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Abstract 
A sparse vector regression model is developed. The model is established by 
employing Bayesian formulation and trained by using a set of data 

{ } 1
, N

n n n=
=D x t . The parameters needed to be determined in the algorithm are 

reduced by a special prior hyperparameter setting, and therefore the algo-
rithm is simpler than similar type of Bayesian vector regression models. The 
examples of applications to the function approximation and inverse scatter-
ing problem are presented. 
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1. Introduction 

There has been a lot of interest in studying the Bayesian vector regression and its 
application on various classification and regression problems [1] [2] [3] [4]. The 
Bayesian approach considers probability distributions with the observed data; 
prior distributions are converted to posterior distribution through the use of 
Bayes’ theorem. Let x be an input vector and t be a vector of target parameters. 
In a regression formulation our goal is to define a model ( );x wy  that yields an 
approximation to the true target t, with the model defined by the parameters w. 
The model is typically designed using a set of “training” data { } 1

, N
n n n=

=D x t , 
Although we initially consider a finite set D, the goal is for the subsequent model 
( );x wy  to be applicable to arbitrary ( ), ∉x t D , over the anticipated range of t. 

When developing a regression model one must address the bias-variance tra-
deoff. A bias is introduced by restricting the form that ( );x wy  may take, while 
the variance represents the error between the model ( );x wy  and true target 
parameters t. Models with minimal bias typically have significant flexibility, and 
therefore the model parameters may vary significantly as a function of the spe-
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cific training set D employed. To obtain good model generalization, which may 
be connected to the variation in the model parameters as a function of D, one 
must introduce a bias. The utilization of a small number of non-zero parameters 
w often yields a good balance between bias and variance; such models are 
termed “sparse”. This has led to development of the relevance vector machine 
[5]. 

The rest of this paper is organized as follows. The theory of the vector-regression 
formulation is presented in Section 2, with application example provided in Sec-
tion 3. The work is summarized in Section 4. 

2. Sparse Bayesian Vector Regression 
2.1. Model Specification 

Assume we have available a set of training data { } 1
, N

n n n=
=D x t , where 

 ( ) ( ) ( )1 2 L
n n n nx x x =  x 


 and ( ) ( ) ( )1 2 M

n n n nt t t =  t 


. Our objective is to develop a 

function ( );x wy  that is dependent on the parameters w. After ( );x wy  is so 
designed, it may be used to map an arbitrary x to an approximation of the target 
parameters t. 

The specific vector-regression function  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2; ; ; ;My y y =  x w x w x w x w


y  employed here is defined as 

( ) ( ) 01; ,i i ii
N w K
=

= +∑x w t x x wy                  (1) 

where ( ) ( ) ( )1 2
0 0 0 0

Mw w w =  w 


, and ( ), iK x x  is a kernel function that is de-

signed such that ( ), iK x x  is large if i ≈x x  and otherwise ( ), iK x x  is 
small. Hence in (1) only those i ≈x x  are important in defining ( );x wy . 

Let 

( ) ( ) ( )1 2
1 2 0 0 0            ,M

Nw w w w w w =  w  



 

( ) ( ) ( ) ( )1 2 , 1, 2, ,M
i i i i i Nφ φ φ = = x  


ψ

 
with 

( ) ( ) ( ), , 1, 2, , ; 1, 2, ,k k
i i it K i N k Mφ = = =x x              (2) 

and ( )M N M× +  matrix 

( ) ( ) ( ) ( )1 2 ,N M=   x x x x IΨ ψ ψ ψ                (3) 

where MI  is M M×  identity matrix, then (1) can be expressed in matrix 
form 

( ) ( ); =x w x wy Ψ                        (4) 

Assume that target is from the model with additive noise 

( ) ( ); ,= + = +yt x w x wε εΨ                    (5) 

where model error ( ) ( ) ( )1 2 Mε ε ε =  


ε  and ( ) , 1, 2, ,k k Mε =   are inde-
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pendent samples from a zero-mean Gaussian process with variance 1
0α
−  

( )( ) ( )( )1
0| 0, , 1, 2, ,k kN k Mε ε α −= =p                (6) 

