
Journal of Applied Mathematics and Physics, 2020, 8, 1826-1837 
https://www.scirp.org/journal/jamp 

ISSN Online: 2327-4379 
ISSN Print: 2327-4352 

 

DOI: 10.4236/jamp.2020.89137  Sep. 15, 2020 1826 Journal of Applied Mathematics and Physics 
 

 
 
 

From Gradient Elasticity to Gradient 
Interatomic Potentials: The Case-Study of 
Gradient London Potential 

Kostas Parisis1, Fei Shuang2, Bo Wang2, Pu Hu2, Andreas Giannakoudakis1,  
Avraam Konstantinidis1* 

1Aristotle University of Thessaloniki, Thessaloniki, Greece 
2University of Florida, Gainesville, FL, USA 

 
 
 

Abstract 
Motivated by the special theory of gradient elasticity (GradEla), a proposal is 
advanced for extending it to construct gradient models for interatomic po-
tentials, commonly used in atomistic simulations. Our focus is on London’s 
quantum mechanical potential which is an analytical expression valid until a 
certain characteristic distance where “attractive” molecular interactions change 
character and become “repulsive” and cannot be described by the classical 
form of London’s potential. It turns out that the suggested internal length 
gradient (ILG) generalization of London’s potential generates both an “at-
tractive” and a “repulsive” branch, and by adjusting the corresponding gra-
dient parameters, the behavior of the empirical Lennard-Jones potentials is 
theoretically captured. 
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1. Introduction 

A simplified version of gradient elasticity theory (GradEla) introducing an extra 
gradient term (the Laplacian of Hookean stress) in the classical law of linear 
elasticity [1], has been shown to dispense with various difficulties encountered in 
the past. Among the advantages stemming from the use of the GradEla model 
were the removal of singularities from dislocation lines and crack tips, as well as 
the possibility of conveniently interpreting elastic size effects (e.g. [2] [3] and 
references quoted therein). 
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The main feature which made GradEla especially robust was the observation 
that, under certain conditions [4], solutions of GradEla can be obtained in terms 
of existing solutions of classical elasticity by solving a non-homogeneous Helm-
holtz equation. This observation enabled to obtain explicit and easy-to-use non- 
singular solutions for dislocations and disclinations, as well as for cracks. An 
account of these developments can be found in a number of previous articles on 
the subject [5] [6] [7] [8]. 

In a more recent article [9], the gradient approach was extended to modify the 
classical Newton’s Law of gravitation, leading to an unexpected preliminary re-
sult: the possibility of interpreting the “strong force” of subatomic elementary 
particles on the basis of a gradient generalization of Newton’s gravitational law. 
In a related presentation in a soft matter symposium at the University of Flor-
ida/Gainesville [10], the question was raised [11] whether or not such a gradient 
enhancement for the gravitational potential can be extended to modify interatomic 
potentials used for multiscale simulations in solid state and soft matter calcula-
tions. This subject is currently under investigation by the Florida—Thessaloniki 
groups and a preliminary encouraging result is reported herein. 

In Section 2, a brief review of GradEla and its implications in revisiting classi-
cal dislocation and fracture mechanics is outlined. In Section 3, a brief review of 
London’s potential is provided. It is noted that London’s potential is derived on 
the basis of quantum mechanical calculations, but it describes only the “attrac-
tive” (1/r6) interaction of the atoms/molecules considered. It holds up to a criti-
cal distance r0, after which the interaction becomes “repulsive”, such that particle 
“collapse” is prevented and the matter remains intact. Various empirical modi-
fications of the London’s potential have been introduced to model both the “at-
tractive” and “repulsive” branches of the interatomic potential. Among them, a 
most popular one is the Lennard-Jones potential where an opposite sign (1/r12) 
term is added in the classical form of London’s potential, such that an “equilib-
rium” minimum is obtained and the phenomenological constants multiplying 
the aforementioned power terms are adjusted from experimental data on mac-
roscopic properties of the system at hand. The forms of other similar type of 
empirical potentials used in the literature are also listed in this section. In Sec-
tion 4, the gradient generalization of London’s quantum mechanical potential is 
presented in analogy to the gradient extension of Newton’s gravitational poten-
tial [9]. It is shown that this generalization results in a “modified” London’s po-
tential containing both an “attractive” and a “repulsive” branch. By adjusting the 
new phenomenological parameter characterizing the effect of the gradient (Lapla-
cian) term, the behavior of various types of empirical interatomic potentials, 
such as the Lennard-Jones which we focus on, can be recovered. Finally in Sec-
tion 5, conclusions and comments on future work are briefly discussed. 

