SLE, tracesin S_;one
is from ato b; the other is from b to a, such that the two curves visit the same
set of points.
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1. Introduction

Stochastic Loewner evolution (SLE) is a family of random growth process in-
troduced by Oded Schramm [1] to study the scaling limit of loop-erased random
walk (LERW) and uniform spanning tree (UST). The family of random growth
process is described by the classic Loewner differential equation driven by
JxB (t), where x is a positive parameter, and B(t) is a one-dimensional
standard Brownian motion. The behavior of SLE trace depends on the real-valued
parameter & > 0; usually we write SLE as SLE_ to illustrate that the behavior
of SLE traces is related to x. When x e (0,4], the trace of SLE,_ is a simple
curve; when x >4, the trace is no longer a simple curve; when & >8, the trace
fills the whole space.

SLE is an important and very cutting-edge research topic in today’s mathe-
matics field, which involves random processes, complex analysis and statistical
physics. It is closely related to the scale limit of the grid model in statistical
physics. Many mathematicians believe that different x describes the scale lim-
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its of different discrete models. In statistical physics, the scale limits of many
two-dimensional systems are conjectured by theoretical physicists to be confor-
mal invariant under critical conditions, but it has not been not proven by rigor-
ous mathematical methods. Since Oded Schramm introduced SLE_, a lot of
conjectures have been proven, see [2]-[8].

The stochastic coupling technique is a useful tool in studying reversibility of
stochastic Loewner evolution (SLE). Dapeng Zhan proved the coupling of the
chordal SLE in the process of proving the reversibility of the chordal SLE in [9].
He then proved the coupling of the annulus SLE and the whole-plane SLE in
[10], and on this basis he proved that the whole-plane SLE is reversible, which is
closely related with Julien Dub’s work on SLE couple relationships in [11] [12].
The stochastic couplings of strip SLE has not been studied so far. The research of
this paper will lay the foundation for the study of stirp SLE reversibility.

This paper is organized as follows. In Section 2, we give some symbols that
will be used frequently in this paper. The definition of strip SLE(K,A) is in-
troduced in Section 3. In Section 4, we construct a continuous local martingale
M based on (4) (5), and then prove that M is bounded. On this basis, we prove
that for « €(0,4], there is a coupling of two strip SLE, process on the strip

domain.

2. Symbols

In this article, we will use the following symbols: Let S, ={zeC:0<Imz<mn},
R,={zeC:Imz=n}, }]T)={Z :|Z|<1}, T={Z :|Z|=l} . The conformal map in
this paper refers to a univalent analytic function. Let fbe the conformal in D,,
and f(D,)=D,, fis said to be conformal map from D, onto D,, denoted as
f:D, — D,. Further, if j=12, C;
tension map ¢, onto C,,denotedas f:(D;;c)

is points or collections in 0D, and fex-
2 (Dyic,).

Many of the functions in this text have two variables, the first of which
represent time, and the second is not. In this case, We use 9, and 9 to
represent the partial derivative of the first variable, and d, (j =1, 2) is used to
represent the differentials of t;. We'll use coth(z/2) frequently. For conveni-
ence, we will write 2 in the position of subscript, namely coth, (z)=coth(z/2).

3. Strip Loewner Equation

In this section we give a brief description of the definition and some basic con-
cepts of the strip Loewner equation, and more detailed background can be found
n [13] [14].

Definition 3.1. Let T (0,+x), §(t)eC([O,T)). Let g(t,z) be the solu-

tion of
8,9(t.z)=coth,(g(t.z)-£(t)).g(t.z) =z (1)

For each te[0,T), let K(t) be the set of zeS at which g(t,z) is not
defined. Then K(t) and g(t,z),OSt <T are called the strip Loewner hulls
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and maps driven by cf(t) For each te [O,T) , K (t) is a bounded random
growth hull in gﬂ and fdiS'[(K (t) , R”) >0,
g(t):(S, \K(t);R”)w—l (S;;R.), g(t,z)-z—>=+t, S, \K(t)>z—> 0.