We therefore have 

( ) ( )

( )( )

2 20
0 2

0

1
0

2| , , exp
2

| ,

M

MN

α
α

α

α

−

−

 π  = − −   
  

=

p t x w t x w

t x w I

Ψ

Ψ

          (7) 

We wish to constrain the weights w such that a simple model is favored, this 
accomplished by invoking a prior distribution on w that favors most of the 
weights being zero. In this context, only the most relevant members of the 
training set { } 1

, N
n n n=

=D x t , those with nonzero weights nw , are ultimately 
used in the final regression model. This simplicity allows improved regression 
performance for ( ), ∉x t D  [5] [6]. 

We employ a zero-mean Gaussian prior distribution for w 

( ) ( )1 1
0 0,| | , ,N M N MNα α α α− −

+ +=p w w I0               (8) 

where N M+0  is a (N + M)-dimensional zero vector, N M+I  is a  
( ) ( )N M N M+ × +  identity matrix, and suitable priors over hyperparameters 

0α  and α  are Gamma distributions [7] 

( ) ( )0 0| , Gamma | ,p a b a bα α=                   (9) 

( ) ( )| , Gamma | ,p c d c dα α=                  (10) 

where ( ) ( ) 01 1
0 0Gamma | , e ba aa b a b αα α− −−= Γ  with ( ) 1

0
e da ta t t

∞ − −Γ = ∫ . 
The hierarchical prior over w favors a sparse model and the prior over 0α  

will be used to favor small model error on the training data D. 

2.2. Inference 

For training data { } 1
, N

n n n=
=D x t  we introduce LN-dimensional vector 

1 2 N =  x x x

  X
 

and MN-dimensional vector 

1 2 N =  t t t

  T
 

and let ( ) ( )MN M N× +  matrix 

1 2 N =  

  Φ Φ Φ Φ  with ( ) , 1, 2, ,i ix i N= = Φ Ψ , 

then by (7), we have 

( )

( )

2 20
0 2

0

1
0

2| , , exp
2

| ,

MN

MN

p

N

α
α

α

α

−

−

 π  = − −   
  

=

w w

w I

ΦT X T

T Φ

          (11) 

Noting that ( ) ( ) ( )0 0 0| , , | , , | d,p pα α α α α= ∫ w p w wT X T X  is a convolu-
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tion of Gaussians, the posterior distribution over the weights w can be derived as 

( ) ( ) ( )
( ) ( )0 0 1

0 0
0

| , , | ,
| , , , | ,

| , ,
p p

p N
p
α α α

α α α
α α

−= =
w w

w w Σ
T X

X T
T X

µ    (12) 

where 

( ) ( ) 11

1M N i N
N

i Miα α
−−

+ +=
= + = +∑I I Σ Φ Φ Φ Φ           (13) 

( )1
N

i ii t
=

= = ∑ΣΦ Σ ΦTµ                    (14) 

2.3. Hyperparameter Optimization 

We determine α  in (13) by maximizing ( ) ( ) ( )| , | ,p p pα α α∝T X T X  with 
respect to α . It is equivalent to maximize the ln of this quantity. In addition, we 
can choose to maximize with respect to lnα  as we can assume hyperpriors 
over a logarithmic scale. 

Since 

( )
( ) ( ) ( )

( ) ( )
0 0 0 0

1

ln | ,

ln | , , | | , d d

1 ln 2 ln

,

2
2

p

p p a b

MN a b const

α

α α α α α

−

=

 = − + + + + 

∫ w p w w



T X

T X

B T B T

 

where 1
MN α−= +I ΦΦB , and ( ) ( )lnp pα α α= , we obtain objective function 

( ) ( ) ( )11 ln 2 ln 2 ln
2

L MN a b c dα α α− = − + + + + − 
B T B T      (15) 

By the determinant identity [8], we have 

( )

( )

1

1 ,

MN

M N
M N

M N

I

I

α

α α

α

−

− +
+

− + −

= +

= +

=





B ΦΦ

Φ Φ

Σ
 

and so 

( ) 1ln ln lnM N α −= − + + ΣB                  (16) 

