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Abstract

In this paper, we consider the following fourth-order equation of
Kirchhoff type

Ay — (a + b/ |Vu|2d:c) Au+V(z)u = [ulP"tu, z€R3,
R3

where a,b > 0 are constants, 3 < p < 5, V € C(R? R); A? :=
A(A) is the biharmonic operator. By using Symmetric Mountain
Pass Theorem and variational methods, we prove that the above
equation admits infinitely many high energy solutions under some
sufficient assumptions on V' (z). We make some assumptions on the
potential V() to solve the difficulty of lack of compactness of the
Sobolev embedding. Our results improve some related results in the
literature.
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1. Introduction

Consider the following fourth-order Kirchhoff type elliptic equation
A2y — (a + b/ |Vu|2dz> Au+V(z)u = |[ulPlu, zeR3 (1.1)
R3

where a,b>0 are constants; 3<p<5, V(z) is a continuous function.

Since problem (1.1) involves the term [, |[Vu|?dz, it is no longer
a local problem, which gives rise to some analytical difficulties.
Moveover, the term [gs [Vu|?dz involving in problem (1.1) implies
that the equation is not a pointwise identity.
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In the recent years, in purely mathematical research and practical
applications, non-local operators have appeared in the description of
various phenomena, such as fractional quantum mechanics [1], physics
and chemistry [2], obstacle problems [3], etc.

If we let V(x) = 0, replace R® with a bounded smooth domain
Q C R® and set u = Au = 0 on 05, then problem (1.1) would be
reduced to

A%u— (a+b [, |Vul?) Au= [uP"lu, in Q, (12)
u=0,—Au=0, on 0.

Problem (1.2) is the special case of the following Kirchhoff-type equa-
tion

{ Au—(a+b [, |Vu?) Au= f(z,u), in Q, (13)

u=0,Au=0, on 9.

It is known that problem (1.3) is connected with the stationary
analogue of the following fourth-order Kirchhoff type equation

A%+ uy — <a+b/ |Vu|2> Au= f(z,u), in Q. (1.4)
Q

It was proposed by Kirchhoff as an extension of the classical
D’Alembert’s wave equation for free vibrations of elastic strings. The
early classical research of Kirchhoff equations is dedicated by Bern-
stein [4] and PohoZaev [5]. However, (1.4) was greatly brought into
focus only after Lions [6] investigated problem (1.4) involving an ab-
stract framework.

Recently, more and more researchers began to focus on studying
fourth-order Kirchhoff type problems, for instance, see [7—12] and ref-
erences therein. Meanwhile, many researchers pay attention to the
Kirchhoff type problems when the domain is unbounded or is the whole
space RY. For the existence and infinitely many solutions for Kirch-
hoff type problems in RY, please see the interesting results in [13-15]
and the references therein.

Now, we mention some recent works related to the Kirchhoff-type
problem. By the Mountain Pass Lemma and the local minimization,
Mao [16] obtained two type of nontrivial solutions for the following
nonlocal problem

APy — (1+)\/ |Vu|2> Au+V(z)u = f(x,u), in R3  (1.5)
R3

where ) is a parameter, and V(z) is a continuous function. In [17], Wu
obtained the existence and infinitely many solutions for the following
fourth-order Kirchhoff type elliptic equation

A% — M(||Vul|2)Au+ V(z)u = f(z,u), in RY, (1.6)

where 1 < N < 8, M € C([0,400),R) is a Kirchhoff-type function.
Via variational methods, the authors proved the existence and infinite-
ly many solutions for the above fourth-order Kirchhoff type elliptic
equation. In [18], Zhang and Jia studied the equation

1
APy — (a—!—b/ |Vu2da:> Au—iA(UQ)u:f(m,u), in RY, (1.7)
RN

where N < 5. Zhang and Jia applied the Fountain theorem and vari-
ational methods to establish the multiplicity of solutions for problem
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(1.7) by making many reasonable hypotheses on the potential V(x)
and the nonlinearity f(x,u). In [19], Almuaalemi, Chen and Khoutir
combined the variational methods and Symmetric Mountain Pass The-
orem to research the existence of high energy solutions for problem
(1.1) with a nonlinearity f(z,u). In [20], Xu obtained positive solu-
tions for a class of second-order nonlinear Kirchhoff type equations in
RY.