Let Kis abounded hullin S_, and dist ( K,R_ ) > 0. Then there is a constant
Cc 20,anda map gy determined by K such that
Ok (S, \K;R, )= (S,;R,), gx—Z—>#¢,, S,\K>3z—>+0. ¢ is called
the capacity of K'with respectto R_ in §_, denote scap(K (t)) . Then, for the
above strip Loewner hulls, the capacity of K(t) is &

Let & (t) is a semi-martingale, whose stochastic part is J«B (t) and drift part
is a continuously differentiable function. Then

y(t)=_lim g™*(tz),0<t<T, (2)

S,37&(t)

as. for any te[0,T), y(t) exists. It is a continuous curve in S, UR, who
starte from ¢& (0) We call 7('[) the strip Loewner trace driven by & (t) For
each t[0,T), S, \K(t) is the unbounded branch of S_\7((0,t]). Particu-
larly, when O0<x <4, 7(t) is a simple curves, for each te [O,T) ,
K(t)=r((0t]).

On the other hand, Let ;/(t) be a simple curves in S_UR, and only inter-
secting with R when t=0.Let u(t) be the capacity of y(t) with respect to
R, in S,.Then u(t) is a continuous increase function, which maps [0,T)
to [0,S) (S isa constant in (0,+0)). there exist some n(t)eC([O,S)) so
that }/(Uf1 (t)) is a strip Loewner trace driven by n(t).

Definition 3.2. Let a>beR, AeC'((0,+%)). Let £(1),0<t<T be the

maximal solution to the SDE:
dé(t) =xdB(t)+A(&(t)-g(t,b))dt, £(0)=a, (3)

where ¢ (t, 1) is a strip Loewner maps driven by & (t) We call the strip Loewner
trace driven by cf(t) the strip SLE(K,A) trace in S_ started from a with
marked point b.

4. Coupling of Two Strip SLE Trace

In this chapter we will discuss the stochastic coupling of the traces of strip SLE.
We prove that for « e (0,4] , when certain ODE is satisfied, we can couple two
strip SLE trace. That is, we have the following theorem.

Theorem 4.1. Let x (0,4], s, R, Suppose I'eC’ ((0,+OO)) is a positive
function that satisfies

0:EF”+coth2F’+(§—ljcoth’zr, (4)
2 K 2

ﬂ
I[(x+2n)=e * T'(x), xe(0,+). (5)

Let A:K%, Ay (X)=A(X), A,(X)=—A(-X), then ¥a,>a, cR, there

is a coupling of two curves: 7, (t),0<t<T, and y,(t),0<t<T,, such that for
j#zke {1,2} ,
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6)) 7 (t),0£t<Tj is the strip SLE(K,A) trace in S, started from a;
with marked point a, .

(i) If t, [O,Tk ) is a stopping time with respect to y, (t) , then conditioned
on 7, (t),0<t<t,, After a time-change, y;(t),0<t<T;, is the strip
SLE(K'A ) trace in S_\ /S, ((O,tk ]) started from ) with marked point
7 (t), where T,(t) is the first time that y; visits 7, ((O,tk]), if such time

not exist set to be TJ .

4.1. Ensemble

Let T>0, &.4, EC([O,T]) 0 (t,~) and y; (t,)(j :1,2),0St<T are the
strip Loewner map and trace driven by & (t) Define

D={(t.t): 4 ([04])NA([0.5])=2).

Fix j=kel?2, t e[O,T) , let TJ- (tk) is the first time that y;j Vvisits
7 ((O,tk ]) . Define

Vit (tj)=9k(tk’71(tj))’ 0<t; <T;(t).
Then 7, (tj),OStj <T, (tk) is a simple curves start from
O (t:&;(0)) e R, when 0<t; <T;(t), 7, ((0.t;])<S, - Let

uj, ()= scap(yJt ((O,tj])),then Ujy,

which maps [O,T.(tk)) to [O,Sj,tk),where S,y =SUpU;, [O,Tj (tk)).

is a continuous increase function,

B =7, tk( it (t)),OStSSjytk is a strip Loewner trace driven by some

M, € c([o,sJt ))

Let f,, (t) be a strip Loewner trace map by 7; . For 0<t; <T;(t,), let
954 (tj"):fj,tk (“th( )) SUELM (“j,tk (t))
Gy, (60) =954, (1) 2 G () o 05 (5.7)- 6)
G, (tjr) map S, \Bes, (Ot ]) to S,,map R, to R_.
i (t) it (t 'Bth ))