2. Review of GradEla 

The classical Hooke’s Law of linear elasticity reads 
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( ) 2tr Gλ= +σ ε ε1 ,                      (1) 

where σ  is the Hookean stress, ε  is the linear strain and ( ),Gλ  are the 
usual Lamé constants. A strain gradient generalization of Equation (1) can be 
obtained by assuming a nonlocal integral expression for the strain ε  of the 
form 

( ) ( ) ( )1 d
V

G V
V ε ′ ′= −∫r r r rε ε ,                 (2) 

where V is the elementary volume considered under the macroscopic strain ε  
at the point r ; ( )′rε  is the local microscopic strain at each particular point 
′r  within the volume V, and Gε  denotes a corresponding kernel describing 

the “weighted” effect on the microscopic strain ( )′rε  on the macroscopic 
strain ( )rε . By taking the Fourier transform of Equation (2), expanding in 
Taylor series in the Fourier space, and inverting we can replace the classical 
strain ε  in Equation (1) with its gradient counterpart 2 2

ε− ∇ε ε , so that 
Equation (1) is replaced by the GradEla constitutive equation of the form 

( ) ( )22 2tr G c tr Gλ λ= + − ∇ +  σ ε ε ε ε1 1 ,             (3) 

where the new phenomenological gradient coefficient 2c ε=   is the square of an 
internal length characterizing the inhomogeneity of the underlying (micro/nano) 
structure of the non-classical elastic material at hand. In fact, it turns out that 

ε  is given by the relation 

( )2 2 21 d 0 d
2

G kε ε= 

 , 

where Gε
  denotes the Fourier transform of the kernel Gε  and k = k  is the 

wave vector.In general, the sign in front of Equation (3) can be either positive or 
negative since the outlined mathematical procedure gives ( ) 2c sign ε ε=   ;  

( )2 21 d 0 d
2

G kε ε= ± 

 . Even though some early authors have used Equation  

(3) with the “+” sign in front of the Laplacian term, stability reasons require the 
“−” sign to be used. A simpler and more direct way to arrive at Equation (3) is 
toset 1Gε =  in Equation (2), so that ( )rε  is the average strain tensor over 
the elementary spherical volume V centered at r . By performing a Taylor ex-
pansion(up to the second order) of the local strain ( )′rε  in physical space 
around the point r , integrating over the elementary volume V, and subse-
quently inverting, we arrive at the same result where now 2 2 10Rε ≈  with R 
denoting the radius of V. In other words, the internal length ε  is directly re-
lated in this case with the size of the elementary volume at hand which, in the 
case of a polycrystal, can be identified with an average grain size. 

It is noted that the second term in Equation (3) enhancing the classical elastic-
ity law of Equation (1) is indeed the Laplacian of Hookean stress. It also turns 
out [4] that solutions of the usual equilibrium equation 

0div =σ  or , 0ij jσ = ,                     (4) 

can be obtained in terms of classical elasticity solutions for infinite domains or 
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finite domains under certain conditions on the boundaries. In fact, for traction 
boundary conditions, the displacement field u  and the strain field ε  of 
GradEla turn out to be given in terms of solutions of the following inhomoge-
neous Helmholtz equation 

2 2
0 0c c− ∇ = ⇒ − ∇ =u u u ε ε ε ,                  (5) 

where the source terms ( )0 0,u ε  are the solutions of a corresponding bound-
ary-value problem based on classicallinear elasticity, and the symbol 2∇  de-
notes as usual the Laplace operator ( ) ( )2