Motivated primarily by the above-mentioned results, we will investi-
gate infinitely many high energy solutions for problem (1.1) and obtain
some results by variational methods.

For the sake of convenience, we shall state some appropriate as-
sumptions as follows:

(VO) V € C(R3,R), and there exists a positive constant Vg such that
insz]R3 V(I) > V.
(V1) there exists a constant r > 0 such that

lim meas{y e R®: |y — 2| <r,V(y) <C}=0, V C>0, (1.8)

|z| =400

where meas(-) denotes the Lebesgue measure in R3.
Our main theorem is given in the following.

Theorem 1.1. Suppose that (V0) and (V1) hold. Then problem (1.1)
has an unbounded sequence of nontrivial solutions {u,} such that when
n — 00,

1 2

f/ (a]Aun|? + |Vu,|? + V(z)u?)dr + b (/ Vun|2dx>

2 RS 4 RS

- lﬁ lu[PTd2z — oo. (1.9)
RS

Remark 1.1. It is known to all that we meet the difficulty that is
short of compactness of the Sobolev embedding, because we consider
problem (1.1) on the whole space R3. To get over the difficulty, we
suppose that the potential V'(x) satisfies the conditions (V0) and (V1).
The result obtained in this paper can be seemed as a generalization
of the related result obtained in [20] when N = 3.

In the present paper, under the conditions of (V0) and (V1), we
prove the boundedness of (PS) sequence (Palais-Smale sequence) and
the infinitely many high energy solutions for a fourth-order Kirchhoff
type elliptic equation, which extend the related results in the litera-
ture.

The rest of this paper is organized as follows: in Section 2, some
framework are demonstrated. In Section 3, the proof of the main result
is given. In Section 4, the conclusion is given.

2. Preliminaries

In the following, first of all, we shall introduce some properties of
the weighted Sobolev space F and then present the concept of the
nontrivial solutions for problem (1.1). On the workspace F, the certain
variational functional related to (1.1) is defined and the nontrivial
solutions are the critical points of the certain functional.

Let 1 < p < oo and LP(R?) = {u : R?* — R|u is measureable and
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Jgs [ulPdz < co} with the norm

P
fullr = luly = ([ az) "
R3

where := denote ”defined as”.
Let

|~

H:= H*(R3) = {u € L*(R®) : Vu, Au € L*(R®)},

equipped with the inner product and norm
1
(u,v)g = / (AuAv + VuVo +w)de, ||ullg = (u,u) 3.
RB

We consider the working space as a weighted Sobolev space E de-
fined by

E= {u €H: V(z)uldr < —|—oo} ,

R3
endowed with the inner product and norm

(u,v) = / (AulAv + aVuVu + V(z)uv)dz, |ull = <u,u>%7
R3

where ||.|| is equivalent to the norm ||.||z. And then, due to the con-
tinuity of the embedding E — LP(R?) for any p € [2,2.], there exists
a constant €, > 0 such that

ulp < epllull, vV ue k. (2.1)

Moreover, similar to [21, Lemma 3.1], we have the following lemma.

Lemma 2.1. Suppose that (V0) and (V1) hold, the embedding from
E to LP(R3) is compact for all p € [2,2.].

Define ® : E — R by

1 b |
®(u) = §Hu||2 +1 (/}R3 |Vu|2dx) Y /]R'* lulPTdz,  (2.2)

which is called the energy functional corresponded to problem (1.1)
and is of C'!, and whose critical points are the weak solutions of (1.1).
For all u,v € E, we have

(@ (u),v) = / (AulAv + aVuVv + V(z)uv)dz
R3
—|—b< |Vu2da:>/ VuVodr — JulP~ tuvdz.  (2.3)
RS RS RS
As is known that u € F is a weak solution of (1.1), if

/ (AuAv + aVuVv + V(z)uv)dr + b </ |Vu|2d:1:> / VuVudx
R3 R3 R3
—/ lulP " uvdz =0, V veE.
R3
Definition 2.1. Let ¢ € C1(E,R), accordding to Ekeland’s variation-

al principal, we say that a sequence {u,} is a Palais-Smale sequence
at level ¢, if the sequence {un} satisfying p(un) = ¢, ¢'(un) — 0 has a
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convergent subsequence. The functional ¢ meets the (PS). condition,
if any Palais-Smale sequence at level ¢ has a convergent subsequence.
If ¢ satisfies (PS). for any ¢ € R, ¢ satisfies (PS)-condition.