(t)e7in, (U, (4 ))
th(t ) gltk(tl’)oyj(u“k(

(tJ' ) 9 (tJ’ )°gil(u1tk

- th

)

(tl)")o‘fJ (ulltk (tl))’

Hence,
&y (1) =Gy, (ti &t )) @
For 0<t; <T,(t,), let
A () =Gl (1,6 (1)). n=123 ®
As () s{A-z(q,tz)T
A'S -t2 _ i3 = J . (9)
s ) =3 ) 2 A ()
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By [15], Section 8.1
ui, (t,)=Gi, (t,§j (tj))2 = A (L) (10)
Sofor 0<t; <T;(t),
08y, (1) =0Ty, (U, () Ui, () a1
= A1 (tot)oothy (g5, (4) &3, (1))

From (6) we get
G, (t7) 29, (t:2) = 9, (t07)o 0k (8 2). (12)

Differentiate (12) with respect to t | » we get

0954 (1) 0k (1. 2))

260 (1)1, 8:2) 60 )0, 2ot 5, 4,2)-6 1)
= A% (t,t, ) coth, (g“( Yot (to2)=&, (1))
= A? (1, )coth (thk (t,.)e0;(t.2)- &, (tj)).
Let @=g;(t; ), then
0.6y, (t,,@)+ G, (t.@)coth, (0-¢,(t;))
= A, (1.t )coth, (G, (1, 0) ¢, (tj)).
Hence,
0Gyy, (1, @) = =G, (t;,@)coth, (a"fj (t; )) (14)
+ A% (t,t, )coth, (Gk,tk (t.0)-¢&,, (4 ))
The Taylor expansion of coth, z,coth, z near z—>0 is:
cothzz:§+%+o(zz),coth;z:—2%+%+o(z). (15)
Let @& (t;), from (7), (15) and L’Hopital’s Rule,
.G, (t,:€, (1)) =—3A, (tut,). (16)
Differentiate (14) with respect to w. Let @ —&(t;), from (7), (15)and
L’Hopital’s Rule,
0k (6 () 1 ) 1 aAE) 1AL0Y)

ktk( gjtk t] 6 jV1 6 3 Ajl(tlltZ) 2 Ajzl(t11t2)

Gyy, (tJ,-) and iy, (tk ) map S, \,Bkt ((O,tk]) conformal onto S_, map
R conformal onto ]R .Soexist C, (t,,t )ER such that

T

Gy (1) = iy, (L) +Ce (). (18)
Similarly exist C,(t,,t,) € R, such that
GJrk( )= 9j (t)+Ci (L), (19)
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From (6),

9 (7)o 0 (1) = Gy, (tr)o g, (t;)+Cy (tut,). (20)
Similarly,

O, (t)o 05 (t) = 95, (1) 8 (6) +C; (). (1)
Comparing (20) with (21), we get

Ci(tt,)+C, (t,) =0. (22)

Define X, (t,,t,), X,(t.t,), (t,t,)eD:
Xi(tty) =&, (tj)‘gj,tk (tj,fk (t, ))

=Gy, (tj it ))_ 95 (44 (8))- )
From (18), (19), (23),

Xy (t,t)+ X, (t,t,) =0. (24)
Since coth, isan odd function, coth) isan even. Define E(t,t,),(t,t,)eD
E(t,.t,)=cothy X, (t,,t,) =cothy X, (t,,t,). (25)

Differentiate (11) with respect to z we have
09, (ti’z) = ALL0],, (tj ' Z)Com'z (gi,tk (ti'z)_gj,tk (tj )) (26)

50

%: A?, coth) (gjytk (tj’z)_fj,tk (tj )) (27)
0.9}, (t;:2) = ALgj,, (t;,z)cothy (gi,tk (t2)=¢ (4 )) 03

+ Ajz,l(g},tk (tj’z))z COthg(gj,tk (t.2) =<5, (tj))'
From (26) and (28) we have
a{g}',tk (ti'z)] _ (atg}'ak (tJ'Z))gitk (tj’z)_(‘atg;,tk (tj’z))gf,tk (tj,z)
9, (t:2) (g} (t,.2)) (29)
= Al9), (tj’Z)COthg(gj,tk (tj ' Z)_éﬁj,tk (ti ))

