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Abstract 
Interest in the construction of efficient methods for solving initial value 
problems that have some peculiar properties with it or its solution is recently 
gaining wide popularity. Based on the assumption that the solution is repre-
sentable by nonlinear trigonometric expressions, this work presents an expli-
cit single-step nonlinear method for solving first order initial value problems 
whose solution possesses singularity. The stability and convergence proper-
ties of the constructed scheme are also presented. Implementation of the new 
method on some standard test problems compared with those discussed in 
the literature proved its accuracy and efficiency. 
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1. Introduction 
Many of the numerical methods for obtaining the solution of the first order or-
dinary differential equation 

( )( ) [ ] ( )0 0, , , ,y f x y x x x X y x η′ = ∈ =               (1) 

are based on the assumption that the solution is locally representable by a poly-
nomial. However, when a given initial value problem or its theoretical solution 
( )u t  is known to posse a singularity, then it is particularly inappropriate to 

represent ( )y x , in the neighbourhood of the singularity by a polynomial [1] 
[2]. This is evident as Runge-Kutta type methods, Obrechkoff methods and gen-
eral linear multistep methods usually produce very poor solutions around sin-
gularity points [1] [3] [4] [5]. The authors in [4] were the first to develop qua-
drature formulas based on rational interpolating functions. On the other hand, the 
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rational interpolation schemes proposed in [2], was seen to be effective in the 
neighbourhood of the singularity and even beyond as reiterated in [5]. The work of  
authors in [4] was modified by [2] with a replacement of the general rational func-

tion Luke et al. replaced the general rational function of [4] by ( ) ( )
( )

m

n

P x
F x

Q x
=   

where ( )mP x  and ( )nQ x  are respectively polynomial of degree m and n. The re-
sulting schemes require analytic generation of first and higher order derivatives, 
hence, the major limitation of the schemes. Since rational functions are more ap-
propriate for the representation of functions close to singularities than polyno-
mials, the limitation is overcome by a local representation of the theoretical so-
lution with a rational expression. Interestingly, this approach appears to be 
promising as several methods are now being constructed in this direction [6] [7] 
[8] [9] [10]. The works of the authors in [6] [7] [9] [10] [11] [12] showed that 
solution around singularity point are well approximated by this approach. In 
this work, an explicit single-step nonlinear method involving higher derivatives 
of the state function for solving (1) is presented. The local truncation error and 
absolute stability of the new method are also discussed.  

2. Construction of Method 
In this work, we assumed that the theoretical solution ( )y x  of (1) can locally be 
represented by a rational interpolant ( )r x , of the form 

( )
2 3 4

0 1 2 3 4

0

.
a a x a x a x a x

r x
b x

+ + + +
=

+
                (2) 

To construct an explicit single-step method with (2) for (1), it requires that 
( )r x  satisfies the following: 

( )
( ) ( ) ( )

, 0,1,
, 0, 0,1, 2,3, 4,5.

n j n j
i i

n j n j

r x y j
r x y j i

+ +

+ +

= = 


= = = 
             (3) 

Substituting for expressions and simplifying (3) yields 
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Eliminating the undetermined coefficients 0a , 1a , 2a , 3a , 4a  and 0b  in 
(4) results in 

( )
( )( )

( ) ( )( )

244
32 3

1 5 4

51 1 .
2 6 24 5

n
n n n n n

n n

h y
y y hy h y h y

hy y
+ ′ ′′= + + + −

−
         (5) 

The resulting method (5) is explicit, self-starting and nonlinear. We shall refer 
to (5) as NLM4 which is the method proposed in this work. The new method 
NLM4 is suitable for solving initial value problems whose solution possesses 
singularities. 

3. Local Truncation Error and Absolute  
Stability of Constructed Method 

In this section, the local truncation error (lte) and the absolute stability proper-
ties of the new method proposed in this work are considered. 

3.1. Local Truncation Error 

Local Truncation Error: The local truncation error 1nT +  at 1nx +  of the general 
explicit one step method 

( )1 , ,n n n ny y h x y hφ+ = −                      (6) 

is given as 

( ) ( ) ( )( )1 1 , ,n n n n nT y x y x h x y x hφ+ += − −               (7) 

where, ( )ny x  is the theoretical solution. Using the above definition, it follows 
that the local truncation error of the constructed one step method can be written 
as 

( )1 1 1n n nT y x y+ + += −                       (8) 

3.2. Order of a Ordinary Differential Equation 

Order of a Ordinary Differential Equation: A numerical method is said to be 
of order p if p is the largest integer for which ( )1

1
p

nT h +
+ =  for every n and 

1p ≥ . Following the above definition, the local truncation error of the method 
constructed in this work is obtained as the residual when 1ny +  is replaced by 
( )1ny x + . Below is the local truncation error for the method constructed in this 

work. 

( )
( )( )256

1 4

1
600nT h y

y+
 =  
 

                    (9) 

3.3. Consistency 

A scheme is said to be consistent if the difference equation of the integrating 
formula exactly approximates the differential equation it intends to solve as the 
step size approaches zero. In order to establish the consistency property of the 
constructed method, it is sufficient to show that 
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1

0
lim 0n n

h

y y
h

+

→

−
=                        (10) 

Now, 
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n n
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−  ′ ′′= + + − = − 

 

   (11) 

the above indicates that the constructed schemes satisfy the consistency property. 

3.4. Stability 

To get the stability behaviour of the constructed scheme, the scheme is imple-
mented on the standard test problem 

( ), 0y y Reλ λ′ = <                      (12) 

and the stability polynomial ( ) 1n

n

y
R z

y
+= , where z hλ=  is obtained. The sta-

bility function of (5) is obtained as 

( ) ( )
4 3 2

1 8 36 96 120
24 5

n

n

y z z z zR z
y z
+ − − − − −

= =
−

            (13) 

and the region of absolute stability is seen in Figure 1. 
 

 
Figure 1. Region of absolute stability of (5). 
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4. Numerical Examples 

The first problem considered in this work is the nonlinear initial value problem 

( )21 ; 0 1y y y′ = + =                      (14) 

whose theoretical solution is given as 

( ) tan .
4

y x x π = + 
 

                      (15) 

For this problem, the absolute errors of the results obtained by the method 
proposed in this work are first compared with those of Non-linear One-Step 
methods for initial value problems of [7] and the derivative-free methods pro-
posed in [11] as shown in Figure 2. A comparison of the maximum absolute er-
ror obtained by the proposed methods against those produced by the methods of 
the authors in [4] [6] [7] [9] [13] is also presented in Figure 3. 

 

 
Figure 2. Logarithm of absolute errors for the solutions of Problem 1 with step-size h = 
0.01. 

 

 
Figure 3. Log plot of maximum absolute errors for Problem 1 as a function of the 

step-size ( )0.8 , 4 1 6
2kh k= = . 
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Figure 4. Logarithm of absolute errors for the solutions of (16) with step-size h = 0.01. 

Problem 2 

The second test problem considered is given as 

( )2 ; 0 1.y y y′ = =                       (16) 

The exact Solution is 

( ) 1 .
1

y x
x

=
−

                        (17) 

The logarithm of absolute errors for the solutions obtained is compared with 
other methods discussed in [12] as given in Figure 4. 

5. Conclusion 

The explicit single-step nonlinear method constructed in this work is consistent 
and absolutely stable. Its region of absolute stability is larger than those of the 
methods discussed in the literature. The method gave more accurate result on 
the standard test problems compared with other methods discussed. Hence, the 
method is suitable for solving problems whose solution possesses singularity. 
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