We shall use the following Symmetric Mountain Pass Theorem to prove
the main theorem.

Proposition 2.1. [22]. Let E be an infinite dimensional Banach space
and let ¢ € CY(E,R) be even, satisfy the (PS)-condition and ©(0) = 0.
IfE=Y & Z, where Y is finite dimensional, and ¢ satisfies

(i) there exist constants p, o > 0 such that PaB,ny = O

(ii) for each finite dimensional subspace E C E , there exists R =
R(E)>0 such that ¢ <0 on E\Bg.

Then ¢ admits an unbounded sequence of critical value.

Lemma 2.2. If V(z) satisfies conditions (V0) and (V1). Then any
(PS)-sequence {u,} is bounded.

Proof. Let {u,} C E be such that
D(up) =c, @' (up) —0. (2.4)

For any n € N, we have

1+c¢ > O(u,) — -~

1
> Tl (25)
which implies that {u,} C E is bounded. O

Lemma 2.3. Assume that (V0) and (V1) hold, then any (PS)-
sequence {u,} C E defined by (2.4) has a convergent subsequence in
E.

Proof. By Lemma 2.2, the (PS)-sequence {u,} C E is bounded.
Then by Lemma 2.1, passing to a subsequence, uy — w in F, up, — u
in LP(R3), 2 < p < 2,. By (2.3), we get

O (up) — @' (u), ux — u)

= / |A(ug — ) dx—/ (Jur)P  ug — [uP~ ) (up — u)de

b (/ |Vu\2da:—/ |Vuk|2da:>/ VuV (u, — u)de
+/ V(z)|up — ul*dx + (a+b/ Vuk|2dx>

/ |V (up — u)|*dz

e =l = (ug P e = JulP™ ) (ug — u)da
R3

—b (/ |Vu|?dx —/ |Vuk|2da:> / VuV (u, — u)dz. (2.6)
R3 R3 R3

Y
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We can obtain
g — ull® < (P (ug) — @ (u), up, — u)

+/ (Jup|P~ g — \u|p71u)(uk —u)dz
RS

—|—b(/ |Vu\2dac—/ |Vuk|2dac>/ VuV (ug, — u)dz. (2.7)
R3 R3 R3

Due to the boundedness of {u,}, we have
lug [P uy — |u|P"ru, as k — 4oo.
Then, we can get
/RSUUMP*HM — |ulP~ ) (uy — u)dr — 0, as k — +oc. (2.8)
Furthermore, we define functional L,, : E — R by
L,(v) = VuVudz, V¥V veE.

R3

Obviously, L, is linear and
|Lu(v)] = /Rs [VuVoldz < [lullf|v],

which shows the boundedness of L, on FE, i.e., L, € E*. Therefore,
we obtain

Ly, (ug) = Ly(u), as k — oo.

By the above and up — u, we gain that ng VuV (ur — u)dz — 0 as
k — oo. Since {uy} is bounded, then we have

b </ |Vul?dz — / |Vuk|2dx) VuV (u —u)dx — 0
R3 R3 R3

as k — +oo. (2.9)

Hence, (@' (uy) — ®'(u),ur, —u) — 0 is obvious. Hence, combining
(2.8) and (2.9), we can conclude that ||uy —u|| — 0 as k — 4o00. The
proof is completed. O

3. Proof of the Main Result

In this section, in order to prove Theorem 1.1, we shall use the Sym-
metric Mountain Pass Theorem. We illustrate that ® satisfies (PS)-
condition and will prove that ® satisfies conditions (i)-(ii) of Proposi-
tion 2.1.