Differentiate (29) with respect to z we have

5 95, (ti'z)_{gftk (tj'z)}z
g;vtk (ti’z) g}vtk (tj’z)
= Aizvl (g;vtk (ti ! Z))2 COthIZN(gJJk (tJ ! Z)_ézj,tk (tJ )) (30)
+ALY, (. 2)coths (g, (t.2) -4, (1)),
Let z=¢& (t) in(11), (27), (29), (30) we have
0,0, (8. & ()= =A%, coth, (X ), (31)
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% = Ajz,l coth; (X i )’ -
0, [%J = ~Af A cothy (X ), ~

{:j (:ﬂ ]:‘Ail[Af,lcoth;"xj—Ak,zcothﬁ(xj)]' o

From (34) we have

0iAcs = {E_E(Ak ] ]_Azl'Ak E. (35)

Aa 2\ Aq
Define H(t,t,),(t,t,)eD
H(t,t,)= exp('[;zj;Afl (s0:5,) Ajl(sl,sz)E(sl,sz)dsldsz). (36)

As gjytk(0,~)=f”k( -)=id, when t;=0, A,=0, A,=0, A;=0,s0
A s = 0. Hence from (35), (36) we have

o.H

JT o;(InH)= (_[tz_rlAi (s1:8:) Asa (sllsz)E(sl'SZ)dsldsz) As. (37)

4.2. Transformations of ODE

Lemma 4.2. If positive function I' € c? ([0, +oo)) satisfy (4), A= K'FF, then

O:gA”+(3—§jcothg+Acoth’2+coth2A’+AA. (38)
Proof.
AI=K‘£’,
r
SO
' F(S)' 1
InT(s)) = =2 A(s).
(InT(s)) NORE (s)

Integral on both sides, we have
X ' x1
[[(inT(s)) ds=] ;A(s)ds.
Le

SO

Thus
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1.x s)ds
r'(x) = 2r@)e" " A(x),
K
LA (s)as 1% (s)ds
r(x) = 2r@)e " a(x)? + Lr@)es " A (x).
K K
From (4), we get
ozfr”+coth2r'+(§—£jcoth2r

2 K 2
1

ljle(s)ds: 1., « K
==T(1)e~ ZA*+—=A"+ Acoth,+| 3—= |coth), |.
K 2 2 2

Hence,
L A2 E AL Acoth, +[ 3= |cothy = 0.
2 2 2

Differentiate with respect to x, we have

gA"+[3—§jcoth'Z’+Acoth’z+coth2A’+AA' 0. O

4.3. Martingales in Two Time Variables

Let a;,a,,I,A;,A, be as Theoerm 4.1. Let B, (t),B,(t) be two independent
Brownian motion, =O'(Bj (S);OS S St)(j =1,2).For j=1,2,Let
fj (tj ),Ostj <TJ- , be the solution of

dé; () =ViedB, () + A5 (£ () - 0 (t.0))lty, & (0) =2, (39)

then (£ ),(&) are independent. When «€(0,4], ¢ (tj)(j=1,2) is as. a
simple curves, denoted by 7, (tj). 7 (tj),gj (tj,-) are driven by ¢; (tj), Thus,
They are .7—'tjj -adapted. (tj) is .Ejj -adapted, g, (t,-) is .7{: -adapted, so
(L) 7 (6)= 0 (6085 (1)) (1) e D are (F < F?) -adapted.
fis (t]- ;+) is determined by 7, (S; ),OS s; <t;, hence, f;, (t]- e
(ﬁfx]{f) -adapted. From (6) we get, (Gk'tk (tj,-)) is (ﬁfx]—}f) -adapted.
From (7) we have, (‘-fj,tk (tj)) is (]—"lllx]-"tzz) -adapted. From (8), (9), (23) we
get, (rfj),(Aj'n)(n =1,2,3) and (Aj,s) are (ﬁllx]{:) -adapted.

Fix j=ke{l,2} anda Z"-stoppingtime t, €[0,T,). Let
_Ejj’tk = ]{ji x F,0<t; <T,, then (.Ejj’tk) is a filtration. B; (t j) is independent
of .7{: , S0 it is a (]-:jj"k)—Brownian motion. Hence, (39) is (}:j“" ) -adapted
SDE.