Using the Woodbury formula, we obtain 

( )
( )

11 1

1

,

MN

MN M N

MN

I

I I

I

α

α

−− −

−

+

= +

= − +

= −



 



B ΦΦ

Φ Φ Φ Φ

ΦΣΦ  
thus 

( )1− = −  T B T T T TΦΣΦ
 

( )= − ΦT T µ                       (17) 

2= −  ΦΣΦT T T                   (18) 
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Then by (16) and Jacobi’s formula, we have 

( )

( )

( )

1

1

1

1

dd ln 1
d ln d ln

d
d ln

M N

jj
j

M N

M N tr

M N

α α

α

α

−

−

−

+

=

= − + +

 
= − + +  

 

= − + + ∑

Σ

Σ

Σ
Σ

Σ

B

                (19) 

where jjΣ  is the j-th diagonal element of matrix Σ . 
By (18) 

1

1

2

d d
d ln d ln

d
d ln

d
d ln

α α

α

α
α

−

−

= −

= −

= −

=

  

 

 

ΦΣΦ

Σ
Φ Φ

Σ
ΦΣ ΣΦ

T B T T T

T T

T T

µ

                 (20) 

Using (17), (19) and (20), we have 

( ) ( )
( )
( )

( )

1

1
1

2

1

d 21 d
d 2 d ln2 2

21
2 2 2

M N

jj
j

M N

jj
j

L MN a
M N c d

b

MN a
M N c d

b

α
α α

α α

α
α α

−+

−
=

+

=

+ 
= + − − + − 

+ 

+ 
= + − − + − 

 − +   

∑

∑







Σ

Σ
Φ

T B T
T B T

T T
µ

µ

  (21) 

Setting (21) to zero, followed by algebra operations, yield 

( ) ( )2
1

2
2 2 2M N

jjj

M N c
d MN a b

α
+

=

+ +
=

 + + + − + ∑ Σ ΦT Tµ µ
      (22) 

The algorithm consists of (13), (14) and (22) with iteration for ,α Σ  and µ . 

2.4. Making Predictions 

Assume MPα  and 0 MP
α  are maximizing values obtained by maximizing  

( )| ,p α T X  (Sec. 2.3) and ( )0 | ,p α T X , respectively. Assume 

( ) ( ) ( )0 0 0, | ,
MP MPp α α δ α α δ α α≈ − −X T

 
then 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )( )

0 0 0

0 0 0 0

0 0 0 0 0

0 0

1

0

| , , | , , , | , d d d

| , , | , , | , d d d

| , , | , , d d d

| , ,

, ,

, ,

| , , d

| ; ,

,
MP

MP MP

MP

MP

MP

p p p

p p p

p p

p p

N

α α α α α α

α α α α α α α

α α α δ α α δ α α α α

α α α

α
−

=

=

≈ − −

=

=

∫
∫
∫
∫

t x t x w w w

t x w w w

t x w w w

t x w w w

t x Ω

X T X T

X T X T

X T

X T

y µ

  (23) 
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with 

( ) ( ); =x xΨy µ µ                       (24) 

( ) ( )MI x x= + Ω Ψ ΣΨ                     (25) 

3. Applications 

In examples we employ a radial-basis-function kernel  
( ) ( )2 2, expi iK x x x x r= − − , and just parameters a, b, c and d by training and 

testing on given training data, finally we take 0.05a b c d= = = =  for all exam-
ples in this section. In all figures the horizontal axis is the index of samples and 
the vertical axis is output. 

3.1. Regression: Function Approximation 

The model can be used to establish the relation between independent variables 
and dependent variables of a function. 

Example 1 2-dimensional vector function with two variables 

1 2
1 sinc

4
x xt + =  

   

1 2 1 2
2 0.5sinc sin 0.4

4 20
x x x xt +   = − −   

     
in domain ( ){ }1 2 1 2, | 10 10,0 20x x x x− ≤ ≤ ≤ ≤ , where ( ) ( )sinc sinx x x= . 