Proof of Theorem 1.1. The proof of Theorem 1.1 is divided into
two steps. Firstly, we prove that (i) of Proposition 2.1 holds. Set

M(s)= sup Juls, V neN,2<s<2,. (3.1)
UWEZy,||ul|=1

Due to the compactness of the embedding from E to L*(RY) for 2 <
s < 2,4, we have

Bn(s) >0 as n — oo. (3.2)
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The proof of (3.2) is similar to [21, Lemma 8.18], so we omit it. By
(2.1) and (2.2), we can get

1 b ?
v = gl g ([ 1vaPar) - g [ rtias

1 1 1
> f||uu2——| s
()
> || [ [ Lo (3.3)

By (3.2), there exists m > 1, m € N such that
Bh(p) < g, Vn>m. (3.4)
Consequently, there exists £ € (0,1) such that
B(u) > 21— ) =a >0,

where |lu]| =¢&, p>3.
Secondly, we prove that (ii) of Proposition 2.1 holds. We now prove
that for any subspace E C F with finite dimension, there holds

d(u) —» —oo as |ul| - +oo, u€E. (3.5)

Using an indirect method, assume that for {u,} C E with ||u,| — oo,
there exists C' > 0 such that ®(u) > —C for all n € N. Let v, = T
then ||v,|| = 1. Passing to a subsequence, we can assume that v, — vg
in F. By the fact that the dimension of F is finite, we have v,, — vg
in E, v,(z) — vo(z) a.e. on R3, and |jvo|| = 1. From the definition
of the norm on E, we know that |vg|a # 0. Moreover, we get |v,|s <
gsllvnl] < es for s € (2,2,).

Set Q, = {z € R3 : |u,(z)| <6} and A, = {z € R3 : v,, # 0}, then
we have that meas(A4,) > 0. Moreover, due to the assumption that
lunl| = oo, as n — oo, we obtain

|un(x)] = 00 as n— o0, ¥V z € A,. (3.6)

Hence, for sufficiently large n, we have A, C R3\(,. Therefore, it
follows from (2.1), (2.2), (2.4), (3.6) and Fatou’s Lemma that

= lim ! + b (/ [Vu 2dx>2—/ Mdm
oo | 2unl® - Alun [t \Jes " re (p+ 1) [Jun|*

by / |ty [P " / [ [P y
- im el e — L
S (+ Dhua[*" r\Q, P+ 1)|un|t "
b Lr3 3
S -+ 7&?% — lim inf |t f;dm
4 p+1 n—oo Jpa\q, (p + 1)
b LP3 _3
< 1+ —/ timint 2”1 g,
4 P + ]. RS\QW n—oo (p + ]_)
b Lrp—3 4 1
= - — . . p73 4
=1 +p+1€2 CES) /R3 llnrrigf\un\ [XAn(2)]vlda
- (3.7)
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Clearly, this is a contradiction. Therefore (3.5) holds. From (3.5), we
know that for any subspace ' C E with finite dimension, there exists
C = C(F) > 0 such that

®d(u) <0, ¥V ue E\Be.

Hence, (i)-(ii) of Proposition 2.1 hold. By (2.1), we can get that
® € CY(E,R) and ®(0) = 0. And it is easy to know that ® is even. By
Lemma 2.2 and Lemma 2.3, we know that & satisfies (PS)-condition.
Therefore, ® has a sequence of nontrivial critical points {u,} C E
such that

lim |ju,|| = +oco and lim ®(u,) = +oo.
n—oo n—soo

Consequently, problem (1.1) has infinitely many nontrivial solutions.

4. Conclusion

In this paper, we firstly obtained a (PS) sequence by compactness
conditions, and then prove that the (PS) sequence has a convergent
sequence. Finally, the existence of the infinitely many high energy
solutions is proved by Symmetric Mountain Pass Theorem and varia-
tional methods. It is obviously that the compactness conditions have
been successfully applied to find the infinitely many high energy so-
lutions of fourth-order Kirchhoff-type elliptic systems. We hope the
result can be widely used in elliptic systems.
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