From (23), (16), (8), (11), we get

d;X;=d;G, (tj,éj (tj))_djgi,tk (t.4 (8))

K
= ALdg (1 )+(E—3] A, ,dt; + AZ, coth,, X dt;.

is

(40)

r
Let T;(x)=T(x), T,(x)=T(-x), Aj:KF—J(jzl,Z). Suppose T sa-

i

tisfy (4). From (24), we define Y (t,,t,),(t,,t,) e D:
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Y =Ty (X)) =T,(X,). (41)
From It6 formula and (4), (40) we have
’ 1 ”n 2
dy I (Xj)djxj +§Fi (Xj)(djxi)
Y (X))

1 1
= A (X)) Aydg, (tj)+;(g—3j AN (X))t )

1 2 ’
=— Ay (%) Audg, (tj)—(;—EJ(Ajvaj (X,)+ A7, cothy (X ))dt;.

From It6 formula and (17) we have

djA, _ dGy (tj‘gi (tj))
A, A

2
A A A.
=22dg (t))+ (E_ﬂji+£ ™ +£Aj21_i dt;.
A 2 3JA, 2\A,) 86

(43)

1 i1

Let

oo 6—7(, oo (8—37()(7(—6).
2Kk 2K

From It6 formula and (43), we get

. 1 . 2
d,AY al'd A, +Ea(a—l) A (djA)

A}’fl Aﬁl
2
d A d A
=ag—12= J’1+loz(oz—1) i (44)
Aj’1 2 Aj’1
A c 1 1
_ j,2 2
_C(Edgj (tJ)Jr(gAJ,S +EaAJV1—Ea)dtJ

From (19) and (32) we get

d. d,Gj, (t. & (t 0,
A(A(,l _ 170y x ék( k)) — 'jAkA(,l — Aj2'1 COth'Z(XJ)dtJ.
1 1 1

(45)

Thus
d; A
A
Define M (t,t,),(t,t,)eD:

=a A, cothy (X )dt;.

(46)

M (t,.t,) = A% A5 H oY, (47)

Lemma 4.3. Let X, X,, X;, X, bealtd processin R,let N, =X ,X,X;X,,
then
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aN, _dX, | dX,  dX, | dX, X, dX, | dX, dX,
No X, X, X, X, X, X, X, X,
L9, dX, | dX, dX, | dX, dX, | dX; dX,

X, X, X, Xy X, X, Xy X,
Proof. Process from Itd6 formula we have
d(Xlxz): X dX, + X,dX, +dX; -dX,.
Then
d(X,X,) dX, L 0%, dX dX,

X, X, Xp Xy Xy X

Thus
d(X1X2X3) B X X,dX, + Xad (X, X, ) +d (X, X,)-dX,
X X, X, X, X, X,
X, d(XX,) | d(XX,) dX,
Xy X X, XXy X
:%+dx2 +%+%'dxz +dX1 dX, +dX2 dX,

Xl XZ X3 Xl XZ Xl X3 XZ X3 .

and
d(X,X,X;X,) XX XdX, + X, d (X X, X5 )+d( X X, X;)-dX,
X X, XX, X X, XX,
dX, . d(X1X2X3) . d(X1X2X3).dX4
X, X X, X, X X, X, X,

O
_dX X, dXg X, dX, dX, dx, dX,
X, X, Xy X, X, X, X, X,
L9, 90X, dX, dX, | dX, dX,  dX; dX,
X, Xi X, X, X, X, X, X,
From (47), Lemma (3.1), (44), (46), (37), (42),
de\A:de;fl+dek%1 de6+dl d;Af dy
MoOAL AL dY A, Y )
Ais 1 1 5, 1
:aidgj(t,.)+;A,.(x,.)A,.,ldgj(t,.){EaA,,l_gajdtj.
Define M (t,,t,),(t,t,) e D:
M (t,,t,)M (0,0
M(Uz)——( )M (0.0) (49)