,ii∇ ⋅ = ⋅ . 
An argument for the stress σ  in Equation (1) similar to that employed for 

the strain ε  through Equation (2) can lead to the following expression between 
the gradient stress σ  and the classical stress 0σ  

2
0c− ∇ =σ σ σ ,                        (6) 

where it was assumed, for simplicity, that 2 2 cε σ= ≡  . 
In applying the above approach to revisit dislocation mechanics, i.e. by using 

the Ru-Aifantis formalism recapitulating below: 
• Gradient Constitutive Equation: ( ) ( )22 2tr G c tr Gλ λ= + − ∇ +  σ ε ε ε ε1 1 , 

• Ru-Aifantis Theorem: 
2

02
0 2

0

,

,

c
c

c

 − ∇ =− ∇ = ⇒ 
− ∇ =

u u u
ε ε ε

σ σ σ
 

we obtain the following non-singular solutions for a screw dislocation 

1 12 2,
4 4

z z
xz yz

b by y r x x rK K
r rr c c r c c

ε ε
      

= − + = −      
  π    π

,     (7) 

where r denotes as usual the radial coordinate. It is readily noted that these ex-
pressions (similar ones hold for the stresses ,xz yzσ σ ) give finite (zero) values at 
the dislocation line (see Figure 1) since for 0r →  the modified Bessel function 

1K  gives ( ) ( )1 , 0yz yzK r c c r σ ε→ ⇒ → . It is also noted that the self- 

energy is given by the expression 
2

ln
4 2

z
s

Gb RW
c

γ 
= +

π



 ( 0.577γ =  is Euler’s  

constant), such that there is no need for an ad hoc dislocation core 0r assump-
tion. This expression for the self-energy sW  of the screw dislocation at hand 
( zb  is the Burgers vector) holds for an infinite cylinder ( R →∞ ) surrounding 
the dislocation line. 

In calculating the self-energy of an edge dislocation eW  surrounded by a finite 
 

 
Figure 1. Distribution of strains/stresses associated with a screw dislocation. The first 
figure corresponds to the classical singular solution, while the second corresponds to the 
gradient nonsingular one. 
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cylinder of radius R, the corresponding expression for an edge dislocation is 
given by the more complex equation below [5] [12] 

( )
2

0 1 2

2ln 2 2
4 1 2e

b R R c R cW K K
R Rc c c

γ
ν

     = + + + −    −    π  
,     (8) 

where b denotes again the Burgers vector, ν  is the Poisson’s ratio, ( )0 1,K K  de-
note the modified Bessel functions. By letting R →∞ , we have (as for the case of  

screw dislocation) the following limiting value 
( )

2 1ln
4 1 22e

b RW
c

γ
ν

 
= + +

− π



.  

A Plot of the aforementioned generalized finite expression for the self-energy of 
an edge dislocation is provided in Figure 2 in comparison with corresponding 
atomistic simulations based on a Stillinger-Weber potential [12] [13]. This com-
parison between the GradEla model and atomistic Stillinger-Weber calculations 
provide the following estimate [12] for the gradient coefficient  

2 20.2 - 2 2 Å.c ε= =  (the symbol Å denotes as usual Angstrom units). It is noted 
that as R →∞  all three models (classical elasticity, Stillinger-Weber and GradEla) 
converge. But as R approaches the dislocation line ( 0R → ) only the GradEla 
model goes smoothly to zero. The classical elasticity model holds up to distances 
bounded by the dislocation core, while the atomistic simulations provide results 
at smaller distances, but not up to the dislocation line. 