Figure 1 and Figure 2 illustrate the results. Figure 1 is learning from 100 
noise-free training samples. Figure 2 is based on 100 noisy training samples. The 
noise is generated from zero-mean Gaussian with 5% of average training data 
t  as standard deviation. Both test on 100 examples that are not in training data. 

Example 2 3-dimensional vector function with 200 variables  
( ) ( )1 2 200 1 2 3, , , , ,x x x t t t→ . 

( )( )200 5 7 50
1

1
sin

100k
k

x
t x

=

= +∑
 

200 50 100
2 1 cos 10

800 200 5
x x x

t t  = + + − 
   

1 2 2 1
3 atan 10

6 2
t t t tt + − = + − 

   
We choose samples at point ( )1 2 200, , ,n n n nx x x=x   with ( )1 4n

kx k n= + − π . 
100 samples at points nx  with 1,3,5, ,199n = 

 used as training data, and 
100 samples at points nx  with 2, 4,6, , 200n = 

 used as testing data. 
Figure 3 is from noise-free training samples. Figure 4 is based on noisy 

training samples. The noise is generated from zero-mean Gaussian with 5% of 
average training data t  as standard deviation. 

3.2. Regression: Inverse Scattering 

The model can be used to characterize the connection between measured vector  
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Figure 1. Results for 2-dim vector function with noise-free data: (a) predict on training points; (b) predict on testing points. 
 

 
Figure 2. Results for 2-dim vector function with noisy data: (a) predict on training points; (b) predict on testing points. 
 

 
Figure 3. Results for 3-dim vector function with noise-free data: (a) predict on training points; (b) predict on testing points. 
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scattered-field data x and the underlying target responsible for these fields, charac-
terized by the parameter vector t. The scattering data x may be measured at mul-
tiple positions. In the examples the measure data is simulated by forward model. 

We consider a homogeneous lossless dielectric target buried in a lossy dielec-
tric half space. The objective is to invert for the parameters of the target. In the 
examples, the parameter vector t is composed of three real numbers: the depth of 
target, the size of target, and the dielectric constant of target. For each target 
there are 100 simulated measure data. Training data { } 1

, N
n n n=

=D x t  is com-
posed of N = 180 examples and testing data is composed of 125 examples that 
are not in D. 

Example 1 We consider cube target in this example. Figure 5 and figure 6 il-
lustrate the results. Figure 5 is from noise-free data. Figure 6 is based on noisy 
data. The noise is generated from zero-mean Gaussian with 10% of average 
training data x  as standard deviation. The “size” is the width of cube. 

 

 

Figure 4. Results for 3-dim vector function with noisy data: (a) predict on training points; (b) predict on testing points. 
 

 
Figure 5. Results for cube target with noise-free data: (a) predict on training points; (b) predict on testing points. 
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Figure 6. Results for cube target with noisy data: (a) predict on training points; (b) predict on testing points. 
 

 
Figure 7. Results for sphere target with noise-free data: (a) predict on training points; (b) predict on testing points. 
 

 
Figure 8. Results for sphere target with noisy data: (a) predict on training points; (b) predict on testing points. 
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Example 2 We consider sphere target in this example. Figure 7 and figure 8 
illustrate the results. Figure 7 is from noise-free data. Figure 8 is based on noisy 
data. The noise is generated from zero-mean Gaussian with 10% of average 
training data x  as standard deviation. The “size” is the diameter of sphere. 

We applied the model to two completely different types of problems, the 
model works well for both application. The results display this regression model 
can apply to various types of regression problems. 

4. Conclusion 

A Bayesian vector-regression algorithm has been developed. The model employs 
a statistical prior that favors a sparse model, for which most of its weights are 
zero [5]. This model improves the algorithm in [9], and reduces the number of 
hyperparameters, which need to be calculated in the algorithm, from two to one. 
The model is not established for one specific problem, and so can be applied to 
different regression problems. We have discussed the theoretical development of 
the model and have presented several example results for two different applica-
tions. One is for function approximation, and the other is for inverse scattering 
of dielectric targets buried in a lossy half space. It has been demonstrated that 
the algorithm works well for different applications. 
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