M (1,0)M (0.t,)
Obviously, Mis a positive, and M (-,0) =M (O, ) =1.
Proposition 4.4. (i) Fix any %2 -stopping time t, € [O,T2 ) ,
(M (t.t,) .t € [O,T1 (t, ))) is a (]—"tll X }:22 )t i, -adapted continuous local martin-

gale, and
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O S TR

(ii) Fix any %' -stopping time t, €[0,T,), (M (t.t,).t, e[0T, (ti))) is a

(}Ill x ]{22 )t . -adapted continuous local martingale, and
22

dzM(tvtz)_ Aa 4 _ dB, (t,)
W—{P jAZl A, (X)) = Ay (& (L) gz(tzlai))} NP

Proof. (i) From Lemma 4.1, we have

1 1 . 1 i ,
"M (t,0) M40 d;M (t,0)+ 0] (dM (t,0))

then
~ 1 1 ~ 1
O o o™ M i

From (48) and (51) we get

d,M (tutz):{d M(H,IZ)J/[MA(QJZ)]
wt) M (0))/ (i(.0)
Lo 1 . ) .
(m){M(g,o)dlM( L) (1)d,

A(dM(5.0). (1)

M
M

:d1M<a,r2>_d1M<u,o>+[dlm w)jz {dww)]( M(m)]
Mtt)  M(t,0) ([ M(t0) ) | M(tt) ) M(t.0)
b

Ks__)%““( )= Al(é(ﬁ)—gl(a,az))}dﬁl( )

(ii) Similarly,

GM{tt) |5 k) A, ) d,B, (t,)
M (t,) _{(3 jAu Paaha (Xa) =As (& (1) gz(tz,ai))}—f O

K

Let 7 be the set of simple curves between R and R with only two
endpoint in R, for Je 7,i=1,2, let Tj (J) be the first time that ﬂj visit /.
Let  J2={(1.3,)13,,3,€7,3,NJ, =@,J; ison the left side of J,|  then
V(3,.3,)eT , when t<T,(3).t,<T,(J,), A((0OL])NA((0.t])=2
thus, [0,T,(3,)]x[0.T,(J,)]=D.

Proposition 4.5. (Boundedness) Fix J,,J, € 72, then ||n(M )| is bounded
on |:O,Tl(\]1)]><[O,T2 (Jz)] by a constant depend on J; and J, only.

Proof. We say a function is uniformly bounded if the absolute value of func-
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tion is bounded on [O,Tl(\]1 )]x[O,T2 (Jz)] by a constant depend on J; and
J, only.
Define

_SoX
FSO(X):e *T(x), Y50=r50(x1),

c c
Mso = Af,tlAg,lH 6YSO, Mso :Af’lAle 6Yso'

From [10], Lemma 4.4, In(Ajyl),In(Ajvz) are uniformly bounded, when
e[0,T,(3,)]x[0.T,(J,)], exist m>0, such that

|X]- (t1't2 )| = ‘Gk,tk (tj’gj (tj ))_ gk,tk (tj ’fk (tk ))‘ = m. (52)

o xy? 5o5Y
e2—e 2| is a decreasing function, so e2 —e 2 is uniformly

bounded.
coth, x and coth, X; are uniformly bounded, so

LI &
cothy X, = (1—300th§ X; )/[e 2 e 2 ] is uniformly bounded.

From (36) we get, In(H) is uniformly bounded on [O,Tl (Jl)J X [O,T2 (J, )] .
From (5) we have

so(x+2m) So(x+2m) 2msy SoX

I, (x+2m)=e ~ [(x+2m)=e ~ e~ [(x)=e~T(x)=T(x),

So

so I'y is a continuous function with period 2m. Then Y, is uniformly
bounded on [0 T ( J [O,TZ(JZ)]. Thus, INM, is uniformly bounded on

[0,T,(3,)]x[0.T,(J ]

Since
INM (t,t,)=(INM (t,t,) - InM_ (t,,))+In M (t,.t,),

It is suffices to proof that InM (t,,t,)-InM (t,,t,) is uniformly bounded

on [0,T,(3,)]|x[0.T,(J,)].

From (49), (47) we have,
(M (t,t,))-In(M,, (t.t,))
=(1n(W (t,,)) (M t)
~(In(M (1,0))-1

n(M,
=(InY (t,t,)-InY, (t.t,

(tut)))+(In (M (0,0))-In(M,, (0.,0)))
. ( 0>)( M< ))=n(1, (0.
))+(InY (0,0)-InY, (0,0))

—(InY (t,,0)-InY, (t,0))-(InY (0.t,)~InY, (0.t,))
=2 (X, (tu )+ X, (0.0)= X, (£,0)= X, (0.,)).