 

 
Figure 2. Plots of the self-energy of an edge dislocation for classical elasticity (green), GradEla (red/blue) and Stillinger-Weber 
atomistic simulations (dots) for three edge partial dislocation configurations. See [12] for details. 
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3. London’s Quantum Mechanical Potential 

Based on exact quantum mechanical calculations London [14] [15] has arrived at 
the following forms of the interatomic force ( )d dF w r= −  and interatomic 
potential ( )( )w w r=  

( ) ( )

2
0

2 6 6
0

3 1 ; ,d ; 4 4
d

; ,

hv C rw r rF w w r
r

r

α
σ

ε

σ


− = − ≥

= −

<

π= = 
∞

        (9) 

where ( )22
0 03 4 4C hvα επ= , 0α  is the atomic polarizability and 0ε  the vac-

uum dielectric permittivity. The quantities ( ),h v  denote respectively the Planck 
constant and the electron orbital frequency. The above analytical relation for the 
attractive interaction which holds until a critical distance σ , and there is no 
available a similar expression for the region where the interaction becomes re-
pulsive going to infinity as 0r → . To describe quantitatively “repulsive” inter-
actions for distances r σ< , Lennard-Jones [16] suggested the following modi-
fication of London’s potential 

( ) 6 12

A Bw r
r r

= − + ,                      (10) 

where A and B are determined by fitting them to obtain through atomistic 
simulations the measured experimental values of macroscopic properties. Qualita-
tive graphs for F and ( )w r  are provided in Figure 3 [17]. 

4. Gradient Modification of London’s Potential 

Motivated by GradEla and a corresponding generalization of Newton’s gravita-
tional (1/r) potential, we discuss below an analogous gradient modification of 
London’s quantum mechanical potential. It turns out [10] [11] that the gradient  

 

 
Figure 3. Plots of the potential ( )w r  and the force ( )F r  for the Lennard-Jones po-

tential [17]. 
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enhanced London’s potential G
Lw  is obtained in terms of its classical counter-

part w through the inhomogeneous Helmholtz equation 

( ) ( )2 2
61 ,G

L
Cw w w w r
r

− ∇ = = = − .              (11) 

The solution of Equation (11) for ( 0,G
Lw r→ →∞ ) is given by the expression 

( )
4 2

6 4 2

e 4 2 e Ei e Ei
48

r
G r r
L

C r rw r A
r rr r

−
−     = + + + − −          



 

  



 

,  (12) 

where A is a new integration constant,   is an internal length parameter, and 

Ei denotes the exponential integral ( ) eEi d
t

x
x t

t

−
∞

−
= −∫ . Near the origin 

( 0r → ), it turns out that ( ) 2 412
G
L

Cw r
r

→


, while at large distances ( r →∞ ) it 

approaches the classical London’s potential, i.e. ( ) 6
G
L

Cw r
r

→ −  for r   . The  

qualitative behavior of London’s gradient potential, given by Equation (12) is 
provided in Figure 4(a). In Figure 4(b) the corresponding plots for the force 

( ) ( )d dG G
L LF r w r=  are provided. 
As an example application of the newly derived gradient potential, we con-

sider the case of the Argon, for which parameter values of the non-gradient 
counterpart of the potential are available from computer simulations for liquid 
argon in accordance with experiment (see Table 6.1 of [17] and the data of [18] 
for the deduced numerical/experimental values). In particular, the ionization 
potential, designated as ε  (in units of Joules or eV), as well as its location mr  
(in Å), can be estimated as 211.95 10 Jε −= ×  and 0.37 nmmr =  respectively. 
The Lennard-Jones potential then can be uniquely determined from these pa-
rameters. For this purpose, Equation (10) is written in the form  

( ) ( ) ( )( )12 62L J m mw r r r r rε− = − , where it is evident that the minimum occurs  
 

 
Figure 4. Qualitative plots of the London gradient potential G

Lw  and the corresponding interaction force G
LF . The scaling fac-

tors are 6C −
  and 7C −

  for G
Lw  and G

LF  respectively. 
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at mr  with ( )L J mw r ε− = −  and ( )d d 0L J mw r r− = . This point determines the 
transition from “attractive” to “repulsive” branch for distances mr r< . Additionally, 
the Lennard-Jones potential crosses zero at 1 62 0.89 0.32 nmm mr r rσ −= = = = . 
The parameters ( ), mrε  are related with the ( ),A B  of Equation (10) through 
the relationship 12 124mA rε εσ= = , 6 62 4mB rε εσ= = . The fitted London’s con-
stant is 79 650 10 J mC −= × ⋅ , which was determined such as the classical Lon-
don’s potential passes through the experimental potential minimum exactly at 

mr . 
In order to demonstrate the ability of the gradient modification of London’s 

potential to recover the behavior of the Lennard-Jones potential for the Ar-Ar 
interaction case, we can adjust the gradient parameters ( ), ,A C , such as the 
position of the potential minimum occurs at mr , i.e. ( )G