K
Let G( ,)=G 24 (tl &t )) g(t,t )—g1t2 (t1 & (L )) From (23) we see
that X, =G—g . It is suffices to proof that G(t,,t,)-G(t,,0)-G(0,t,)+G(0,0)

(53)
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and g(t,t,)-9(t,0)-9(0,t,)+g(0,0) are uniformly bounded. From (31) we

have
g(q,tz)—g(o,t :J.tlasgltz ng(tz))ds
——j A7y (st )coth, (X (s,t,) ) ds.

A?, and coth, X; are uniformly bounded, so g(t,t,)-g(0,t,) is un-
iformly bounded.
So g(t,t,)-9(t,0)-g(0,t,)+9g(0,0) isuniformly bounded.
Let é(tl,tz):G(tl,tz)—fl( ), then
G(tt;)-G(4,0)-G(0.t,)-G(0.0)
G

—G(t1 ,)—G(t,0)-G(0,t,)+G(0,0).
It is suffices to proof that G(t;,t,) is uniformly bounded. In fact,
6(tt,)] = Ith ()I
= (91, (&) 0" (1,6 (1))~ & (1)
=|(0s, (t.)° 0" (1 (1)) - 02 (t2) o 91” (t él( )))

(t.")
+(g,(t, ~)og5 (ti,sa(ti) 0 (14 (1)) (0 (& (1)) - & (1)
<|glt gz( )°gl (t1’§1 | |gz(t2’)°g (tl 51( ))|

\(gz(z,-)og; (& ()0 (1.4 (1)) + (07 (& (1) -& (1))

Similarly, we can prove that the other parts of the formula above are uniform-

ly bounded. Thus, G(t,,t,) is uniformly bounded is proved. O

4.4. Coupling Measure

Let u; denote the distribution of (51 ) , J=1,2.Let u=pyxu,. & and &,
be independent, so x is the joint distribution of (&) and (&,). Fix
(3,.3,)eT ?, from the properties of local martingale and proposition 4.1,
€, [M(T,(0,)T,(3,))] =M (0.0) -1

Define v, , by dv, /d,u =M (Tl(\]l),'l'2 (Jz)), then v, , is a probabil-
ity measure. Let v, and v, are marginal measureof v, ; .

dv dv,

=M (T,(J,).0)=1, o M (T,(J,).0)=1.

So, v;=u;,J=12. Suppose (&) and (&,) are the joint distribution of
vy, 3, - For each («fj ) , we have the joint distribution of (§J ) is p;.

The proof of Theorem 4.1: Fix an (7—;2) -stopping time t, <T,(J,). From
(39), (50) and Girsnov theorem. Under the measure of V.1, €Xist an
(]-'1 .7-'2) -Brownian motion B1t (t,), such that &(t),0<t, <T,(J,) sa-
tisty (fle ) -adapted SDE:

dé:l( ) = \/;Ai,ldBlt ( )+ A1,1A1 (fl‘tz (tl)_ Oy, (tu & (tz )))dt’l

A,
‘(E‘%"“
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From the formula above and (6), (14) and It6 formula,

dé,, (t) =Gy, (4.4 (t))
= Adg (t1)+(§—3] A
=ichdB,, (4)+ LA, (8) =0, (1.6 (1)) dt.
Since 7y, () =&, (U4 (4)) fu (6) = 0u, (uuz (1)), from (8), there is

a Brownian motion B, ( S,) such thatfor 0<s, Sy, (Tl( ))

dny,, ()= \/_dBl (t,)+A (77112( )- 1t2( 52(t2)))

Thy, (O) = §1,tz (ti) = Gz‘tz (0’ & (O)) =0, (tZ'ail)'

Thus, after a time-change, 0, (t,,7,(t,)),0<t, <T,(J,),isastripa SLE(x,A)
trace in S, started from g,(t,,a,) with marked point &, (t,). This shows
that, conditioning on %7, after a time-change, 7,(t,),0<t, <T,(J,) is a strip
SLE(x,A) tracein S_\p,(t,) started from a, with marked point y,(t,).

5. Conclusion

In this paper, A bounded continuous local martingale M based on ordinary dif-
ferential Equation ((4), (5)) is constructed. On this basis, we prove that for
Ke (0,4], there is a coupling of two strip SLE, traces on the strip domain.
The method in this article can provide reference for the study of stochastic
coupling of SLE on disk and other regions. The conclusion of this paper can be

used to study the reversibility of SLE on the strip domain. O
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