L mw r ε= − , the corres-
ponding potential curves are as close as possible (by minimizing their mean 
square error) for the attractive branch, and letting free the repulsive branch to 
approach infinity as 0r → , as dictated by the gradient part of the so modified 
potential. The obtained parameter values are 171.392 10 JA −= × , 0.57= Å, 
and 79 690 10 J mC −= × ⋅  (see also [12]). Figure 5 shows that the gradient modi-
fication of London’s potential fits quite well the Lennard-Jones potential, while 
both curves have their minima intersect at distance mr . It is noted that the gra-
dient potential has the same asymptotic ( )6O r−  distances mr r> , in agreement 
with the classical forms of both Lennard-Jones and London’s potential. It turns out, 
as expected, that the gradient modified London’s potential exhibits “repulsive”  

 

 
Figure 5. Quantitative plots of the Ar-Ar fitting for the classical London, the Len-
nard-Jones and gradient London potential respectively. 
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branch for mr r< , where the change of slope occurs, in contrast to the classical 
form of London’s potential which exhibits only an attractive (1/r6) branch. 

In a similar way other types of intermolecular or atomistic potentials, such as 
the Stillinger-Weber potential [19], can be generalized, a task currently being in 
progress by the Florida-Thessaloniki groups [11]. 

5. Discussion—Future Directions 

A brief review of the robust gradient elasticity (GradEla) model was given first 
with emphasis on its ability to remove the undesirable dislocation singularities 
predicted by the classical Hookean elasticity. The removal of the singularity and 
the size of dislocation core are obtained by properly adjusting the internal length 
parameter multiplying the extra Laplacian term introduced in the classical elas-
ticity stress-strain relation to account for heterogeneity effects within the ele-
mentary material volume considered. The GradEla robustness is due to the ob-
servation (Ru-Aifantis theorem) that explicit solutions of gradient elasticity can 
be obtained in terms of existing classical elasticity solutions through the use of 
an inhomogeneous Helmholtz equation for which the analytical mathematical 
results are available. This methodology is extended to revisit London’s quantum 
mechanical (attractive interaction) potential and generalize it to include both an 
“attractive” and a “repulsive” branch. By properly adjusting the internal length 
parameter, the behavior of a variety of empirical interatomic potentials, such as 
the Lennard-Jones and the Stillinger-Weber potentials, can qualitatively and quan-
titatively be readily recovered. 

To further substantiate the usefulness of the approach specific materials should 
be considered in detail and the phenomenological parameter(s) of the so-derived 
gradient London’s potential should be determined for the material system at 
hand. In doing so, other possible generalizations of the gradient approach may 
also be pursued. In fact, two such generalizations are currently being considered: 
One is concerned with a fractional implementation of GradEla and another with 
the introduction of an additional biharmonic-like operator (or a bi-Laplacian) 
term to further generalize London’s potential. For the fractional implementa-
tion of GradEla, the reader can consult references [20] [21] [22] [23]. For the 
bi-Laplacian generalization of GradEla, the reader can consult [24] [25]. 

In concluding, we point out that the connection between average and local 
quantities through the Laplacian operator (as discussed first for the case of 
GradEla and adopted subsequently for the case of gradient London potential) 
was originally pointed out by Maxwell—the physical meaning of Laplacian. 
More details can be found in [26] where also combined gradient-stochastic models 
are discussed. The role of stochasticity to GradEla and intermolecular gradient 
potentials will also be a subject of future studies. In this connection, reference is 
made to a forthcoming review chapter [27], where a detailed account of genera-
lized gradient interatomic potentials is provided, along with their extension to 
their fractional counterparts. 
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